Articles | Volume 13, issue 8
https://doi.org/10.5194/amt-13-4123-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-4123-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simultaneous leaf-level measurement of trace gas emissions and photosynthesis with a portable photosynthesis system
Mj Riches
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
Daniel Lee
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
Delphine K. Farmer
CORRESPONDING AUTHOR
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
Related authors
No articles found.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Erin K. Boedicker, Holly M. DeBolt, Ryan Fulgam, Ethan W. Emerson, and Delphine K. Farmer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-431, https://doi.org/10.5194/acp-2022-431, 2022
Preprint withdrawn
Short summary
Short summary
We present particle flux and size-resolved dry deposition measurements from a pine forest for all four major seasons. Dry deposition of particles was highest in the winter and was significantly elevated compared to the summer data. Several mechanisms were investigated to determine what effects were driving the enhanced deposition in the winter. We show that the wintertime changes are likely caused by changes in plant physiology and needle structure that increase the influence of interception.
Anna L. Hodshire, Emily Ramnarine, Ali Akherati, Matthew L. Alvarado, Delphine K. Farmer, Shantanu H. Jathar, Sonia M. Kreidenweis, Chantelle R. Lonsdale, Timothy B. Onasch, Stephen R. Springston, Jian Wang, Yang Wang, Lawrence I. Kleinman, Arthur J. Sedlacek III, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 6839–6855, https://doi.org/10.5194/acp-21-6839-2021, https://doi.org/10.5194/acp-21-6839-2021, 2021
Short summary
Short summary
Biomass burning emits particles and vapors that can impact both health and climate. Here, we investigate the role of dilution in the evolution of aerosol size and composition in observed US wildfire smoke plumes. Centers of plumes dilute more slowly than edges. We see differences in concentrations and composition between the centers and edges both in the first measurement and in subsequent measurements. Our findings support the hypothesis that plume dilution influences smoke aging.
Sailaja Eluri, Christopher D. Cappa, Beth Friedman, Delphine K. Farmer, and Shantanu H. Jathar
Atmos. Chem. Phys., 18, 13813–13838, https://doi.org/10.5194/acp-18-13813-2018, https://doi.org/10.5194/acp-18-13813-2018, 2018
Short summary
Short summary
As oxidation flow reactors (OFRs) are increasingly used to study aerosol formation and evolution in laboratory and field environments, there is a need to develop models that can be used to interpret OFR data. In this work, we evaluate two coupled chemistry and thermodynamic models to simulate secondary organic aerosol formation (SOA) from diluted diesel exhaust and explore the sources, pathways, and processes important to SOA formation.
James M. Mattila, Patrick Brophy, Jeffrey Kirkland, Samuel Hall, Kirk Ullmann, Emily V. Fischer, Steve Brown, Erin McDuffie, Alex Tevlin, and Delphine K. Farmer
Atmos. Chem. Phys., 18, 12315–12327, https://doi.org/10.5194/acp-18-12315-2018, https://doi.org/10.5194/acp-18-12315-2018, 2018
Short summary
Short summary
Molecular acids in the atmosphere have implications for human health and air quality. Measurements of various acidic molecules were performed in the Colorado Front Range. Atmospheric concentrations of many acids increased during the day, indicative of sunlight-related production sources. A surface-level source of many acids persisting throughout day and night was observed. Traffic and agricultural activity were important anthropogenic sources of several acids near the measurement site.
Jakob Lindaas, Delphine K. Farmer, Ilana B. Pollack, Andrew Abeleira, Frank Flocke, Rob Roscioli, Scott Herndon, and Emily V. Fischer
Atmos. Chem. Phys., 17, 10691–10707, https://doi.org/10.5194/acp-17-10691-2017, https://doi.org/10.5194/acp-17-10691-2017, 2017
Short summary
Short summary
Wildfire smoke is becoming increasingly important for air quality in the US. We used measurements taken during the summer 2015 near Denver, CO, to provide a case study of how wildfire smoke can impact air quality, specifically ozone, which is harmful to humans. Wildfire smoke during this time period was associated with about 15 % more ozone than we would expect under normal conditions. This smoke came from fires in the Pacific Northwest and likely impacted much of the central and western US.
Shantanu H. Jathar, Christopher Heppding, Michael F. Link, Delphine K. Farmer, Ali Akherati, Michael J. Kleeman, Joost A. de Gouw, Patrick R. Veres, and James M. Roberts
Atmos. Chem. Phys., 17, 8959–8970, https://doi.org/10.5194/acp-17-8959-2017, https://doi.org/10.5194/acp-17-8959-2017, 2017
Short summary
Short summary
Our work makes novel emissions measurements of isocyanic acid, a toxic gas, from a modern-day diesel engine and finds that diesel engines emit isocyanic acid but the emissions control devices do not enhance or destroy the isocyanic acid. Air quality model calculations suggest that diesel engines are possibly important sources of isocyanic acid in urban environments although the isocyanic acid levels are ten times lower than levels linked to adverse human health effects.
Trey Murschell, S. Ryan Fulgham, and Delphine K. Farmer
Atmos. Meas. Tech., 10, 2117–2127, https://doi.org/10.5194/amt-10-2117-2017, https://doi.org/10.5194/amt-10-2117-2017, 2017
Short summary
Short summary
The impact of atmospheric chemistry on the fate and transport of pesticides is poorly understood. This paper describes a method for real-time measurements of four common-use pesticides in the gas phase using chemical ionization mass spectrometry. The calibration approach for atmospheric semi-volatile pesticides is described in detail.
Andrew J. Abeleira and Delphine K. Farmer
Atmos. Chem. Phys., 17, 6517–6529, https://doi.org/10.5194/acp-17-6517-2017, https://doi.org/10.5194/acp-17-6517-2017, 2017
Patrick Brophy and Delphine K. Farmer
Atmos. Meas. Tech., 9, 3969–3986, https://doi.org/10.5194/amt-9-3969-2016, https://doi.org/10.5194/amt-9-3969-2016, 2016
Short summary
Short summary
We describe voltage scanning methodologies using a high-resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) with acetate reagent ions to control for clustering observed in the mass spectrum. Operational considerations related to atmospheric measurements of carboxylic acids using acetate chemical ionization are discussed.
