Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1405-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1405-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new measurement approach for validating satellite-based above-cloud aerosol optical depth
Charles K. Gatebe
CORRESPONDING AUTHOR
NASA Ames Research Center, Moffett Field, CA 94035, USA
Universities Space Research Association (USRA), Columbia, MD 21046, USA
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Hiren Jethva
Universities Space Research Association (USRA), Columbia, MD 21046, USA
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Ritesh Gautam
Environmental Defense Fund, Washington, DC 20009, USA
Rajesh Poudyal
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Science Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USA
Tamás Várnai
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Joint Center for Earth Systems Technology, University of Maryland,
Baltimore County, Baltimore, MD 21250, USA
Related authors
Abby Sebol, Glenn Wolfe, Timothy Canty, Jason St. Clair, Erin Delaria, Jennifer Kaiser, Nidhi Desai, Andrew Rollins, Eleanor Waxman, Kristen Zuraski, Bryan Place, Apoorva Pandey, Akanksha Singh, Allison Ring, Charles Gatebe, and Jonathan Dean-Day
EGUsphere, https://doi.org/10.5194/egusphere-2025-5261, https://doi.org/10.5194/egusphere-2025-5261, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Ground-based spectrometers measuring HCHO and NO2 were compared to airborne in situ observations in the Summer 2023. Total column HCHO is within uncertainty, but with high biases near the surface. NO2 results are highly sensitive to the viewing angle of the ground monitor which must be considered during validation studies. Spectrometers in NYC show good agreement with a geostationary satellite on clear-sky days. Further quantified uncertainty for the monitors is necessary.
Soheila Jafariserajehlou, Vladimir V. Rozanov, Marco Vountas, Charles K. Gatebe, and John P. Burrows
Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021, https://doi.org/10.5194/amt-14-369-2021, 2021
Short summary
Short summary
In this work, we study retrieval of snow grain morphologies and their impact on the reflectance in a coupled snow–atmosphere system. We present a sensitivity study to highlight the importance of having adequate information about snow and atmosphere. A novel two-stage algorithm for retrieving the size and shape of snow grains is presented. The reflectance simulation results are compared to that of airborne measurements; high correlations of 0.98 at IR and 0.88–0.98 at VIS are achieved.
Abby Sebol, Glenn Wolfe, Timothy Canty, Jason St. Clair, Erin Delaria, Jennifer Kaiser, Nidhi Desai, Andrew Rollins, Eleanor Waxman, Kristen Zuraski, Bryan Place, Apoorva Pandey, Akanksha Singh, Allison Ring, Charles Gatebe, and Jonathan Dean-Day
EGUsphere, https://doi.org/10.5194/egusphere-2025-5261, https://doi.org/10.5194/egusphere-2025-5261, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Ground-based spectrometers measuring HCHO and NO2 were compared to airborne in situ observations in the Summer 2023. Total column HCHO is within uncertainty, but with high biases near the surface. NO2 results are highly sensitive to the viewing angle of the ground monitor which must be considered during validation studies. Spectrometers in NYC show good agreement with a geostationary satellite on clear-sky days. Further quantified uncertainty for the monitors is necessary.
Hiren Jethva, Nick Krotkov, Omar Torres, Jungbin Mok, Gordon Labow, Elena Lind, Thomas Eck, Wei Gao, George Janson, Scott Simpson, Darrin Sharp, Kathy Lantz, Charles Wilson, Africa Barreto, Rosa García, Sergey Korkin, and David Flittner
EGUsphere, https://doi.org/10.5194/egusphere-2025-4890, https://doi.org/10.5194/egusphere-2025-4890, 2025
Short summary
Short summary
A synergistic ground-based remote sensing algorithm applied to Aerosol Robotic Network and Multifilter Rotating Shadowband Radiometer allowed retrievals of UV-Vis Saharan dust spectral aerosol absorption at the Izaña Atmospheric Observatory. The retrieved dataset provides a valuable reference for evaluating satellite ultraviolet dust absorption inversions and further helps infer dust mineralogy to improve dust representation in Earth System Models.
