Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-1879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods
Air Quality Research Division, Environment and Climate Change Canada (ECCC), Toronto, M3H 5T4, Canada
now at: Department of Physics, University of Toronto, Toronto, M5S 1A7, Canada
Ralf M. Staebler
Air Quality Research Division, Environment and Climate Change Canada (ECCC), Toronto, M3H 5T4, Canada
Samar G. Moussa
Air Quality Research Division, Environment and Climate Change Canada (ECCC), Toronto, M3H 5T4, Canada
James Beck
Suncor Energy Inc., Calgary, T2P 3Y7, Canada
Richard L. Mittermeier
Air Quality Research Division, Environment and Climate Change Canada (ECCC), Toronto, M3H 5T4, Canada
Related authors
Yuan You, Samar G. Moussa, Lucas Zhang, Long Fu, James Beck, and Ralf M. Staebler
Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, https://doi.org/10.5194/amt-14-945-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alex Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
Atmos. Chem. Phys., 25, 8355–8405, https://doi.org/10.5194/acp-25-8355-2025, https://doi.org/10.5194/acp-25-8355-2025, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in the central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found enhancements in O3 and NOy (mostly peroxyacetyl nitrate) concentrations in the Arctic due to northern boreal wildfires, particularly at higher altitudes.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024, https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows that the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023, https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary
Short summary
Measurements of the gas sulfur dioxide (SO2) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us the rate at which SO2 is absorbed by the forest. The measured rate is much higher than what is currently used by air quality models, which is supported by a previous study in this region. This suggests that SO2 may have a much shorter lifetime in the atmosphere at this location than currently predicted by models.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Yuan You, Samar G. Moussa, Lucas Zhang, Long Fu, James Beck, and Ralf M. Staebler
Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, https://doi.org/10.5194/amt-14-945-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Jenna C. Ditto, Megan He, Tori N. Hass-Mitchell, Samar G. Moussa, Katherine Hayden, Shao-Meng Li, John Liggio, Amy Leithead, Patrick Lee, Michael J. Wheeler, Jeremy J. B. Wentzell, and Drew R. Gentner
Atmos. Chem. Phys., 21, 255–267, https://doi.org/10.5194/acp-21-255-2021, https://doi.org/10.5194/acp-21-255-2021, 2021
Short summary
Short summary
Forest fires are an important source of reactive organic gases and aerosols to the atmosphere. We analyzed organic aerosols collected from an aircraft above a boreal forest fire and reported an increasing contribution from compounds containing oxygen, nitrogen, and sulfur as the plume aged, with sulfide and ring-bound nitrogen functionality. Our results demonstrated chemistry that is important in biomass burning but also in urban/developing regions with high local nitrogen and sulfur emissions.
Cited articles
Alberta Environment and Parks:
Quantification of area fugitive emissions at oil sands mines,
available at: https://open.alberta.ca/publications/9781460145814 (last access: 17 October 2020), 2019.
Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. K., Mittermeier, R. L., Moussa, S. G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D., and McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance, Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, 2018.
Bari, M. A. and Kindzierski, W. B.:
Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment,
Environ. Pollut.,
235, 602–614, https://doi.org/10.1016/j.envpol.2017.12.065, 2018.
Bolinius, D. J., Jahnke, A., and MacLeod, M.: Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants, Atmos. Chem. Phys., 16, 5315–5322, https://doi.org/10.5194/acp-16-5315-2016, 2016.
Covey, K. R. and Megonigal, J. P.:
Methane production and emissions in trees and forests,
New Phytol.,
222, 35–51, https://doi.org/10.1111/nph.15624, 2019.
Environment and Climate Change Canada: Emissions from tailings ponds to the atmosphere, oil sands region, availabl at: http://data.ec.gc.ca/data/air/monitor/source-emissions-monitoring- oil-sands-region/emissions-from-tailings-ponds-to-the-atmosphere-oil-sands-region/, last access: 26 January 2021.
Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I.: Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, 2018.
Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J. and Fitzjarrald, D. R.:
Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon Forest,
J. Geophys. Res.,
95, 16851–16864, 1990.
Flesch, T. K., Wilson, J. D., and Yee, E.:
Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions,
J. Appl. Meteorol.,
34, 1320–1332, 1995.
Flesch, T. K., Prueger, J. H., and Hatfield, J. L.:
Turbulent Schmidt number from a tracer experiment,
Agr. Forest Meteorol.,
111, 299–307, https://doi.org/10.1016/S0168-1923(02)00025-4, 2002.
Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P., and Sharpe, R. R.:
Deducing ground-to-air emissions from observed trace gas concentrations: A field trial,
J. Appl. Meteorol.,
43, 487–502, 2004.
Foght, J. M., Gieg, L. M., and Siddique, T.:
The microbiology of oil sands tailings: Past, present, future,
FEMS Microbiol. Ecol.,
93, fix034, https://doi.org/10.1093/femsec/fix034, 2017.
Foken, T., Aubinet, M., and Leuning, R.:
Eddy Covariance: A practical guide to measurement and data analysis, Eddy covariance method,
edited by: Aubinet, M., Vesala, T., and Papale., D.,
Springer, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012.
Galarneau, E., Hollebone, B. P., Yang, Z., and Schuster, J.:
Preliminary measurement-based estimates of PAH emissions from oil sands tailings ponds,
Atmos. Environ.,
97, 332–335, https://doi.org/10.1016/j.atmosenv.2014.08.038, 2014.
Government of Alberta:
Specified gas reporting standard. 2019 Version 11.0,
available at: https://open.alberta.ca/dataset/c5471471-79a3-456b-a183-997692da2576/resource/14073f8c-deab-410e-a9ab-ed326e5e4052/download/specified-gas-reporting-standard-v-11.pdf, last access: 21 October 2019.
Government of Canada:
Greenhouse Gas Reporting Program,
available at: https://climate-change.canada.ca/facility-emissions/GHGRP-G10558-2017.html (last access: 4 December 2019), 2017.
Gualtieri, C., Angeloudis, A., Bombardelli, F., Jha, S., and Stoesser, T.:
On the Values for the Turbulent Schmidt Number in Environmental Flows,
Fluids,
2, 17, https://doi.org/10.3390/fluids2020017, 2017.
Hashmonay, R. A., Natschke, D. F., Wagoner, K., Harris, D. B., Thompson, E. L., and Yost, M. G.:
Field evaluation of a method for estimating gaseous fluxes from area sources using open-path fourier transform infrared,
Environ. Sci. Technol.,
35, 2309–2313, https://doi.org/10.1021/es0017108, 2001.
Horst, T. W:
A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors,
Bound.-Lay. Meteorol.,
82, 219–233, 1997.
Horst, T. W.:
The footprint for estimation of atmosphere-surface exchange fluxes by profile techniques,
Bound.-Lay. Meteorol.,
90, 171–188, 1999.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Kong, J. D., Wang, H., Siddique, T., Foght, J., Semple, K., Burkus, Z., and Lewis, M. A.:
Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings,
Sci. Total Environ.,
694, 133645, https://doi.org/10.1016/j.scitotenv.2019.133645, 2019.
Li, S. M., Leithead, A., Moussa, S. G., Liggio, J., Moran, M. D., Wang, D., Hayden, K., Darlington, A., Gordon, M., Staebler, R., Makar, P. A., Stroud, C. A., McLaren, R., Liu, P. S. K., O'Brien, J., Mittermeier, R. L., Zhang, J., Marson, G., Cober, S. G., Wolde, M., and Wentzell, J. J. B.:
Differences between measured and reported volatile organic compound emissions from oil sands facilities in Alberta, Canada,
P. Natl. Acad. Sci. USA,
114, E3756–E3765, https://doi.org/10.1073/pnas.1617862114, 2017.
Liggio, J., Li, S. M., Hayden, K., Taha, Y. M., Stroud, C., Darlington, A., Drollette, B. D., Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S. G., Wang, D., O'Brien, J., Mittermeier, R. L., Brook, J. R., Lu, G., Staebler, R. M., Han, Y., Tokarek, T. W., Osthoff, H. D., Makar, P. A., Zhang, J., Plata, D. L., and Liggio, J., Li, S. M., Hayden, K., Taha, Y. M., Stroud, C., Darlington, A., Drollette, B. D., Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S. G., Wang, D., O'Brien, J., Mittermeier, R. L., Brook, J. R., Lu, G., Staebler, R. M., Han, Y., Tokarek, T. W., Osthoff, H. D., Makar, P. A., Zhang, J., Plata, D. L., and Gentner, D. R.: Oil sands operations as a large source of secondary organic aerosols, Nature, 534, 91–94, https://doi.org/10.1038/nature17646, 2016.