J. R. Pierce, M. J. Evans, C. E. Scott, S. D. D'Andrea, D. K. Farmer, E. Swietlicki, and D. V. Spracklen
Atmos. Chem. Phys., 13, 3163–3176, https://doi.org/10.5194/acp-13-3163-2013, https://doi.org/10.5194/acp-13-3163-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Eddy covariance with slow-response greenhouse gas analysers on tall towers: bridging atmospheric and ecosystem greenhouse gas networks
An overview of outdoor low-cost gas-phase air quality sensor deployments: current efforts, trends, and limitations
Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets
A portable nitrogen dioxide instrument using cavity-enhanced absorption spectroscopy
Development and deployment of a mid-cost CO2 sensor monitoring network to support atmospheric inverse modeling for quantifying urban CO2 emissions in Paris
UAV-based in situ measurements of CO2 and CH4 fluxes over complex natural ecosystems
A new aerial approach for quantifying and attributing methane emissions: implementation and validation
Drone CO2 measurements during the Tajogaite volcanic eruption
Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe
Reliable water vapour isotopic composition measurements at low humidity using frequency-stabilised cavity ring-down spectroscopy
A measurement system for CO2 and CH4 emissions quantification of industrial sites using a new in situ concentration sensor operated on board uncrewed aircraft vehicles
Deployment and evaluation of an NH4+/H3O+ reagent-ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
Using metal oxide gas sensors to estimate the emission rates and locations of methane leaks in an industrial site: assessment with controlled methane releases
The ASK-16 Motorized Glider: An Airborne Eddy Covariance Platform to measure Turbulence, Energy and Matter Fluxes
Toward on-demand measurements of greenhouse gas emissions using an uncrewed aircraft AirCore system
Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study
In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer
Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Observing low-altitude features in ozone concentrations in a shoreline environment via uncrewed aerial systems
An integrated uncrewed aerial vehicle platform with sensing and sampling systems for the measurement of air pollutant concentrations
Design and evaluation of a low-cost sensor node for near-background methane measurement
Development of a Multichannel Organics In situ enviRonmental Analyzer (MOIRA) for mobile measurements of volatile organic compounds
An Economical Tunable-Diode Laser Spectrometer for Fast-Response Measurements of Water Vapor in the Atmospheric Boundary Layer
Evaluation of Aeris mid-infrared absorption (MIRA), Picarro CRDS (cavity ring-down spectroscopy) G2307, and dinitrophenylhydrazine (DNPH)-based sampling for long-term formaldehyde monitoring efforts
Performance characterization of a laminar gas inlet
Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes
Identifying and correcting interferences to PTR-ToF-MS measurements of isoprene and other urban volatile organic compounds
Development of a continuous UAV-mounted air sampler and application to the quantification of CO2 and CH4 emissions from a major coking plant
Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Effect of land–sea air mass transport on spatiotemporal distributions of atmospheric CO2 and CH4 mixing ratios over the southern Yellow Sea
HYPHOP: a tool for high-altitude, long-range monitoring of hydrogen peroxide and higher organic peroxides in the atmosphere
Portable, low-cost samplers for distributed sampling of atmospheric gases
SI-traceable validation of a laser spectrometer for balloon-borne measurements of water vapor in the upper atmosphere
Field evaluation of low-cost electrochemical air quality gas sensors under extreme temperature and relative humidity conditions
A novel, cost-effective analytical method for measuring high-resolution vertical profiles of stratospheric trace gases using a gas chromatograph coupled with an electron capture detector
Ethylene oxide monitor with part-per-trillion precision for in situ measurements
Development of an automated pump-efficiency measuring system for ozonesondes utilizing an airbag-type flowmeter
Short-term variability of atmospheric helium revealed through a cryo-enrichment method
Using tunable infrared laser direct absorption spectroscopy for ambient hydrogen chloride detection: HCl-TILDAS
New methods for the calibration of optical resonators: integrated calibration by means of optical modulation (ICOM) and narrow-band cavity ring-down (NB-CRD)
A modular field system for near-surface, vertical profiling of the atmospheric composition in harsh environments using cavity ring-down spectroscopy
Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods
Development of multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle for investigating volatile organic compounds' vertical distribution in the planetary boundary layer
Electrochemical sensors on board a Zeppelin NT: in-flight evaluation of low-cost trace gas measurements
Evaluating the performance of a Picarro G2207-i analyser for high-precision atmospheric O2 measurements
Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry
Optical receiver characterizations and corrections for ground-based and airborne measurements of spectral actinic flux densities
Development and validation of a new in situ technique to measure total gaseous chlorine in air
True eddy accumulation – Part 1: Solutions to the problem of non-vanishing mean vertical wind velocity
True eddy accumulation – Part 2: Theory and experiment of the short-time eddy accumulation method
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024, https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
Short summary
This study presents direct flux measurements in tall towers using existing slow-response analysers and adding 3D sonic anemometers. This way, we can significantly improve greenhouse gas monitoring with little extra instrumental effort. Slow-response analysers may be used here as the relevant frequency ranges depend on measuring height. Tall towers offer a large footprint, amplifying spatial coverage. The presented concept is a valuable bridge between atmospheric and ecosystem communities.
Kristen Okorn and Laura T. Iraci
Atmos. Meas. Tech., 17, 6425–6457, https://doi.org/10.5194/amt-17-6425-2024, https://doi.org/10.5194/amt-17-6425-2024, 2024
Short summary
Short summary
We reviewed 60 sensor networks and 17 related efforts (sensor review papers and data accessibility projects) to better understand the landscape of stationary low-cost gas-phase sensor networks deployed in outdoor environments worldwide. Gaps in monitoring efforts include the availability of gas-phase measurements compared to particulate matter (PM) and geographic coverage gaps (the Global South, rural areas). We conclude with a summary of cross-network unification and quality control efforts.
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024, https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
Short summary
Chemical ionisation mass spectrometry is used in the atmospheric sciences to measure trace gas concentrations. Neutral gases require charging in inlets before the mass-to-charge ratio of the resulting ions can be analysed. This study uses multiphysics modelling to investigate how the MION2 and Eisele type inlets work and shows the effect of tuning parameters and their current limitations. The findings are helpful for inlet users and are expected to aid in developing improved inlets.
Steven A. Bailey, Reem A. Hannun, Andrew K. Swanson, and Thomas F. Hanisco
Atmos. Meas. Tech., 17, 5903–5910, https://doi.org/10.5194/amt-17-5903-2024, https://doi.org/10.5194/amt-17-5903-2024, 2024
Short summary
Short summary
We have developed a portable, optically based instrument that measures NO2. It consumes less than 6 W of power, so it can easily run off a small battery. This instrument has made both balloon and UAV flights. NO2 measurement results compare favorably with other known NO2 instruments. We find this instrument to be stable with repeatable results compared with calibration sources. Material cost to build a single instrument is around USD 4000. This could be lowered with economies of scale.
Jinghui Lian, Olivier Laurent, Mali Chariot, Luc Lienhardt, Michel Ramonet, Hervé Utard, Thomas Lauvaux, François-Marie Bréon, Grégoire Broquet, Karina Cucchi, Laurent Millair, and Philippe Ciais
Atmos. Meas. Tech., 17, 5821–5839, https://doi.org/10.5194/amt-17-5821-2024, https://doi.org/10.5194/amt-17-5821-2024, 2024
Short summary
Short summary
We have designed and deployed a mid-cost medium-precision CO2 sensor monitoring network in Paris since July 2020. The data are automatically calibrated by a newly implemented data processing system. The accuracies of the mid-cost instruments vary from 1.0 to 2.4 ppm for hourly afternoon measurements. Our model–data analyses highlight prospects for integrating mid-cost instrument data with high-precision measurements to improve fine-scale CO2 emission quantification in urban areas.
Abdullah Bolek, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 17, 5619–5636, https://doi.org/10.5194/amt-17-5619-2024, https://doi.org/10.5194/amt-17-5619-2024, 2024
Short summary
Short summary
This study describes the development of a new UAV platform to measure atmospheric greenhouse gas (GHG) mole fractions, 2D wind speed, air temperature, humidity, and pressure. Understanding GHG flux processes and controls across various ecosystems is essential for estimating the current and future state of climate change. It was shown that using the UAV platform for such measurements is beneficial for improving our understanding of GHG processes over complex landscapes.
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024, https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary
Short summary
Methane is a powerful greenhouse gas originating from both natural and human activities. We describe a new uncrewed aerial system (UAS) designed to measure methane emission rates over a wide range of scales. This system has been used for direct quantification of point sources and distributed emitters over scales of up to 1 km. The system uses simultaneous measurements of methane and ethane to distinguish between different kinds of natural and human-related emission sources.
John Ericksen, Tobias P. Fischer, G. Matthew Fricke, Scott Nowicki, Nemesio M. Pérez, Pedro Hernández Pérez, Eleazar Padrón González, and Melanie E. Moses
Atmos. Meas. Tech., 17, 4725–4736, https://doi.org/10.5194/amt-17-4725-2024, https://doi.org/10.5194/amt-17-4725-2024, 2024
Short summary
Short summary
Volcanic eruptions emit significant quantities of carbon dioxide (CO2) to the atmosphere. We present a new method for directly determining the CO2 emission from a volcanic eruption on the island of La Palma, Spain, using an unpiloted aerial vehicle (UAV). We also collected samples of the emitted CO2 and analyzed their isotopic composition. Together with the emission rate the isotopic data provide valuable information on the state of volcanic activity and the potential evolution of the eruption.
László Haszpra
Atmos. Meas. Tech., 17, 4629–4647, https://doi.org/10.5194/amt-17-4629-2024, https://doi.org/10.5194/amt-17-4629-2024, 2024
Short summary
Short summary
The paper evaluates a 30-year-long atmospheric CO2 data series from a mid-continental central European site, Hegyhátsál (HUN). It presents the site-specific features observed in the long-term evolution of the atmospheric CO2 concentration. Since the measurement data are widely used in atmospheric inverse models and budget calculations all around the world, the paper provides potentially valuable information for model tuning and interpretation of the model results.
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, and Samir Kassi
Atmos. Meas. Tech., 17, 4599–4612, https://doi.org/10.5194/amt-17-4599-2024, https://doi.org/10.5194/amt-17-4599-2024, 2024
Short summary
Short summary
Measuring water isotopic composition in Antarctica is difficult because of the extremely cold temperature in winter. Here, we designed a new infrared spectrometer able to measure the vapour isotopic composition during more than 95 % of the year in the coldest locations of Antarctica, whereas current commercial instruments are only able to measure during the warm summer months in the interior.