Hiren T. Jethva, Omar Torres, Richard A. Ferrare, Sharon P. Burton, Anthony L. Cook, David B. Harper, Chris A. Hostetler, Jens Redemann, Vinay Kayetha, Samuel LeBlanc, Kristina Pistone, Logan Mitchell, and Connor J. Flynn
Atmos. Meas. Tech., 17, 2335–2366, https://doi.org/10.5194/amt-17-2335-2024, https://doi.org/10.5194/amt-17-2335-2024, 2024
Short summary
Short summary
We introduce a novel synergy algorithm applied to ORALCES airborne measurements of above-cloud aerosol optical depth and UV–Vis satellite observations from OMI and MODIS to retrieve spectral aerosol single-scattering albedo of lofted layers of carbonaceous smoke aerosols over clouds. The development of the proposed aerosol–cloud algorithm implies a possible synergy of CALIOP and OMI–MODIS passive sensors to deduce a global product of AOD and SSA of absorbing aerosols above clouds.
Adeleke S. Ademakinwa, Zahid H. Tushar, Jianyu Zheng, Chenxi Wang, Sanjay Purushotham, Jianwu Wang, Kerry G. Meyer, Tamas Várnai, and Zhibo Zhang
Atmos. Chem. Phys., 24, 3093–3114, https://doi.org/10.5194/acp-24-3093-2024, https://doi.org/10.5194/acp-24-3093-2024, 2024
Short summary
Short summary
Clouds play a critical role in our climate system. At present and in the near future, satellite-based remote sensing is the only means to obtain regional and global observations of cloud properties. The current satellite remote sensing algorithms are mostly based on the so-called 1D radiative transfer. This deviation from the 3D world reality can lead to large errors. In this study we investigate how this error affects our estimation of cloud radiative effects.
Vinay Kayetha, Omar Torres, and Hiren Jethva
Atmos. Meas. Tech., 15, 845–877, https://doi.org/10.5194/amt-15-845-2022, https://doi.org/10.5194/amt-15-845-2022, 2022
Short summary
Short summary
Existing measurements of spectral aerosol absorption are limited, particularly in the UV region. We use the synergy of satellite and ground measurements to derive spectral single scattering albedo of aerosols from the UV–visible spectrum. The resulting spectral SSAs are used to investigate seasonality in absorption for carbonaceous, dust, and urban aerosols. Regional aerosol absorption models that could be used to make reliable assumptions in satellite remote sensing of aerosols are derived.
Nick Schutgens, Oleg Dubovik, Otto Hasekamp, Omar Torres, Hiren Jethva, Peter J. T. Leonard, Pavel Litvinov, Jens Redemann, Yohei Shinozuka, Gerrit de Leeuw, Stefan Kinne, Thomas Popp, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021, https://doi.org/10.5194/acp-21-6895-2021, 2021
Short summary
Short summary
Absorptive aerosol has a potentially large impact on climate change. We evaluate and intercompare four global satellite datasets of absorptive aerosol optical depth (AAOD) and single-scattering albedo (SSA). We show that these datasets show reasonable correlations with the AErosol RObotic NETwork (AERONET) reference, although significant biases remain. In a follow-up paper we show that these observations nevertheless can be used for model evaluation.
Soheila Jafariserajehlou, Vladimir V. Rozanov, Marco Vountas, Charles K. Gatebe, and John P. Burrows
Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021, https://doi.org/10.5194/amt-14-369-2021, 2021
Short summary
Short summary
In this work, we study retrieval of snow grain morphologies and their impact on the reflectance in a coupled snow–atmosphere system. We present a sensitivity study to highlight the importance of having adequate information about snow and atmosphere. A novel two-stage algorithm for retrieving the size and shape of snow grains is presented. The reflectance simulation results are compared to that of airborne measurements; high correlations of 0.98 at IR and 0.88–0.98 at VIS are achieved.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Cited articles
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B. and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Cahalan, R. F., Oreopoulos, L., Marshak, A., Evans, K. F., Davis, A. B.,