Liggio, J., Moussa, S. G., Wentzell, J., Darlington, A., Liu, P., Leithead, A., Hayden, K., O'Brien, J., Mittermeier, R. L., Staebler, R., Wolde, M., and Li, S.-M.: Understanding the primary emissions and secondary formation of gaseous organic acids in the oil sands region of Alberta, Canada, Atmos. Chem. Phys., 17, 8411–8427, https://doi.org/10.5194/acp-17-8411-2017, 2017.
Liggio, J., Li, S. M., Staebler, R. M., Hayden, K., Darlington, A., Mittermeier, R. L., O'Brien, J., McLaren, R., Wolde, M., Worthy, D., and Vogel, F.:
Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods,
Nat. Commun.,
10, 1863, https://doi.org/10.1038/s41467-019-09714-9, 2019.
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy covariance software package TK2,
available at: https://core.ac.uk/download/pdf/33806389.pdf (last access: 24 February 2021), 2004.
Mauder, M., Liebethan, C., Göckede, M., Leps, J-P, Beyrich, F., and Foken, T.:
Processing and quality control of flux data during LITFASS-2003,
Bound.-Lay. Meteorol.,
121, 67–88, https://doi.org/10.1007/s10546-006-9094-0, 2006.
Meyers, T. P., Hall, M. E., Lindberg, S. E., and Kim, K.:
Use of the modified Bowen-ratio technique to measure fluxes of trace gases,
Atmos. Environ.,
30, 3321–3329, https://doi.org/10.1016/1352-2310(96)00082-9, 1996.
Moncrieff, J. B., Clement, R., Finnigan, J., and Meyers, T.:
Averaging, detrending and filtering of eddy covariance time series,
in: Handbook of micrometeorology: a guide for surface flux measurements,
edited by:. Lee, X., Massman, W. J., and Law, B. E.,
Kluwer Academic, Dordrecht, 7–31, 2004.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., D. Lee, B. M., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.:
Anthropogenic and Natural Radiative Forcing, Chapter 8, Section 8.7,
in: Climate change 2013: The physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 659–740, 2013.
Penner, T. J. and Foght, J. M.: Mature fine tailings from oil sands processing harbour diverse methanogenic communities,
Can. J. Microbiol.,
56, 459–470, https://doi.org/10.1139/W10-029, 2010.
Podgrajsek, E., Sahlée, E., Bastviken, D., Holst, J., Lindroth, A., Tranvik, L., and Rutgersson, A.: Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes, Biogeosciences, 11, 4225–4233, https://doi.org/10.5194/bg-11-4225-2014, 2014.
Prajapati, P. and Santos, E. A.:
Comparing methane emissions estimated using a backward-Lagrangian stochastic model and the eddy covariance technique in a beef cattle feedlot,
Agr. Forest Meteorol.,
256–257, 482–491, https://doi.org/10.1016/j.agrformet.2018.04.003, 2018.
Sanches, L. F., Guenet, B., Marinho, C. C., Barros, N., and de Assis Esteves, F.: Global regulation of methane emission from natural lakes,
Sci. Rep.-UK, 9, 255, https://doi.org/10.1038/s41598-018-36519-5, 2019.
Schmid, H. P.:
Source areas for scalars and scalar fluxes,
Bound.-Lay. Meteorol.,
67, 293–318, https://doi.org/10.1007/BF00713146, 1994.
Schubert, C. J., Diem, T., and Eugster, W.:
Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: A comparison,
Environ. Sci. Technol.,
46, 4515–4522, https://doi.org/10.1021/es203465x, 2012.
Siddique, T., Fedorak, P. M., MacKinnon, M. D., and Foght, J. M.:
Metabolism of BTEX and Naphtha Compounds to Methane in Oil Sands Tailings,
Environ. Sci. Technol.,
41, 2350–2356, https://doi.org/10.1021/es062852q, 2007.
Siddique, T., Gupta, R., Fedorak, P. M., MacKinnon, M. D., and Foght, J. M.:
A first approximation kinetic model to predict methane generation from an oil sands tailings settling basin,
Chemosphere,
72, 1573–1580, https://doi.org/10.1016/j.chemosphere.2008.04.036, 2008.
Siddique, T., Penner, T., Semple, K., and Foght, J. M.:
Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings,
Environ. Sci. Technol.,
45, 5892–5899, https://doi.org/10.1021/es200649t, 2011.
Siddique, T., Penner, T., Klassen, J., Nesbø, C., and Foght, J. M.:
Microbial communities involved in methane production from hydrocarbons in oil sands tailings,
Environ. Sci. Technol.,
46, 9802–9810, https://doi.org/10.1021/es302202c, 2012.