Jean-Louis Bonne, Ludovic Donnat, Grégory Albora, Jérémie Burgalat, Nicolas Chauvin, Delphine Combaz, Julien Cousin, Thomas Decarpenterie, Olivier Duclaux, Nicolas Dumelié, Nicolas Galas, Catherine Juery, Florian Parent, Florent Pineau, Abel Maunoury, Olivier Ventre, Marie-France Bénassy, and Lilian Joly
Atmos. Meas. Tech., 17, 4471–4491, https://doi.org/10.5194/amt-17-4471-2024, https://doi.org/10.5194/amt-17-4471-2024, 2024
Short summary
Short summary
We present a top-down approach to quantify CO2 and CH4 emissions at the scale of an industrial site, based on a mass balance model relying on atmospheric concentrations measurements from a new sensor embarked on board uncrewed aircraft vehicles (UAVs). We present a laboratory characterization of our sensor and a field validation of our quantification method, together with field application to the monitoring of two real-world offshore oil and gas platforms.
Cort L. Zang and Megan D. Willis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1738, https://doi.org/10.5194/egusphere-2024-1738, 2024
Short summary
Short summary
Atmospheric chemistry of the diverse pool of reactive organic carbon (ROC; all organic species excluding methane) controls air quality, both indoor and outdoors, and influences Earth's climate. However, many important ROC compounds in the atmosphere are difficult to measure. We demonstrate measurement of diverse ROC compounds in a single instrument at a forested site. This approach can improve our ability to measure a broad range of atmospheric ROC.
Rodrigo Rivera-Martinez, Pramod Kumar, Olivier Laurent, Gregoire Broquet, Christopher Caldow, Ford Cropley, Diego Santaren, Adil Shah, Cécile Mallet, Michel Ramonet, Leonard Rivier, Catherine Juery, Olivier Duclaux, Caroline Bouchet, Elisa Allegrini, Hervé Utard, and Philippe Ciais
Atmos. Meas. Tech., 17, 4257–4290, https://doi.org/10.5194/amt-17-4257-2024, https://doi.org/10.5194/amt-17-4257-2024, 2024
Short summary
Short summary
We explore the use of metal oxide semiconductors (MOSs) as a low-cost alternative for detecting and measuring CH4 emissions from industrial facilities. MOSs were exposed to several controlled releases to test their accuracy in detecting and quantifying emissions. Two reconstruction models were compared, and emission estimates were computed using a Gaussian dispersion model. Findings show that MOSs can provide accurate emission estimates with a 25 % emission rate error and a 9.5 m location error.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2024-1586, https://doi.org/10.5194/egusphere-2024-1586, 2024
Short summary
Short summary
Airborne eddy covariance platforms are crucial, as they measure the three-dimension wind, and turbulent transport of matter and energy between the surface and the atmosphere at larger scales. In this study we introduce the new ASK-16 eddy covariance platform that is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and regional remote sensing fluxes or inversion products.
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024, https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Short summary
Increases in agriculture, oil and gas, and waste management activities have contributed to the increase in atmospheric methane levels and resultant climate warming. In this paper, we explore the use of small uncrewed aircraft systems (sUASs) and AirCore technology to detect and quantify methane emissions. Results from field experiments demonstrate that sUASs and AirCore technology can be effective for detecting and quantifying methane emissions in near real time.
Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, and Pete M. Edwards
Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024, https://doi.org/10.5194/amt-17-3809-2024, 2024
Short summary
Short summary
In this paper we present an overview of the QUANT project, which to our knowledge is one of the largest evaluations of commercial sensors to date. The objective was to evaluate the performance of a range of commercial products and also to nourish the different applications in which these technologies can offer relevant information.
Linda Ort, Lenard Lukas Röder, Uwe Parchatka, Rainer Königstedt, Daniel Crowley, Frank Kunz, Ralf Wittkowski, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 17, 3553–3565, https://doi.org/10.5194/amt-17-3553-2024, https://doi.org/10.5194/amt-17-3553-2024, 2024
Short summary
Short summary
Airborne in situ measurements are of great importance to collect valuable data to improve our knowledge of the atmosphere but also present challenges which demand specific designs. This study presents an IR spectrometer for airborne trace-gas measurements with high data efficiency and a simple, compact design. Its in-flight performance is characterized with the help of a test flight and a comparison with another spectrometer. Moreover, results from its first campaign highlight its benefits.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Josie K. Radtke, Benjamin N. Kies, Whitney A. Mottishaw, Sydney M. Zeuli, Aidan T. H. Voon, Kelly L. Koerber, Grant W. Petty, Michael P. Vermeuel, Timothy H. Bertram, Ankur R. Desai, Joseph P. Hupy, R. Bradley Pierce, Timothy J. Wagner, and Patricia A. Cleary
Atmos. Meas. Tech., 17, 2833–2847, https://doi.org/10.5194/amt-17-2833-2024, https://doi.org/10.5194/amt-17-2833-2024, 2024
Short summary
Short summary
The use of uncrewed aircraft systems (UASs) to conduct a vertical profiling of ozone and meteorological variables was evaluated using comparisons between tower or ground observations and UAS-based measurements. Changes to the UAS profiler showed an improvement in performance. The profiler was used to see the impact of Chicago pollution plumes on a shoreline area near Lake Michigan.
Chen-Wei Liang and Chang-Hung Shen
Atmos. Meas. Tech., 17, 2671–2686, https://doi.org/10.5194/amt-17-2671-2024, https://doi.org/10.5194/amt-17-2671-2024, 2024
Short summary
Short summary
In the present study, a UAV platform with sensing and sampling systems was developed for 3D air pollutant concentration measurements. The sensing system of this platform contains multiple microsensors and IoT technologies for obtaining the real-time 3D distributions of critical air pollutants. The sampling system contains gas sampling sets and a 1 L Tedlar bag instead of a canister for the 3D measurement of VOC concentrations in accordance with the TO-15 method of the US EPA.
Daniel Furuta, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 17, 2103–2121, https://doi.org/10.5194/amt-17-2103-2024, https://doi.org/10.5194/amt-17-2103-2024, 2024
Short summary
Short summary
Methane is an important driver of climate change and is challenging to inexpensively sense in low atmospheric concentrations. We developed a low-cost sensor to monitor methane and tested it in indoor and outdoor settings. Our device shows promise for monitoring low levels of methane. We characterize its limitations and suggest future research directions for further development.
Audrey J. Dang, Nathan M. Kreisberg, Tyler L. Cargill, Jhao-Hong Chen, Sydney Hornitschek, Remy Hutheesing, Jay R. Turner, and Brent J. Williams
Atmos. Meas. Tech., 17, 2067–2087, https://doi.org/10.5194/amt-17-2067-2024, https://doi.org/10.5194/amt-17-2067-2024, 2024
Short summary
Short summary
The Multichannel Organics In situ enviRonmental Analyzer (MOIRA) is a new instrument for measuring speciated volatile organic compounds (VOCs) in the air and has been developed for mapping concentrations from a hybrid car. MOIRA is characterized in the lab and pilot field studies of indoor air in a single-family residence and outdoor air during a mobile deployment. Future applications include indoor, outdoor, and lab measurements to grasp the impact of VOCs on air quality, health, and climate.
Emily Wein, Lars Kalnajs, and Darin Toohey
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-34, https://doi.org/10.5194/amt-2024-34, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
We describe a low cost and small research grade spectrometer for measurements of water vapor in the boundary layer. The instrument uses small Arduino microcontrollers and inexpensive laser diodes to reduce cost while maintaining high performance comparable to more expensive instruments. Performance was assessed with intercomparisons between commercially available instruments outdoors. The design's simplicity, performance and price point allow it to be accessible to a variety of users.
Asher P. Mouat, Zelda A. Siegel, and Jennifer Kaiser
Atmos. Meas. Tech., 17, 1979–1994, https://doi.org/10.5194/amt-17-1979-2024, https://doi.org/10.5194/amt-17-1979-2024, 2024
Short summary
Short summary
Three fast-measurement formaldehyde monitors were deployed at two field sites in Atlanta, GA, over 1 year. Four different zeroing methods were tested to develop an optimal field setup as well as procedures for instrument calibration. Observations agreed well after calibration but were much higher compared to the TO-11A monitoring method, which is the golden standard. Historical HCHO concentrations were compared with measurements in this work, showing a 22 % reduction in midday HCHO since 1999.