Pincus, R., Yetzer, K., Mayer, B., Davies, R., Ackerman, T., Barker, H.,
Clothiaux, E., Ellingson, R., Garay, M., Kassianov, E., Kinne, S., Macke,
A., O'Hirok, W., Partain, P., Prigarin, S., Rublev, A., Stephens, G.,
Szczap, F., Takara, E., Várnai, T., Wen, G., and Zhuravleva, T.: The
International Intercomparison of 3D Radiation Codes (I3RC): Bringing
together the most advanced radiative transfer tools for cloudy atmospheres,
B. Am. Meteorol. Soc., 86, 1275–1293, 2005.
Cornet, C., C.-Labonnote, L., Waquet, F., Szczap, F., Deaconu, L., Parol, F., Vanbauce, C., Thieuleux, F., and Riédi, J.: Cloud heterogeneity on cloud and aerosol above cloud properties retrieved from simulated total and polarized reflectances, Atmos. Meas. Tech., 11, 3627–3643, https://doi.org/10.5194/amt-11-3627-2018, 2018.
Das, S., Harshvardhan, H., and Colarco, P. R.: The influence of elevated
smoke layers on stratocumulus clouds over the SE Atlantic in the NASA
Goddard Earth Observing System (GEOS) model, J. Geophys. Res.-Atmos., 125, e2019JD031209, https://doi.org/10.1029/2019JD031209, 2020
De Graaf, M., Stammes, P., and E. Aben, A. A.: Analysis of reflectance
spectra of UV-absorbing aerosol scenes measured by SCIAMACHY, J. Geophys.
Res., 112, D02206, https://doi.org/10.1029/2006JD007249, 2007.
De Graaf, M., Tilstra, L. G., Wang, P., and Stammes, P.: Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry, J. Geophys. Res., 117, D07207, https://doi.org/10.1029/2011JD017160, 2012.
Duynkerke, P. G. and Teixeira, J., A comparison of the ECMWF Reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus, J. Climate, 14, 1466–1478, 2001.
Feingold, G., Balsells, J., Glassmeier, F., Yamaguchi, T., Kazil, J., and
McComiskey, A.: Analysis of albedo versus cloud fraction relationships in
liquid water clouds using heuristic models and large eddy simulation, J.
Geophys. Res.-Atmos., 122, 7086–7102, https://doi.org/10.1002/2017JD026467,
2017.
Gatebe, C. K. and King, M. D.: Airborne spectral BRDF of various surface
types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers)
for remote sensing applications, Remote Sens. Environ., 179,
131–148, https://doi.org/10.1016/j.rse.2016.03.029, 2016.
Gatebe, C. K., King, M. D., Platnick, S., Arnold, G. T., Vermote, E. F., and
Schmid, B.: Airborne spectral measurements of surface-atmosphere anisotropy
for several surfaces and ecosystems over southern Africa, J.
Geophys. Res., 108, 8489, https://doi.org/10.1029/2002JD002397, 2003.
Gatebe, C. K., Dubovik, O., King, M. D., and Sinyuk, A.: Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements, Atmos. Chem. Phys., 10, 2777–2794, https://doi.org/10.5194/acp-10-2777-2010, 2010.
Gatebe, C. K., Varnai, T., Poudyal, R., Ichoku, C., and King, M. D.: Taking
the pulse of pyrocumulus clouds, Atmos. Environ., 52, 121–130,
https://doi.org/10.1016/j.atmosenv.2012.01.045, 2012.
Gatebe, C. K., King, M., and Poudyal, R.: CAR Safari BRDF Measurements L1 V2, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/RAQCJ0SV90IE, 2019.
Gautam, R., Gatebe, C. K., Singh, M. K., Várnai, T., and Poudyal, R.:
Radiative characteristics of clouds embedded in smoke derived from airborne
multiangular measurements, J. Geophys. Res.-Atmos., 121, 9140–9152, 2016.
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and
Celarier, E.: Global distribution of UV-absorbing aerosols from Nimbus
7/TOMS data, J. Geophys. Res., 102, 16911–16922,
https://doi.org/10.1029/96JD03680, 1997.
