Articles | Volume 14, issue 3
Atmos. Meas. Tech., 14, 2285–2298, 2021
https://doi.org/10.5194/amt-14-2285-2021
Atmos. Meas. Tech., 14, 2285–2298, 2021
https://doi.org/10.5194/amt-14-2285-2021
Research article
24 Mar 2021
Research article | 24 Mar 2021

The improved comparative reactivity method (ICRM): measurements of OH reactivity under high-NOx conditions in ambient air

Wenjie Wang et al.

Related authors

The formation and mitigation of nitrate pollution: comparison between urban and suburban environments
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022,https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022,https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 22, 4101–4116, https://doi.org/10.5194/acp-22-4101-2022,https://doi.org/10.5194/acp-22-4101-2022, 2022
Short summary
Long-term trend of ozone pollution in China during 2014–2020: distinct seasonal and spatial characteristics
Wenjie Wang, David Parrish, Siwen Wang, Fengxia Bao, Ruijing Ni, Xin Li, Suding Yang, Hongli Wang, Yafang Cheng, and Hang Su
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-123,https://doi.org/10.5194/acp-2022-123, 2022
Preprint under review for ACP
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Metrology for low-cost CO2 sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO2 fluxes observations
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022,https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
A relaxed eddy accumulation (REA) LOPAP system for flux measurements of nitrous acid (HONO)
Lisa von der Heyden, Walter Wißdorf, Ralf Kurtenbach, and Jörg Kleffmann
Atmos. Meas. Tech., 15, 1983–2000, https://doi.org/10.5194/amt-15-1983-2022,https://doi.org/10.5194/amt-15-1983-2022, 2022
Short summary
Fill dynamics and sample mixing in the AirCore
Pieter Tans
Atmos. Meas. Tech., 15, 1903–1916, https://doi.org/10.5194/amt-15-1903-2022,https://doi.org/10.5194/amt-15-1903-2022, 2022
Short summary
IRIS analyser assessment reveals sub-hourly variability of isotope ratios in carbon dioxide at Baring Head, New Zealand's atmospheric observatory in the Southern Ocean
Peter Sperlich, Gordon W. Brailsford, Rowena C. Moss, John McGregor, Ross J. Martin, Sylvia Nichol, Sara Mikaloff-Fletcher, Beata Bukosa, Magda Mandic, C. Ian Schipper, Paul Krummel, and Alan D. Griffiths
Atmos. Meas. Tech., 15, 1631–1656, https://doi.org/10.5194/amt-15-1631-2022,https://doi.org/10.5194/amt-15-1631-2022, 2022
Short summary
A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry
Martin Breitenlechner, Gordon A. Novak, J. Andrew Neuman, Andrew W. Rollins, and Patrick R. Veres
Atmos. Meas. Tech., 15, 1159–1169, https://doi.org/10.5194/amt-15-1159-2022,https://doi.org/10.5194/amt-15-1159-2022, 2022
Short summary

Cited articles

Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 36, 2063–2101, 2000. 
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, 2003. 
Atkinson, R., Aschmann, S. M., Winer, A. M., and Carter, W. P. L.: Rate constants for the gas phase reactions of OH radicals and O3, with pyrrole at 295 ± 1 K and atmospheric pressure, Atmos. Environ., 18, 2105–2107, 1984. 
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. 
Birks, J. W., Andersen, P. C., Williford, C. J., Turnipseed, A. A., Strunk, S. E., Ennis, C. A., and Mattson, E.: Folded tubular photometer for atmospheric measurements of NO2 and NO, Atmos. Meas. Tech., 11, 2821–2835, https://doi.org/10.5194/amt-11-2821-2018, 2018. 
Download
Short summary
We designed a new reactor for measurements of OH reactivity (i.e., OH radical loss frequency) based on the comparative reactivity method under high-NOx conditions, such as in cities. We performed a series of laboratory tests to evaluate the new reactor. The new reactor was used in the field and performed well in measuring OH reactivity in air influenced by upwind cities.