Da Yang, Margarita Reza, Roy Mauldin, Rainer Volkamer, and Suresh Dhaniyala
Atmos. Meas. Tech., 17, 1463–1474, https://doi.org/10.5194/amt-17-1463-2024, https://doi.org/10.5194/amt-17-1463-2024, 2024
Short summary
Short summary
This paper evaluates the performance of an aircraft gas inlet. Here, we use computational fluid dynamics (CFD) and experiments to demonstrate the role of turbulence in determining sampling performance of a gas inlet and identify ideal conditions for inlet operation to minimize gas loss. Experiments conducted in a high-speed wind tunnel under near-aircraft speeds validated numerical results. We believe that the results obtained from this work will greatly inform future gas inlet studies.
Reena Macagga, Michael Asante, Geoffroy Sossa, Danica Antonijević, Maren Dubbert, and Mathias Hoffmann
Atmos. Meas. Tech., 17, 1317–1332, https://doi.org/10.5194/amt-17-1317-2024, https://doi.org/10.5194/amt-17-1317-2024, 2024
Short summary
Short summary
Using only low-cost microcontrollers and sensors, we constructed a measurement device to accurately and precisely obtain atmospheric carbon dioxide and water fluxes. The device was tested against known concentration increases and high-cost, commercial sensors during a laboratory and field experiment. We additionally tested the device over a longer period in a field study in Ghana during which the net ecosystem carbon balance and water use efficiency of maize cultivation were studied.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Tianran Han, Conghui Xie, Yayong Liu, Yanrong Yang, Yuheng Zhang, Yufei Huang, Xiangyu Gao, Xiaohua Zhang, Fangmin Bao, and Shao-Meng Li
Atmos. Meas. Tech., 17, 677–691, https://doi.org/10.5194/amt-17-677-2024, https://doi.org/10.5194/amt-17-677-2024, 2024
Short summary
Short summary
This study reported an integrated UAV measurement platform for GHG monitoring and its application for emission quantification from a coking plant. The key element of this system is a newly designed air sampler, consisting of a 150 m long tube with remote-controlled time stamping. When comparing the top-down results to those derived from the bottom-up inventory method, the present findings indicate that the use of IPCC emission factors for emission calculations can lead to overestimation.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Jiaxin Li, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Shanshan Qiu, Kai Jiang, Xuemei Qing, Haoyu Xiong, Haixiang Hong, Shuangxi Fang, Honghui Xu, and Yujun Jiang
Atmos. Meas. Tech., 16, 4757–4768, https://doi.org/10.5194/amt-16-4757-2023, https://doi.org/10.5194/amt-16-4757-2023, 2023
Short summary
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
Zaneta Hamryszczak, Antonia Hartmann, Dirk Dienhart, Sascha Hafermann, Bettina Brendel, Rainer Königstedt, Uwe Parchatka, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 4741–4756, https://doi.org/10.5194/amt-16-4741-2023, https://doi.org/10.5194/amt-16-4741-2023, 2023
Short summary
Short summary
Hydroperoxide measurements improve the understanding of atmospheric oxidation processes. We introduce an instrumental setup for airborne measurements. The aim of the work is the characterization of the measurement method with emphasis on interferences impacting instrumental uncertainty. Technical and physical challenges do not critically impact the instrumental performance. The instrument resolves dynamic processes, such as convective transport, as shown based on the CAFE-Brazil campaign.
James F. Hurley, Alejandra Caceres, Deborah F. McGlynn, Mary E. Tovillo, Suzanne Pinar, Roger Schürch, Ksenia Onufrieva, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4681–4692, https://doi.org/10.5194/amt-16-4681-2023, https://doi.org/10.5194/amt-16-4681-2023, 2023
Short summary
Short summary
Volatile organic compounds (VOCs) have a wide range of sources and impacts on environments and human health that make them spatially, temporally, and chemically varied. Current methods lack the ability to collect samples in ways that provide spatial and chemical resolution without complex, costly instrumentation. We describe and validate a low-cost, portable VOC sampler and demonstrate its utility in collecting distributed coordinated samples.
Simone Brunamonti, Manuel Graf, Tobias Bühlmann, Céline Pascale, Ivan Ilak, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 16, 4391–4407, https://doi.org/10.5194/amt-16-4391-2023, https://doi.org/10.5194/amt-16-4391-2023, 2023
Short summary
Short summary
The abundance of water vapor (H2O) in the upper atmosphere has a significant impact on the rate of global warming. We developed a new lightweight spectrometer (ALBATROSS) for H2O measurements aboard meteorological balloons. Here, we assess the accuracy and precision of ALBATROSS using metrology-grade reference gases. The results demonstrate the exceptional potential of mid-infrared laser absorption spectroscopy as a new reference method for in situ measurements of H2O in the upper atmosphere.
Roubina Papaconstantinou, Marios Demosthenous, Spyros Bezantakos, Neoclis Hadjigeorgiou, Marinos Costi, Melina Stylianou, Elli Symeou, Chrysanthos Savvides, and George Biskos
Atmos. Meas. Tech., 16, 3313–3329, https://doi.org/10.5194/amt-16-3313-2023, https://doi.org/10.5194/amt-16-3313-2023, 2023
Short summary
Short summary
In this paper, we investigate the performance of low-cost electrochemical gas sensors. We carried out yearlong measurements at a traffic air quality monitoring station, where the low-cost sensors were collocated with reference instruments and exposed to highly variable environmental conditions with extremely high temperatures and low relative humidity (RH). Sensors provide measurements that exhibit increasing errors and decreasing correlations as temperature increases and RH decreases.
Jianghanyang Li, Bianca C. Baier, Fred Moore, Tim Newberger, Sonja Wolter, Jack Higgs, Geoff Dutton, Eric Hintsa, Bradley Hall, and Colm Sweeney
Atmos. Meas. Tech., 16, 2851–2863, https://doi.org/10.5194/amt-16-2851-2023, https://doi.org/10.5194/amt-16-2851-2023, 2023
Short summary
Short summary
Monitoring a suite of trace gases in the stratosphere will help us better understand the stratospheric circulation and its impact on the earth's radiation balance. However, such measurements are rare and usually expensive. We developed an instrument that can measure stratospheric trace gases using a low-cost sampling platform (AirCore). The results showed expected agreement with aircraft measurements, demonstrating this technique provides a low-cost and robust way to observe the stratosphere.
Tara I. Yacovitch, Christoph Dyroff, Joseph R. Roscioli, Conner Daube, J. Barry McManus, and Scott C. Herndon
Atmos. Meas. Tech., 16, 1915–1921, https://doi.org/10.5194/amt-16-1915-2023, https://doi.org/10.5194/amt-16-1915-2023, 2023
Short summary
Short summary
Ethylene oxide is a toxic, carcinogenic compound used in the medical and bulk sterilization industry. Here we describe a precise and fast laser-based ethylene oxide monitor. We report months-long concentrations at a Massachusetts site, and we show how they suggest a potential emission source 35 km away. This source, and another, is confirmed by driving the instrument downwind of the sites, where concentrations were tens to tens of thousands of times greater than background levels.
Tatsumi Nakano and Takashi Morofuji
Atmos. Meas. Tech., 16, 1583–1595, https://doi.org/10.5194/amt-16-1583-2023, https://doi.org/10.5194/amt-16-1583-2023, 2023
Short summary
Short summary
We have developed a system that can automatically measure the pump efficiency of the ECC-type ozonesonde. Operational measurement for 13 years by this system revealed that the efficiency fluctuates in each and slightly increases over time. Those can affect the estimation of total ozone amount by up to 4 %. This result indicates that it is necessary to understand the tendency of the pump correction factor of each ozonesonde in order to detect the actual atmospheric change with high accuracy.
Benjamin Birner, Eric Morgan, and Ralph F. Keeling
Atmos. Meas. Tech., 16, 1551–1561, https://doi.org/10.5194/amt-16-1551-2023, https://doi.org/10.5194/amt-16-1551-2023, 2023
Short summary
Short summary
Atmospheric variations of helium (He) and CO2 are strongly linked due to the co-release of both gases from natural-gas burning. This implies that atmospheric He measurements may be a potentially powerful tool for verifying reported anthropogenic natural-gas usage. Here, we present the development and initial results of a novel measurement system of atmospheric He that paves the way for establishing a global monitoring network in the future.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Henning Finkenzeller, Denis Pöhler, Martin Horbanski, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 16, 1343–1356, https://doi.org/10.5194/amt-16-1343-2023, https://doi.org/10.5194/amt-16-1343-2023, 2023
Short summary
Short summary
Optical resonators enhance the light path in compact instruments, thereby improving their sensitivity. Determining the established path length in the instrument is a prerequisite for the accurate determination of trace gas concentrations but can be a significant complication in the use of such resonators. Here we show two calibration techniques which are relatively simple and free of consumables but still provide accurate calibrations. This facilitates the use of optical resonators.