Jethva, H., Torres, O., Remer, L., and Bhartia, P.: A Color Ratio Method for
Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud
Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements,
IEEE T. Geosci. Remote, 51, 3862–3870,
https://doi.org/10.1109/TGRS.2012.2230008, 2013.
Jethva, H., Torres, O., Remer, L., Redemann, J., Livingston, J., Dunagan, S., Shinozuka, Y., Kacenelenbogen, M., Rosenheimer, M. S., and Spurr, R.: Validating MODIS above-cloud aerosol optical depth retrieved from “color ratio” algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors, Atmos. Meas. Tech., 9, 5053–5062, https://doi.org/10.5194/amt-9-5053-2016, 2016.
Jethva, H., Torres, O., and Ahn, C.: A 12-year long global record of optical depth of absorbing aerosols above the clouds derived from the OMI/OMACA algorithm, Atmos. Meas. Tech., 11, 5837–5864, https://doi.org/10.5194/amt-11-5837-2018, 2018.
Keil, A. and Haywood, J. M.: Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties, J. Geophys. Res., 108, 8467, https://doi.org/10.1029/2002JD002315, 2003.
King, M. D., Strange, M. G., Leone, P., and Blaine, L. R.: Multiwavelength
scanning radiometer for airborne measurements of scattered radiation within
clouds, J. Atmos. Ocean. Tech., 3, 513–522,
https://doi.org/10.1175/1520-0426(1986)003<0513:MSRFAM>2.0.CO;2, 1986.
LeBlanc, S. E., Redemann, J., Flynn, C., Pistone, K., Kacenelenbogen, M., Segal-Rosenheimer, M., Shinozuka, Y., Dunagan, S., Dahlgren, R. P., Meyer, K., Podolske, J., Howell, S. G., Freitag, S., Small-Griswold, J., Holben, B., Diamond, M., Wood, R., Formenti, P., Piketh, S., Maggs-Kölling, G., Gerber, M., and Namwoonde, A.: Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic, Atmos. Chem. Phys., 20, 1565–1590, https://doi.org/10.5194/acp-20-1565-2020, 2020.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical
properties and application to Moderate Resolution Imaging Spectroradiometer
aerosol retrieval over land, J. Geophys. Res., 112, D13210,
https://doi.org/10.1029/2006JD007815, 2007.
Marshak, A. and Davis, A. B.: 3D Radiative Transfer in Cloudy
Atmospheres, Springer, Heidelberg, Germany, 686 pp., 2005.
Marshak, A., Davis, A., Cahalan, R., and Wiscombe, W.: Nonlocal Independent
Pixel Approximation, direct and inverse problems, IEEE T. Geosci. Remote, 36, 192–205, https://doi.org/10.1109/36.655329, 1998.
Marshak, A., Wen, G., Coakley, J., Remer, L., Loeb, N. G., and Cahalan, R.
F.: A simple model for the cloud adjacency effect and the apparent bluing of
aerosols near clouds, J. Geophys. Res., 113, D14S17,
https://doi.org/10.1029/2007JD009196, 2008.
Melnikova, I. and Gatebe, C. K.: Vertical Profile of Cloud Optical
Parameters Derived from Airborne Measurements Above, Inside and Below
Clouds, J. Quant. Spectrosc. Ra., 214, 39–60,
https://doi.org/10.1016/j.jqsrt.2018.04.005, 2018.
Meyer, K., Platnick, S., Oreopoulos, L., and Lee, D.: Estimating the direct
radiative effect of absorbing aerosols overlying marine boundary layer
clouds in the southeast Atlantic using MODIS and CALIOP, J. Geophys. Res.-Atmos., 118, 4801–4815, https://doi.org/10.1002/jgrd.50449, 2013.
Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T.: Geometric considerations and nomenclature for reflectance, USA Department of Commerce/National Bureau of Standards, NBS Monogr., 160, 1–52, 1977.