Simpson, I. J., Blake, N. J., Barletta, B., Diskin, G. S., Fuelberg, H. E., Gorham, K., Huey, L. G., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Yang, M., and Blake, D. R.: Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2–C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, Atmos. Chem. Phys., 10, 11931–11954, https://doi.org/10.5194/acp-10-11931-2010, 2010.
Small, C. C., Cho, S., Hashisho, Z., and Ulrich, A. C.:
Emissions from oil sands tailings ponds: Review of tailings pond parameters and emission estimates,
J. Petrol. Sci. Eng.,
127, 490–501, https://doi.org/10.1016/j.petrol.2014.11.020, 2015.
Stantec: Air pollutant and GHG emissions from mine faces and tailings ponds,
Calgary, Alberta, Canada
Stantec Project 1235197,. 413 pp., 2016.
Statutes of Alberta:
Oil sands emissions limit act Chapter O-7.5,
available at: http://www.qp.alberta.ca/documents/Acts/O07p5.pdf (last access: 21 October 2019), 2016.
Strawbridge, K. B., Travis, M. S., Firanski, B. J., Brook, J. R., Staebler, R., and Leblanc, T.: A fully autonomous ozone, aerosol and nighttime water vapor lidar: a synergistic approach to profiling the atmosphere in the Canadian oil sands region, Atmos. Meas. Tech., 11, 6735–6759, https://doi.org/10.5194/amt-11-6735-2018, 2018.
Stull, R. B.: Local Closure – First Order, chap. 6.4,
in: An Introduction To Boundary Layer Meteorology,
Kluwer Academic Publishers, Dordrecht, the Netherlands, 203–214, 2003a.
Stull, R. B.: Turbulence Kinetic Energy, Stability and Scaling, chap. 5,
in: An Introduction To Boundary Layer Meteorology,
Kluwer Academic Publishers, Dordrecht, the Netherlands, 182, 2003b.
USEPA:
Measurement of gaseous emission rates from land surface using an emission isolation flux chamber. User's guide,
available at: https://nepis.epa.gov/Exe/ZyNET.exe/930013RX.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1986+Thru+1990&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C86thru90%5CTxt%5C00000029%5C930013RX.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL# (last access: 8 November 2020), 1986.
Wilczak, J. M., Oncley S. P., and Stage, S.A.:
Sonic anemometer tilt correction algorithms,
Bound-Lay. Meteorol.,
99, 127–150, https://doi.org/10.1023/A:1018966204465, 2001.
Wolf, A., Saliendra, N., Akshalov, K., Johnson, D. A., and Laca, E.:
Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system,
Agr. Forest Meteorol.,
148, 942–952, https://doi.org/10.1016/j.agrformet.2008.01.005, 2008.
Xiao, W., Liu, S., Li, H., Xiao, Q., Wang, W., Hu, Z., Hu, C., Gao, Y., Shen, J., Zhao, X., Zhang, M., and Lee, X.:
A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface,
Environ. Sci. Technol.,
48, 14490–14498, https://doi.org/10.1021/es5033713, 2014.
Yeh, S., Jordaan, S. M., Brandt, A. R., Turetsky, M. R., Spatari, S., and Keith, D. W.:
Land use greenhouse gas emissions from conventional oil production and oil sands,
Environ. Sci. Technol.,
44, 8766–8772, https://doi.org/10.1021/es1013278, 2010.
You, Y., Moussa, S. G., Zhang, L., Fu, L., Beck, J., and Staebler, R. M.: Quantifying fugitive gas emissions from an oil sands tailings pond with open-path Fourier transform infrared measurements, Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, 2021.
Zhang, L., Cho, S., Hashisho, Z., and Brown, C.:
Quantification of fugitive emissions from an oil sands tailings pond by eddy covariance,
Fuel,
237, 457–464, https://doi.org/10.1016/j.fuel.2018.09.104, 2019.
Zhao, J., Zhang, M., Xiao, W., Wang, W., Zhang, Z., Yu, Z., Xiao, Q., Cao, Z., Xu, J., Zhang, X., Liu, S., and Lee, X.:
An evaluation of the flux-gradient and the eddy covariance method to measure CH4, CO2, and H2O fluxes from small ponds,
Agr. Forest Meteorol.,
275, 255–264, https://doi.org/10.1016/j.agrformet.2019.05.032, 2019.
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important...