Andrew W. Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, https://doi.org/10.5194/amt-16-769-2023, 2023
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable-water-isotope analyzer profiling system. The system operated for a 2-week field campaign on Svalbard during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements and the system's ability to resolve isotope gradients in the lowermost layer of the atmosphere.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Suding Yang, Xin Li, Limin Zeng, Xuena Yu, Ying Liu, Sihua Lu, Xiaofeng Huang, Dongmei Zhang, Haibin Xu, Shuchen Lin, Hefan Liu, Miao Feng, Danlin Song, Qinwen Tan, Jinhui Cui, Lifan Wang, Ying Chen, Wenjie Wang, Haijiong Sun, Mengdi Song, Liuwei Kong, Yi Liu, Linhui Wei, Xianwu Zhu, and Yuanhang Zhang
Atmos. Meas. Tech., 16, 501–512, https://doi.org/10.5194/amt-16-501-2023, https://doi.org/10.5194/amt-16-501-2023, 2023
Short summary
Short summary
Vertical observation of volatile organic compounds (VOCs) is essential to study the spatial distribution and evolution patterns of VOCs in the planetary boundary layer (PBL). This paper describes multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle (UAV) for near-continuous VOC vertical observation. Vertical profiles of VOCs and trace gases during the evolution of the PBL in south-western China have been successfully obtained by deploying the newly developed UAV system.
Tobias Schuldt, Georgios I. Gkatzelis, Christian Wesolek, Franz Rohrer, Benjamin Winter, Thomas A. J. Kuhlbusch, Astrid Kiendler-Scharr, and Ralf Tillmann
Atmos. Meas. Tech., 16, 373–386, https://doi.org/10.5194/amt-16-373-2023, https://doi.org/10.5194/amt-16-373-2023, 2023
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin NT in Germany. We highlight the in-flight evaluation of electrochemical sensors that were installed inside a hatch box located on the bottom of the Zeppelin. Results from this work emphasize the potential of these sensors for other in situ airborne applications, e.g., on board unmanned aerial vehicles (UAVs).
Leigh S. Fleming, Andrew C. Manning, Penelope A. Pickers, Grant L. Forster, and Alex J. Etchells
Atmos. Meas. Tech., 16, 387–401, https://doi.org/10.5194/amt-16-387-2023, https://doi.org/10.5194/amt-16-387-2023, 2023
Short summary
Short summary
Measurements of atmospheric O2 can help constrain the carbon cycle processes and quantify fossil fuel CO2 emissions; however, measurement of atmospheric O2 is very challenging, and existing analysers are complex systems to build and maintain. We have tested a new O2 analyser (Picarro Inc. G2207-i) in the laboratory and at Weybourne Atmospheric Observatory. We have found that the G2207-i does not perform as well as an existing O2 analyser from Sable Systems Inc.
Siegfried Schobesberger, Emma L. D'Ambro, Lejish Vettikkat, Ben H. Lee, Qiaoyun Peng, David M. Bell, John E. Shilling, Manish Shrivastava, Mikhail Pekour, Jerome Fast, and Joel A. Thornton
Atmos. Meas. Tech., 16, 247–271, https://doi.org/10.5194/amt-16-247-2023, https://doi.org/10.5194/amt-16-247-2023, 2023
Short summary
Short summary
We present a new, highly sensitive technique for measuring atmospheric ammonia, an important trace gas that is emitted mainly by agriculture. We deployed the instrument on an aircraft during research flights over rural Oklahoma. Due to its fast response, we could analyze correlations with turbulent winds and calculate ammonia emissions from nearby areas at 1 to 2 km resolution. We observed high spatial variability and point sources that are not resolved in the US National Emissions Inventory.
Birger Bohn and Insa Lohse
Atmos. Meas. Tech., 16, 209–233, https://doi.org/10.5194/amt-16-209-2023, https://doi.org/10.5194/amt-16-209-2023, 2023
Short summary
Short summary
Optical receivers for solar spectral actinic radiation are designed for angle-independent sensitivities within a hemisphere. Remaining imperfections can be compensated for by receiver-specific corrections based on laboratory characterizations and radiative transfer calculations of spectral radiance distributions. The corrections cover a wide range of realistic atmospheric conditions and were applied to ground-based and airborne measurements in a wavelength range 280–660 nm.
Teles C. Furlani, RenXi Ye, Jordan Stewart, Leigh R. Crilley, Peter M. Edwards, Tara F. Kahan, and Cora J. Young
Atmos. Meas. Tech., 16, 181–193, https://doi.org/10.5194/amt-16-181-2023, https://doi.org/10.5194/amt-16-181-2023, 2023
Short summary
Short summary
This study describes a new technique to measure total gaseous chlorine, which is the sum of gas-phase chlorine-containing chemicals. The method converts any chlorine-containing molecule to hydrogen chloride that can be detected in real time using a cavity ring-down spectrometer. The new method was validated through laboratory experiments, as well as by making measurements of ambient outdoor air and indoor air during cleaning with a chlorine-based cleaner.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 29–40, https://doi.org/10.5194/amt-16-29-2023, https://doi.org/10.5194/amt-16-29-2023, 2023
Short summary
Short summary
The true eddy accumulation (TEA) method enables measuring atmospheric exchange with slow-response gas analyzers. TEA is formulated assuming ideal conditions with a zero mean vertical wind velocity during the averaging interval. This core assumption is rarely valid under field conditions. Here, we extend the TEA equation to accommodate nonideal conditions. The new equation allows constraining the systematic error term in the measured fluxes and the possibility to minimize or remove it.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 41–55, https://doi.org/10.5194/amt-16-41-2023, https://doi.org/10.5194/amt-16-41-2023, 2023
Short summary
Short summary
A new micrometeorological method to measure atmospheric exchange is proposed, and a prototype sampler is evaluated. The new method, called short-time eddy accumulation, is a variant of the eddy accumulation method, which is suited for use with slow gas analyzers. The new method enables adaptive time-varying accumulation intervals, which brings many advantages to flux measurements such as an improved dynamic range and the ability to run eddy accumulation in a continuous flow-through mode.
Cited articles
Alwe, H. D., Millet, D. B., Chen, X., Raff, J. D., Payne, Z. C., and
Fledderman, K.: Oxidation of volatile organic compounds as the major source
of formic acid in a mixed forest canopy, Geophys. Res. Lett., 46, 2940–2948,
2019.
Ares, A. and Brauer, D.: Growth and nut production of black walnut in
relation to site, tree type and stand conditions in south-central United
States, Agroforest. Syst., 63, 83–90, 2004.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008.
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the
hydroxyl radical with organic compounds under atmospheric conditions, Chem.
Rev., 86, 69–201, 1986.
Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic
compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, https://doi.org/10.1063/1.556012, 1997.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic
volatile organic compounds: a review, Atmos. Environ., 37, 197–219,
2003.
Baraldi, R., Chieco, C., Neri, L., Facini, O., Rapparini, F., Morrone, L.,
Rotondi, A., and Carriero, G.: An integrated study on air mitigation
potential of urban vegetation: From a multi-trait approach to modeling,
Urban For. Urban Green., 41, 127–138, 2019.
Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M.: Low-emitting urban
forests: a taxonomic methodology for assigning isoprene and monoterpene
emission rates, Atmos. Environ., 30, 1437–1452, 1996.
Benjamin, M. T. and Winer, A. M.: Estimating the ozone-forming potential of
urban trees and shrubs, Atmo. Environ., 32, 53–68, 1998.
Bernal, E.: Limit of detection and limit of quantification determination in
gas chromatography, in: Advances in Gas Chromatography, IntechOpen, https://doi.org/10.5772/57341, 2014.
Berry, J. and Bjorkman, O.: Photosynthetic response and adaptation to
temperature in higher plants, Annu. Rev. Plant Physio., 31,
491–543, 1980.
