Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 51–82, 2019
https://doi.org/10.5194/amt-12-51-2019

Special issue: CALIPSO version 4 algorithms and data products

Atmos. Meas. Tech., 12, 51–82, 2019
https://doi.org/10.5194/amt-12-51-2019

Research article 03 Jan 2019

Research article | 03 Jan 2019

CALIPSO lidar calibration at 1064 nm: version 4 algorithm

Mark Vaughan et al.

Related authors

Assessment of tropospheric CALIPSO Version 4.2 aerosol types over the ocean using independent CALIPSO-SODA lidar ratios
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-378,https://doi.org/10.5194/amt-2021-378, 2021
Preprint under review for AMT
Short summary
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part II: Results over oceans
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021,https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part I: The retrieval algorithms
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021,https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021,https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary
CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020,https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Triple-frequency radar retrieval of microphysical properties of snow
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021,https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Retrieving microphysical properties of concurrent pristine ice and snow using polarimetric radar observations
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021,https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Comparison of mid-latitude single- and mixed-phase cloud optical depth from co-located infrared spectrometer and backscatter lidar measurements
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021,https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021,https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Cloud height measurement by a network of all-sky imagers
Niklas Benedikt Blum, Bijan Nouri, Stefan Wilbert, Thomas Schmidt, Ontje Lünsdorf, Jonas Stührenberg, Detlev Heinemann, Andreas Kazantzidis, and Robert Pitz-Paal
Atmos. Meas. Tech., 14, 5199–5224, https://doi.org/10.5194/amt-14-5199-2021,https://doi.org/10.5194/amt-14-5199-2021, 2021
Short summary

Cited articles

Ansmann, A., Bösenberg, J., Brogniez, G., Elouragini, S., Flamant, P. H., Klapheck, K., Linn, H., Menenger, L., Michaelis, W., Riebesell, M., Senff, C., Thro, P.-Y., Wandinger, U., and Weitkamp, C.: Lidar Network Observations of Cirrus Morphological and Scattering Properties during the International Cirrus Experiment 1989: The 18 October 1989 Case Study and Statistical Analysis, J. Appl. Meteorol., 32, 1608–1622, https://doi.org/10.1175/1520-0450(1993)032<1608:LNOOCM>2.0.CO;2, 1993. 
Avery, M., Ryan, R., Getzewich, B., Vaughan, M., Winker, D., Hu, Y., Garnier, A., Pelon, J., Cai, X., and Verhappen, C. A.: Impact of Near-Nadir Viewing Angles on CALIOP V4.1 Cloud Thermodynamic Phase Assignments, in preparation, 2018. 
Beyerle, G., M. Gross, R., Haner, D. A., Kjome, N. T., McDermid, I. S., McGee, T. J., Rosen, J. M., Schäfer, H.-J., and Schrems, O.: A Lidar and Backscatter Sonde Measurement Campaign at Table Mountain during February–March 1997: Observations of Cirrus Clouds, J. Atmos. Sci., 58, 1275–1287, https://doi.org/10.1175/1520-0469(2001)058<1275:ALABSM>2.0.CO;2, 2001. 
Bufton, J. L., Hoge, F. E., and Swift, R. N.: Airborne measurements of laser backscatter from the ocean surface, Appl. Opt., 22, 2603–2618, https://doi.org/10.1364/AO.22.002603, 1983. 
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Kittaka, C., Vaughan, M. A., Obland, M. D., Rogers, R. R., Cook, A. L., Harper, D. B., and Remer, L. A.: Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles, J. Geophys. Res., 115, D00H15, https://doi.org/10.1029/2009JD012130, 2010. 
Download
Short summary
The version 4 (V4) release of the CALIPSO data products includes substantial improvements to the calibration of the CALIOP 1064 nm channel. In this paper we review the fundamentals of 1064 nm lidar calibration, explain the motivations for the changes made to the algorithm, and describe the mechanics of the V4 calibration technique. Internal consistency checks and comparisons to collocated high spectral resolution lidar measurements show the V4 1064 nm calibration coefficients to within ~ 3 %.