Pistone, K., Redemann, J., Doherty, S., Zuidema, P., Burton, S., Cairns, B., Cochrane, S., Ferrare, R., Flynn, C., Freitag, S., Howell, S. G., Kacenelenbogen, M., LeBlanc, S., Liu, X., Schmidt, K. S., Sedlacek III, A. J., Segal-Rozenhaimer, M., Shinozuka, Y., Stamnes, S., van Diedenhoven, B., Van Harten, G., and Xu, F.: Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016, Atmos. Chem. Phys., 19, 9181–9208, https://doi.org/10.5194/acp-19-9181-2019, 2019.
Redemann, J., Wood, R., Zuidema, P., Doherty, S. J., Luna, B., LeBlanc, S. E., Diamond, M. S., Shinozuka, Y., Chang, I. Y., Ueyama, R., Pfister, L., Ryoo, J., Dobracki, A. N., da Silva, A. M., Longo, K. M., Kacenelenbogen, M. S., Flynn, C. J., Pistone, K., Knox, N. M., Piketh, S. J., Haywood, J. M., Formenti, P., Mallet, M., Stier, P., Ackerman, A. S., Bauer, S. E., Fridlind, A. M., Carmichael, G. R., Saide, P. E., Ferrada, G. A., Howell, S. G., Freitag, S., Cairns, B., Holben, B. N., Knobelspiesse, K. D., Tanelli, S., L'Ecuyer, T. S., Dzambo, A. M., Sy, O. O., McFarquhar, G. M., Poellot, M. R., Gupta, S., O'Brien, J. R., Nenes, A., Kacarab, M. E., Wong, J. P. S., Small-Griswold, J. D., Thornhill, K. L., Noone, D., Podolske, J. R., Schmidt, K. S., Pilewskie, P., Chen, H., Cochrane, S. P., Sedlacek, A. J., Lang, T. J., Stith, E., Segal-Rozenhaimer, M., Ferrare, R. A., Burton, S. P., Hostetler, C. A., Diner, D. J., Platnick, S. E., Myers, J. S., Meyer, K. G., Spangenberg, D. A., Maring, H., and Gao, L.: An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-449, in review, 2020.
Roy, D. and Zhang, H.: NASA Global Web-Enabled Landsat Data Annual Global
30 m V031 [Data set], NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MEaSUREs/GWELD/GWELDYR.031, 2019.
Sayer A. M., Hsu, N. C., Bettenhausen, C., Lee, J., Redemann, J., Schmid,
B., and Shinozuka, Y.: Extending “Deep Blue” aerosol retrievalcoverage to
cases of absorbingaerosols above clouds: Sensitivityanalysis and ?rst case
studies, J. Geophys. Res.-Atmos., 121, 4830–4854,
https://doi.org/10.1002/2015JD024729, 2016.
Schmid, B., Redemann, J., Russell, P. B., Hobbs, P. V., Hlavka, D. L.,
McGill, M. J., Holben, B. N., Welton, E. J., Campbell, J. R., Torres, O.,
Kahn, R. A., Diner, D. J., Helm- linger, M. C., Chu, D. A., Robles-Gonzalez,
C., and de Leeuw, G.: Coordinated airborne, spaceborne, and ground-based
measurements of massive thick aerosol layers during the dry season in
southern Africa, J. Geophys. Res., 108, 8496,
https://doi.org/10.1029/2002JD002297, 2003.
Shinozuka, Y., Saide, P. E., Ferrada, G. A., Burton, S. P., Ferrare, R., Doherty, S. J., Gordon, H., Longo, K., Mallet, M., Feng, Y., Wang, Q., Cheng, Y., Dobracki, A., Freitag, S., Howell, S. G., LeBlanc, S., Flynn, C., Segal-Rosenhaimer, M., Pistone, K., Podolske, J. R., Stith, E. J., Bennett, J. R., Carmichael, G. R., da Silva, A., Govindaraju, R., Leung, R., Zhang, Y., Pfister, L., Ryoo, J.-M., Redemann, J., Wood, R., and Zuidema, P.: Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, 2020.