Blood, B., Klingeman, W., Paschen, M., Hadžiabdić, Đ., Couture,
J., and Ginzel, M.: Behavioral responses of Pityophthorus juglandis
(Coleoptera: Curculionidae: Scolytinae) to volatiles of black walnut and
Geosmithia morbida (Ascomycota: Hypocreales: Bionectriaceae), the causal
agent of Thousand Cankers Disease, Environ. Entomol., 47, 412–421,
2018.
Brilli, F., Barta, C., Fortunati, A., Lerdau, M., Loreto, F., and Centritto,
M.: Response of isoprene emission and carbon metabolism to drought in white
poplar (Populus alba) saplings, New Phytol., 175, 244–254, 2007.
Brilli, F., Ruuskanen, T. M., Schnitzhofer, R., Müller, M.,
Breitenlechner, M., Bittner, V., Wohlfahrt, G., Loreto, F., and Hansel, A.:
Detection of plant volatiles after leaf wounding and darkening by proton
transfer reaction “time-of-flight” mass spectrometry (PTR-TOF), PLOS One,
6, e20419, https://doi.org/10.1371/journal.pone.0020419, 2011.
Brophy, P. and Farmer, D. K.: A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study, Atmos. Meas. Tech., 8, 2945–2959, https://doi.org/10.5194/amt-8-2945-2015, 2015.
Bunce, J.: Acclimation of photosynthesis to temperature in Arabidopsis
thaliana and Brassica oleracea, Photosynthetica, 46, 517–524, 2008.
Casado, D., Gemeno, C., Avilla, J., and Riba, M.: Diurnal variation of
walnut tree volatiles and electrophysiological responses in Cydia pomonella
(Lepidoptera: Tortricidae), Pest Manag. Sci., 64, 736–747, 2008.
Chaudhary, P., Godara, S., Cheeran, A., and Chaudhari, A. K.: Fast and
accurate method for leaf area measurement, Int. J. Comput. Appl. T., 49, 22–25, 2012.
Ciccioli, P., Brancaleoni, E., Frattoni, M., Cecinato, A., and Brachetti,
A.: Ubiquitous occurrence of semi-volatile carbonyl compounds in
tropospheric samples and their possible sources, Atmos. Environ.
A-Gen., 27, 1891–1901, 1993.
Ciccioli, P., Brancaleoni, E., Frattoni, M., Di Palo, V., Valentini, R.,
Tirone, G., Seufert, G., Bertin, N., Hansen, U., and Csiky, O.: Emission of
reactive terpene compounds from orange orchards and their removal by
within-canopy processes, J. Geophys. Res.-Atmos., 104,
8077–8094, 1999.
Constable, J. V., Litvak, M. E., Greenberg, J. P., and Monson, R. K.:
Monoterpene emission from coniferous trees in response to elevated CO2
concentration and climate warming, Glob. Change Biol., 5, 252–267, 1999.
Davidson, C. I., Phalen, R. F., and Solomon, P. A.: Airborne particulate
matter and human health: A review, Aerosol Sci. Tech., 39, 737–749, 2005.
Delfine, S., Loreto, F., Pinelli, P., Tognetti, R., and Alvino, A.:
Isoprenoids content and photosynthetic limitations in rosemary and spearmint
plants under water stress, Agr. Ecosyst. Environ., 106,
243–252, 2005.
Dettmer, K. and Engewald, W.: Adsorbent materials commonly used in air
analysis for adsorptive enrichment and thermal desorption of volatile
organic compounds, Anal. Bioanal. Chem., 373, 490–500,
2002.
Domurath, N., Schroeder, F.-G., and Glatzel, S.: Light response curves of
selected plants under different light conditions, Acta Hortic., 956, 291–298, 2012.
Duhl, T. R., Helmig, D., and Guenther, A.: Sesquiterpene emissions from vegetation: a review, Biogeosciences, 5, 761–777, https://doi.org/10.5194/bg-5-761-2008, 2008.
Ebel, R. C., Mattheis, J. P., and Buchanan, D. A.: Drought stress of apple
trees alters leaf emissions of volatile compounds, Physiol. Plantarum,
93, 709–712, 1995.
Faiola, C. L., Buchholz, A., Kari, E., Yli-Pirilä, P., Holopainen, J.
K., Kivimäenpää, M., Miettinen, P., Worsnop, D. R., Lehtinen, K.
E. J., Guenther, A. B., and Virtanen, A.: Terpene Composition Complexity
Controls Secondary Organic Aerosol Yields from Scots Pine Volatile
Emissions, Sci. Rep.-UK, 8, 3053, https://doi.org/10.1038/s41598-018-21045-1, 2018.
Fernandes, A. S., Baker, E., and Martin, J.: Studies on plant cuticle: VI.
The isolation and fractionation of cuticular waxes, Ann. Appl.
Biol., 53, 43–58, 1964.
Friedman, B. and Farmer, D. K.: SOA and gas phase organic acid yields from
the sequential photooxidation of seven monoterpenes, Atmos.
Environ., 187, 335–345, 2018.
Fromme, H., Witte, M., Fembacher, L., Gruber, L., Hagl, T., Smolic, S., Fiedler, D., Sysoltseva, M., and Schober, W.: Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven, Environ. Int., 126, 145–152, https://doi.org/10.1016/j.envint.2019.01.081, 2019.
Fulgham, S. R., Brophy, P., Link, M., Ortega, J., Pollack, I., and Farmer,
D. K.: Seasonal flux measurements over a Colorado pine forest demonstrate a
persistent source of organic acids, ACS Earth Space Chem., 3,
2017–2032, 2019.
Geron, C., Guenther, A., Greenberg, J., Karl, T., and Rasmussen, R.:
Biogenic volatile organic compound emissions from desert vegetation of the
southwestern US, Atmos. Environ., 40, 1645–1660, 2006a.
Geron, C., Owen, S., Guenther, A., Greenberg, J., Rasmussen, R., Bai, J. H.,
Li, Q.-J., and Baker, B.: Volatile organic compounds from vegetation in
southern Yunnan Province, China: Emission rates and some potential regional
implications, Atmos. Environ., 40, 1759–1773, 2006b.
Goldstein, A., McKay, M., Kurpius, M., Schade, G., Lee, A., Holzinger, R.,
and Rasmussen, R.: Forest thinning experiment confirms ozone deposition to
forest canopy is dominated by reaction with biogenic VOCs, Geophys. Res. Lett., 31, L22106, https://doi.org/10.1029/2004GL021259, 2004.
Golpayegani, A. and Tilebeni, H. G.: Effect of biological fertilizers on
biochemical and physiological parameters of basil (Ociumum basilicm L.)
medicine plant, Am. Eurasian J. Agric. Environ. Sci., 11, 411–416, 2011.
Grote, R., Monson, R. K., and Niinemets, Ü.: Leaf-level models of
constitutive and stress-driven volatile organic compound emissions, in:
Biology, controls and models of tree volatile organic compound emissions,
Springer, Dordrecht, the Netherlands, 315–355, 2013.
Grote, R., Morfopoulos, C., Niinemets, Ü., Sun, Z., Keenan, T. F.,
Pacifico, F., and Butler, T.: A fully integrated isoprenoid emissions model
coupling emissions to photosynthetic characteristics, Plant Cell
Environ., 37, 1965–1980, 2014.
Guenther, A. B.: Seasonal and spatial variations in natural volatile organic
compound emissions, Ecol. Appl., 7, 34–45, 1997.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: model evaluations
and sensitivity analyses, J. Geophys. Res.-Atmos., 98,
12609–12617, 1993.
Guenther, A. B., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., and McKay, W.: A global model of
natural volatile organic compound emissions, J. Geophys.
Res.-Atmos., 100, 8873–8892, 1995.
Guenther, A. B., Geron, C., Pierce, T., Lamb, B., Harley, P., and Fall, R.:
Natural emissions of non-methane volatile organic compounds, carbon
monoxide, and oxides of nitrogen from North America, Atmos.
Environ., 34, 2205–2230, 2000.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Harley, P., Eller, A., Guenther, A., and Monson, R. K.: Observations and
models of emissions of volatile terpenoid compounds from needles of
ponderosa pine trees growing in situ: control by light, temperature and
stomatal conductance, Oecologia, 176, 35–55, 2014.
Harper, M.: Sorbent trapping of volatile organic compounds from air, J.
