Articles | Volume 13, issue 1
https://doi.org/10.5194/amt-13-165-2020
https://doi.org/10.5194/amt-13-165-2020
Research article
 | 
15 Jan 2020
Research article |  | 15 Jan 2020

Assessing the stability of surface lights for use in retrievals of nocturnal atmospheric parameters

Jeremy E. Solbrig, Steven D. Miller, Jianglong Zhang, Lewis Grasso, and Anton Kliewer

Related authors

A Tale of Two Dust Storms: analysis of a complex dust event in the Middle East
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019,https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
The influence of simulated surface dust lofting and atmospheric loading on radiative forcing
Stephen M. Saleeby, Susan C. van den Heever, Jennie Bukowski, Annette L. Walker, Jeremy E. Solbrig, Samuel A. Atwood, Qijing Bian, Sonia M. Kreidenweis, Yi Wang, Jun Wang, and Steven D. Miller
Atmos. Chem. Phys., 19, 10279–10301, https://doi.org/10.5194/acp-19-10279-2019,https://doi.org/10.5194/acp-19-10279-2019, 2019
Short summary
Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band
Jianglong Zhang, Shawn L. Jaker, Jeffrey S. Reid, Steven D. Miller, Jeremy Solbrig, and Travis D. Toth
Atmos. Meas. Tech., 12, 3209–3222, https://doi.org/10.5194/amt-12-3209-2019,https://doi.org/10.5194/amt-12-3209-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multi-angle aerosol optical depth retrieval method based on improved surface reflectance
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024,https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary
Comparison of diurnal aerosol products retrieved from combinations of micro-pulse lidar and sun photometer observations over the KAUST observation site
Anton Lopatin, Oleg Dubovik, Georgiy Stenchikov, Ellsworth J. Welton, Illia Shevchenko, David Fuertes, Marcos Herreras-Giralda, Tatsiana Lapyonok, and Alexander Smirnov
Atmos. Meas. Tech., 17, 4445–4470, https://doi.org/10.5194/amt-17-4445-2024,https://doi.org/10.5194/amt-17-4445-2024, 2024
Short summary
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024,https://doi.org/10.5194/amt-17-4369-2024, 2024
Short summary
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024,https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Stratospheric aerosol characteristics from SCIAMACHY limb observations: two-parameter retrieval
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024,https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary

Cited articles

Arguez, A., Durre, I., Applequist, S., Vose, R. S., Squires, M. F., Yin, X., Heim, R. R., and Owen, T. W.: NOAA's 1981–2010 U.S. Climate Normals: An Overview, B. Am. Meteorol. Soc., 93, 1687–1697, https://doi.org/10.1175/BAMS-D-11-00197.1, 2012. 
Bankert, R. L., Solbrig, J. E., Lee, T. F., and Miller, S. D.: Automated Lightning Flash Detection in Nighttime Visible Satellite Data, Weather Forecast., 26, 399–408, https://doi.org/10.1175/WAF-D-10-05002.1, 2011. 
CIA (Central Intelligence Agency): Middle East: Qatar – The World Factbook – Central Intelligence Agency, available at: https://www.cia.gov/library/publications/the-world-factbook/geos/qa.html, last access: 24 November 2018. 
Doxsey-Whitfield, E., MacManus, K., Adamo, S. B., Pistolesi, L., Squires, J., Borkovska, O., and Baptista, S. R.: Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4, Papers in Applied Geography, 1, 226–234, https://doi.org/10.1080/23754931.2015.1014272, 2015. 
Elvidge, C. D., Zhizhin, M., Hsu, F.-C., and Baugh, K. E.: VIIRS Nightfire: Satellite Pyrometry at Night, Remote Sensing, 5, 4423–4449, https://doi.org/10.3390/rs5094423, 2013. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
New satellite sensors are able to view visible light, such as that emitted by cities, at night. It may be possible to use the light from cities to assess the amount of particulate matter in the atmosphere and the thickness of clouds. To do this we must understand how light emitted from the Earth's surface changes with time and viewing conditions. This study takes a step towards understanding the characteristics of light emitted by cities and its stability in time.