Sinha, P., Hobbs, P. V., Yokelson, R. J., Blake, D. R., Gao, S., and Kirchstetter, T. W.: Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa, J. Geophys. Res., 108, 4536, https://doi.org/10.1029/2003JD003691, 2003.
Spurr, R. J. D.: VLIDORT: A linearized pseudo-spherical vector discrete
ordinate radiative transfer code for forward model and retrieval studies in
multilayer multiple scattering media, J. Quant. Spectrosc. Ra., 102,
316–342, https://doi.org/10.1016/j.jqsrt.2006.05.005, 2006.
Swap, R., Annegarn, H. J., Suttles, J. T., Haywood, J., Helmlinger, M. C., Hely, C., Hobbs, P. V., Holben, B. N., King, M. D., Landmann, T., Maenhaut, W., Otter, L., Pak, B., Piketh, S. J., Platnick, S., Privette, J., Roy, D., Thompson, A. M., Ward, D. E., and Yokelson, R. J.: The Southern African
Regional Science Initiative (SAFARI 2000), Overview of the dry season field campaign, S. Afr. J. Sci., 98, 125–130, 2002.
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J.:
Derivation of aerosol properties from satellite mea- surements of
backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res.,
103, 17099–17110, https://doi.org/10.1029/98JD00900, 1998.
Torres, O., Jethva, H., and Bhartia, P. K.: Retrieval of Aerosol Optical
Depth above Clouds from OMI Observations: Sensitivity Analysis and Case
Studies, J. Atmos. Sci., 69, 1037–1053,
https://doi.org/10.1175/JAS-D-11-0130.1, 2012.
Várnai, T., Marshak, A., and Yang, W.: Multi-satellite aerosol observations in the vicinity of clouds, Atmos. Chem. Phys., 13, 3899–3908, https://doi.org/10.5194/acp-13-3899-2013, 2013.
Várnai, T., Gatebe, C., Gautam, R., Poudyal, R., and Su, W.:
Developing an Aircraft-Based Angular Distribution Model of Solar Reflection
from Wildfire Smoke to Aid Satellite-Based Radiative Flux Estimation, Remote
Sens., 11, 1509, https://doi.org/10.3390/rs11131509, 2019.
Waquet, F., Riedi, J., Labonnote, L. C., Goloub, P., Cairns, B., Deuzeand,
J. -L., and Tanre, D.: Aerosol Remote Sensing over Clouds Using A-Train
Observations, J. Atmos. Sci., 66, 2468–2480,
https://doi.org/10.1175/2009JAS3026.1, 2009.
Wen, G., Marshak, A., and Cahalan, R. F.: Impact of 3D clouds on clear sky
reflectance and aerosol retrieval in a biomass burning region of Brazil,
IEEE Geosci. Remote S., 3, 169–172,
https://doi.org/10.1109/LGRS.2005.861386, 2006.
Wen, G., Marshak, A., Levy, R. C., Remer, L. A., Loeb, N. G., Várnai,
T., and Cahalan, R. F.,: Improvement of MODIS aerosol retrievals near
clouds. J. Geophys. Res., 118, 9168–9181,
https://doi.org/10.1002/jgrd.50617, 2013.
Wood, R.: Stratocumulus clouds, Mon. Weather Rev., 140, 2373–2423,
https://doi.org/10.1175/MWR-D-11-00121.1, 2012.
Zibordi, G. and Voss, K. J., Geometric and spectral distribution of sky radiance: Comparison between simulations and field measurements, Remote Sens. Environ., 27, 343–358, 1989.
Zinner, T., Mayer, B., and Schröder, M.: Determination of
three-dimensional cloud structures from high-resolution radiance data, J.
Geophys. Res., 111, D08204, https://doi.org/10.1029/2005JD006062, 2006.
Short summary
The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is very challenging, partly because clouds and cloud-related processes significantly modify the aerosol properties and the 3D radiative effects. This study shows simultaneous retrieval of above-cloud aerosol optical depth and aerosol-corrected cloud optical depth from airborne measurements, thereby demonstrating a novel approach for assessing satellite retrievals of aerosols above clouds.
The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is very...