Chromatogr. A, 885, 129–151, 2000.
He, N., Zhang, C., Qi, X., Zhao, S., Tao, Y., Yang, G., Lee, T.-H., Wang,
X., Cai, Q., and Li, D.: Draft genome sequence of the mulberry tree Morus
notabilis, Nat. Comm., 4, 1–9, 2013.
Hodges, A. W. and Spreen, T. H.: Economic impacts of citrus greening (HLB) in Florida, 2006/07–20/11, University of Florida, Institute of Food and Agricultural Science, EDIS document FE903, Gainesville, USA, 1–6, available at: https://journals.flvc.org/edis/article/view/119504 (last access: 1 August 2020), 2012.
Holopainen, J. K.: Multiple functions of inducible plant volatiles, Trends
Plant Sci., 9, 529–533, 2004.
Kainulainen, P., Holopainen, J., and Holopainen, T.: The influence of
elevated CO2 and O3 concentrations on Scots pine needles: changes in
starch and secondary metabolites over three exposure years, Oecologia, 114,
455–460, 1998.
Kaser, L., Karl, T., Guenther, A., Graus, M., Schnitzhofer, R., Turnipseed, A., Fischer, L., Harley, P., Madronich, M., Gochis, D., Keutsch, F. N., and Hansel, A.: Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results, Atmos. Chem. Phys., 13, 11935–11947, https://doi.org/10.5194/acp-13-11935-2013, 2013.
Kaser, L., Karl, T., Schnitzhofer, R., Graus, M., Herdlinger-Blatt, I. S., DiGangi, J. P., Sive, B., Turnipseed, A., Hornbrook, R. S., Zheng, W., Flocke, F. M., Guenther, A., Keutsch, F. N., Apel, E., and Hansel, A.: Comparison of different real time VOC measurement techniques in a ponderosa pine forest, Atmos. Chem. Phys., 13, 2893–2906, https://doi.org/10.5194/acp-13-2893-2013, 2013b.
Kesselmeier, J. and Staudt, M.: Biogenic volatile organic compounds (VOC):
an overview on emission, physiology and ecology, J. Atmos.
Chem., 33, 23–88, 1999.
Kessler, A. and Baldwin, I. T.: Defensive function of herbivore-induced
plant volatile emissions in nature, Science, 291, 2141–2144, 2001.
Khare, P., Kumar, N., Kumari, K., and Srivastava, S.: Atmospheric formic and
acetic acids: An overview, Rev. Geophys., 37, 227–248, 1999.
Kim, J.-C., Kim, K.-J., Kim, D.-S., and Han, J.-S.: Seasonal variations of
monoterpene emissions from coniferous trees of different ages in Korea,
Chemosphere, 59, 1685–1696, 2005.
Komenda, M., Parusel, E., Wedel, A., and Koppmann, R.: Measurements of
biogenic VOC emissions: sampling, analysis and calibration, Atmos.
Environ., 35, 2069–2080, 2001.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lang, Y., Wang, M., Zhang, G., and Zhao, Q.: Experimental and simulated
light responses of photosynthesis in leaves of three tree species under
different soil water conditions, Photosynthetica, 51, 370–378, 2013.
Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129–2146, https://doi.org/10.5194/acp-6-2129-2006, 2006.
Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R.,
and Thornton, J. A.: An iodide-adduct high-resolution time-of-flight
chemical-ionization mass spectrometer: Application to atmospheric inorganic
and organic compounds, Environ. Sci. Technol., 48, 6309–6317, 2014.
Lerdau, M. and Keller, M.: Controls on isoprene emission from trees in a
subtropical dry forest, Plant Cell Environ., 20, 569–578, 1997.
LI-COR Biogeosciences: Using the LI-6800 Portable Photosynthesis System, LI-COR Biosciences, Nebraska, USA, 2017.
Li, D., Chen, Y., Shi, Y., He, X., and Chen, X.: Impact of elevated CO2 and
O3 concentrations on biogenic volatile organic compounds emissions from
Ginkgo biloba, B. Environ. Contam. Tox., 82,
473–477, 2009.
Llusià, J., Peñuelas, J., and Gimeno, B.: Seasonal and
species-specific response of VOC emissions by Mediterranean woody plant to
elevated ozone concentrations, Atmos. Environ., 36, 3931–3938, 2002.
Loreto, F., Förster, A., Dürr, M., Csiky, O., and Seufert, G.: On
the monoterpene emission under heat stress and on the increased
thermotolerance of leaves of Quercus ilex L. fumigated with selected
monoterpenes, Plant Cell Environ., 21, 101–107, 1998.
Loreto, F. and Velikova, V.: Isoprene produced by leaves protects the
photosynthetic apparatus against ozone damage, quenches ozone products, and
reduces lipid peroxidation of cellular membranes, Plant Physiol., 127,
1781–1787, 2001.
Loreto, F. and Schnitzler, J.-P.: Abiotic stresses and induced BVOCs,
Trends Plant Sci., 15, 154–166, 2010.
Markovic, D., Nikolic, N., Glinwood, R., Seisenbaeva, G., and Ninkovic, V.:
Plant responses to brief touching: a mechanism for early neighbour
detection?, PlOS One, 11, e0165742, https://doi.org/10.1371/journal.pone.0165742, 2016.
Mattila, J. M., Brophy, P., Kirkland, J., Hall, S., Ullmann, K., Fischer, E. V., Brown, S., McDuffie, E., Tevlin, A., and Farmer, D. K.: Tropospheric sources and sinks of gas-phase acids in the Colorado Front Range, Atmos. Chem. Phys., 18, 12315–12327, https://doi.org/10.5194/acp-18-12315-2018, 2018.
Mauck, K. E., De Moraes, C. M., and Mescher, M. C.: Deceptive chemical
signals induced by a plant virus attract insect vectors to inferior hosts,
P. Natl. Acad. Sci. USA, 107, 3600–3605, 2010.
Mielnik, A., Link, M., Mattila, J., Fulgham, S. R., and Farmer, D. K.:
Emission of formic and acetic acids from two Colorado soils, Environ.
Sci., 20, 1537–1545, 2018.
Millet, D. B., Alwe, H. D., Chen, X., Deventer, M. J., Griffis, T. J.,
Holzinger, R., Bertman, S. B., Rickly, P. S., Stevens, P. S., and
Léonardis, T.: Bidirectional ecosystem–atmosphere fluxes of volatile
organic compounds across the mass spectrum: How many matter?, ACS Earth
Space Chem., 2, 764–777, 2018.
Nicodemus, M. A., Salifu, F. K., and Jacobs, D. F.: Growth, nutrition, and
photosynthetic response of black walnut to varying nitrogen sources and
rates, J. Plant Nutr., 31, 1917–1936, 2008.
Niinemets, Ü., Loreto, F., and Reichstein, M.: Physiological and
physicochemical controls on foliar volatile organic compound emissions,
Trends Plant Sci., 9, 180–186, 2004.
Niinemets, Ü., Kännaste, A., and Copolovici, L.: Quantitative
patterns between plant volatile emissions induced by biotic stresses and the
degree of damage, Front. Plant Sci., 4, 262, https://doi.org/10.3389/fpls.2013.00262, 2013.
Niinemets, Ü., Fares, S., Harley, P., and Jardine, K. J.: Bidirectional
exchange of biogenic volatiles with vegetation: emission sources, reactions,
breakdown and deposition, Plant Cell Environ., 37, 1790–1809, 2014.
Ormeño, E., Mevy, J., Vila, B., Bousquet-Mélou, A., Greff, S.,
Bonin, G., and Fernandez, C.: Water deficit stress induces different
monoterpene and sesquiterpene emission changes in Mediterranean species.
Relationship between terpene emissions and plant water potential,
Chemosphere, 67, 276–284, 2007.
Owen, S., Boissard, C., Street, R., Duckham, S., Csiky, O., and Hewitt, C.:
Screening of 18 Mediterranean plant species for volatile organic compound
emissions, Atmos. Environ., 31, 101–117, 1997.
Owen, S., Harley, P., Guenther, A., and Hewitt, C.: Light dependency of VOC
emissions from selected Mediterranean plant species, Atmos.
Environ., 36, 3147–3159, 2002.
Pandey, S., Kumar, S., and Nagar, P.: Photosynthetic performance of Ginkgo
biloba L. grown under high and low irradiance, Photosynthetica, 41, 505–511,
2003.
Papiez, M. R., Potosnak, M. J., Goliff, W. S., Guenther, A. B., Matsunaga,
S. N., and Stockwell, W. R.: The impacts of reactive terpene emissions from
plants on air quality in Las Vegas, Nevada, Atmos. Environ., 43,
4109–4123, 2009.
Park, J.-H., Goldstein, A., Timkovsky, J., Fares, S., Weber, R., Karlik, J.,
and Holzinger, R.: Active atmosphere-ecosystem exchange of the vast majority
of detected volatile organic compounds, Science, 341, 643–647, 2013.
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, https://doi.org/10.5194/acp-11-1989-2011, 2011.
Peñuelas, J. and Llusià, J.: The complexity of factors driving
volatile organic compound emissions by plants, Biol. Plantarum, 44,
481–487, 2001.
Pope III, C. A. and Dockery, D. W.: Health effects of fine particulate air
pollution: lines that connect, JAPCA J. Air Waste Ma., 56, 709–742, 2006.
Räisänen, T., Ryyppö, A., and Kellomäki, S.: Effects of
elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus
sylvestris L.), Atmos. Environ., 42, 4160–4171, 2008.
Rapparini, F., Baraldi, R., Miglietta, F., and Loreto, F.: Isoprenoid
emission in trees of Quercus ilex with lifetime exposure to naturally high
CO2 environment, Plant Cell Environ., 27, 381–391, https://doi.org/10.1111/j.1365-3040.2003.01151.x, 2004.
Riches, M.: Simultaneous leaf-level measurement of trace gas emissions and photosynthesis with a portable photosynthesis system – Data, Open Science Framework, https://doi.org/10.17605/OSF.IO/8CS75, 2020.
Rinne, J., Taipale, R., Markkanen, T., Ruuskanen, T. M., Hellén, H., Kajos, M. K., Vesala, T., and Kulmala, M.: Hydrocarbon fluxes above a Scots pine forest canopy: measurements and modeling, Atmos. Chem. Phys., 7, 3361–3372, https://doi.org/10.5194/acp-7-3361-2007, 2007.
Sallas, L., Luomala, E.-M., Utriainen, J., Kainulainen, P., and Holopainen,
J. K.: Contrasting effects of elevated carbon dioxide concentration and
temperature on Rubisco activity, chlorophyll fluorescence, needle
ultrastructure and secondary metabolites in conifer seedlings, Tree Physiol.,
23, 97–108, 2003.
Scala, A., Allmann, S., Mirabella, R., Haring, M., and Schuurink, R.: Green
leaf volatiles: a plant's multifunctional weapon against herbivores and
pathogens, Int. J. Mol. Sci., 14, 17781–17811,
2013.
Scholefield, P., Doick, K., Herbert, B., Hewitt, C. S., Schnitzler, J. P.,
Pinelli, P., and Loreto, F.: Impact of rising CO2 on emissions of volatile
organic compounds: isoprene emission from Phragmites australis growing at
elevated CO2 in a natural carbon dioxide spring, Plant Cell
Environ., 27, 393–401, 2004.
Sellin, A.: Estimating the needle area from geometric measurements:
application of different calculation methods to Norway spruce, Trees, 14,
215–222, 2000.
Sharkey, T. D. and Loreto, F.: Water stress, temperature, and light effects
on the capacity for isoprene emission and photosynthesis of kudzu leaves,
Oecologia, 95, 328–333, 1993.
Sharkey, T. D. and Yeh, S.: Isoprene emission from plants, Annu. Rev.
Plant Biol., 52, 407–436, 2001.
Singh, H. B. (Ed.): Composition, chemistry, and climate of the atmosphere, Van
Nostrand Reinhold Company, New York, USA, 1995.
Singsaas, E. L., Laporte, M. M., Shi, J.-Z., Monson, R. K., Bowling, D. R.,
Johnson, K., Lerdau, M., Jasentuliytana, A., and Sharkey, T. D.: Kinetics of
leaf temperature fluctuation affect isoprene emission from red oak (Quercus
rubra) leaves, Tree Physiol., 19, 917–924, 1999.
Snow, M. D., Bard, R. R., Olszyk, D. M., Minster, L. M., Hager, A. N., and
Tingey, D. T.: Monoterpene levels in needles of Douglas fir exposed to
elevated CO2 and temperature, Physiol. Plantarum, 117, 352–358, 2003.
Staudt, M. and Seufert, G.: Light-dependent emission of monoterpenes by
holm oak (Quercus ilex L.), Naturwissenschaften, 82, 89–92, 1995.
Staudt, M., Joffre, R., Rambal, S., and Kesselmeier, J.: Effect of elevated
CO2 on monoterpene emission of young Quercus ilex trees and its relation to
structural and ecophysiological parameters, Tree Physiol., 21, 437–445,
2001a.
Staudt, M., Mandl, N., Joffre, R., and Rambal, S.: Intraspecific variability
of monoterpene composition emitted by Quercus ilex leaves, Can. J.
Forest Res., 31, 174–180, 2001b.
Strømgaard, K. and Nakanishi, K.: Chemistry and biology of terpene
trilactones from Ginkgo biloba, Angew. Chem. Int. Edit., 43,
1640–1658, 2004.
Tarchoune, I., Baâtour, O., Harrathi, J., Cioni, P. L., Lachaâl, M.,
Flamini, G., and Ouerghi, Z.: Essential oil and volatile emissions of basil
(Ocimum basilicum) leaves exposed to NaCl or Na2SO4 salinity, J. Plant Nutr. Soil Sc., 176, 748–755, 2013.
Tarvainen, V., Hakola, H., Hellén, H., Bäck, J., Hari, P., and Kulmala, M.: Temperature and light dependence of the VOC emissions of Scots pine, Atmos. Chem. Phys., 5, 989–998, https://doi.org/10.5194/acp-5-989-2005, 2005.
Tilley, S. K. and Fry, R. C.: Priority environmental contaminants:
understanding their sources of exposure, biological mechanisms, and impacts
on health, in: Systems Biology in Toxicology and Environmental Health,
Academic Press, UK, 117–169, 2015.
Tingey, D., Turner, D., and Weber, J.: Factors controlling the emissions of
monoterpenes and other volatile organic compounds, Trace gas emissions from
plants, Academic Press, San Diego, 93–119, 1990.
Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F.: Influence of
light and temperature on monoterpene emission rates from slash pine, Plant
Physiol., 65, 797–801, 1980.
Wildt, J., Kobel, K., Schuh-Thomas, G., and Heiden, A.: Emissions of
oxygenated volatile organic compounds from plants Part II: emissions of
saturated aldehydes, J. Atmos. Chem., 45, 173–196, 2003.
Wilkinson, M. J., Monson, R. K., Trahan, N., Lee, S., Brown, E., Jackson, R.
B., Polley, H. W., Fay, P. A., and Fall, R.: Leaf isoprene emission rate as
a function of atmospheric CO2 concentration, Glob. Change Biol., 15,
1189–1200, 2009.
Yamori, W., Evans, J. R., and Von Caemmerer, S.: Effects of growth and
measurement light intensities on temperature dependence of CO2 assimilation
rate in tobacco leaves, Plant Cell Environ., 33, 332–343, 2010.
Yang, X., Wang, X., and Wei, M.: Response of photosynthesis in the leaves of
cucumber seedlings to light intensity and CO2 concentration under nitrate
stress, Turk. J. Bot., 34, 303–310, 2010.
Yatavelli, R. L. N., Stark, H., Thompson, S. L., Kimmel, J. R., Cubison, M. J., Day, D. A., Campuzano-Jost, P., Palm, B. B., Hodzic, A., Thornton, J. A., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS, Atmos. Chem. Phys., 14, 1527–1546, https://doi.org/10.5194/acp-14-1527-2014, 2014.
Zhang, P. and Chen, K.: Age-dependent variations of volatile emissions and
inhibitory activity toward Botrytis cinerea and Fusarium oxysporum in tomato
leaves treated with chitosan oligosaccharide, J. Plant Biol., 52,
332–339, 2009.
Short summary
This paper presents a thorough characterization of a leaf emission sampling technique coupling a portable photosynthesis system with different trace gas analyzers. We provide several case studies using both online and offline gas analyzers to measure different types of leaf emissions. We further highlight both the capabilities and pitfalls of this method.
This paper presents a thorough characterization of a leaf emission sampling technique coupling a...