Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7627-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution under dark conditions of particles from old and modern diesel vehicles in a new environmental chamber characterized with fresh exhaust emissions
Boris Vansevenant
EASE, Université Gustave Eiffel, Bron, 69500, France
French Agency for Ecological Transition, ADEME, Angers, 49000, France
IRCELYON, University Claude Bernard Lyon 1, Villeurbanne, 69100, France
Cédric Louis
EASE, Université Gustave Eiffel, Bron, 69500, France
French Agency for Ecological Transition, ADEME, Angers, 49000, France
Corinne Ferronato
IRCELYON, University Claude Bernard Lyon 1, Villeurbanne, 69100, France
Ludovic Fine
IRCELYON, University Claude Bernard Lyon 1, Villeurbanne, 69100, France
Patrick Tassel
EASE, Université Gustave Eiffel, Bron, 69500, France
Pascal Perret
EASE, Université Gustave Eiffel, Bron, 69500, France
Evangelia Kostenidou
LCE, Aix-Marseille University, UMR 7376 CNRS, Marseille, 13331, France
Brice Temime-Roussel
LCE, Aix-Marseille University, UMR 7376 CNRS, Marseille, 13331, France
Barbara D'Anna
LCE, Aix-Marseille University, UMR 7376 CNRS, Marseille, 13331, France
Karine Sartelet
CEREA, Joint Laboratory Ecole des Ponts ParisTech/EdF R&D,
University Paris-Est, Marne-la Vallée, 77455, France
Véronique Cerezo
EASE, Université Gustave Eiffel, Bron, 69500, France
Yao Liu
CORRESPONDING AUTHOR
EASE, Université Gustave Eiffel, Bron, 69500, France
Related authors
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
Evangelia Kostenidou, Alvaro Martinez-Valiente, Badr R'Mili, Baptiste Marques, Brice Temime-Roussel, Amandine Durand, Michel André, Yao Liu, Cédric Louis, Boris Vansevenant, Daniel Ferry, Carine Laffon, Philippe Parent, and Barbara D'Anna
Atmos. Chem. Phys., 21, 4779–4796, https://doi.org/10.5194/acp-21-4779-2021, https://doi.org/10.5194/acp-21-4779-2021, 2021
Short summary
Short summary
Passenger vehicle emissions can be a significant source of particulate matter in urban areas. In this study the particle-phase emissions of seven Euro 5 passenger vehicles were characterized. Changes in engine technologies and after-treatment devices can alter the chemical composition and the size of the emitted particulate matter. The condition of the diesel particle filter (DPF) plays an important role in the emitted pollutants.
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
Atmos. Chem. Phys., 25, 93–117, https://doi.org/10.5194/acp-25-93-2025, https://doi.org/10.5194/acp-25-93-2025, 2025
Short summary
Short summary
This study highlights the interest of using a street-network model to estimate pollutant concentrations of NOx, NO2, and PM2.5 in heterogeneous urban areas, particularly those adjacent to highways, compared with the subgrid-scale approach embedded in the 3D Eulerian model CHIMERE. However, the study also reveals comparable performances between the two approaches for the aforementioned pollutants in areas near the city center, where urban characteristics are more uniform.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Johannes Heuser, Claudia Di Biagio, Jerome Yon, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Marco Zanatta, Laura Renzi, Angela Marinoni, Satoshi Inomata, Chenjie Yu, Vera Bernardoni, Servanne Chevaillier, Daniel Ferry, Paolo Laj, Michel Maillé, Dario Massabò, Federico Mazzei, Gael Noyalet, Hiroshi Tanimoto, Brice Temime-Roussel, Roberta Vecchi, Virginia Vernocchi, Paola Formenti, Bénédicte Picquet-Varrault, and Jean-François Doussin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2381, https://doi.org/10.5194/egusphere-2024-2381, 2024
Short summary
Short summary
The spectral optical properties of combustion soot aerosols with varying black (BC) and brown carbon (BrC) content were studied in an atmospheric simulation chamber. Measurements of the mass spectral absorption cross section (MAC), supplement by literature data, allowed to establish a generalized exponential relationship between the spectral MAC and the elemental-to-total carbon ratio (EC/TC) in soot. This relationship can provide a useful tool for modelling the properties of soot.
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D’Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2120, https://doi.org/10.5194/egusphere-2024-2120, 2024
Short summary
Short summary
To accurately represent the population exposure to outdoor concentrations of pollutants of health interest (NO2, black carbon, PM2.5, ultrafine particles), multi-scale modelling down to the street scale is setup and evaluated using measurements from field campaigns. An exposure scaling factor is defined, allowing to correct regional-scale simulations to evaluate population exposure. Urban heterogeneities strongly influence NO2, black carbon and ultrafine particles, but less PM2.5.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D’Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
EGUsphere, https://doi.org/10.5194/egusphere-2024-2903, https://doi.org/10.5194/egusphere-2024-2903, 2024
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, like ultra-fine particles, were higher in the port than in the city and offer a strong support to improve emission inventories. These findings may also serve as reference for assessing the benefits of a Sulphur Emission Control Area in the Mediterranean in 2025.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2863, https://doi.org/10.5194/egusphere-2024-2863, 2024
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve Arnold, Andrea Baccarini, Mauricio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2421, https://doi.org/10.5194/egusphere-2024-2421, 2024
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed onboard a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, NOx) in Fairbanks during the winter of 2022. Data calibration with reference measurements and machine learning methods enabled to document pollution at the surface and power plant plumes aloft.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Oscar Jacquot and Karine Sartelet
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-150, https://doi.org/10.5194/gmd-2024-150, 2024
Preprint under review for GMD
Short summary
Short summary
As the health impact of ultrafine particles is better understood, modeling the size distribution and the number concentration becomes increasingly important. A new analytic formulation is presented to compute coagulation partition coefficients, allowing to lower down the numerical diffusion associated to the resolution of aerosol dynamics. The significance of this effect is assessed over Greater Paris with a chemistry transport model, using different size resolution of the particle distribution.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023, https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary
Short summary
A new version of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) is developed to represent heterogeneities of concentrations in streets. The street volume is discretized vertically and horizontally to limit the artificial dilution of emissions and concentrations. This new version is applied to street networks in Copenhagen and Paris. The comparisons to observations are improved, with higher concentrations of pollutants emitted by traffic at the bottom of the street.
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023, https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary
Short summary
In this study, SSH-aerosol, a modular box model that simulates the evolution of gas, primary, and secondary aerosols, is coupled with the computational fluid dynamics (CFD) software, OpenFOAM and Code_Saturne. The transient dispersion of pollutants emitted from traffic in a street canyon of Greater Paris is simulated. The coupled model achieved better agreement in NO2 and PM10 with measurement data than the conventional CFD simulation which regards pollutants as passive scalars.
Zhizhao Wang, Florian Couvidat, and Karine Sartelet
Geosci. Model Dev., 15, 8957–8982, https://doi.org/10.5194/gmd-15-8957-2022, https://doi.org/10.5194/gmd-15-8957-2022, 2022
Short summary
Short summary
Air quality models need to reliably predict secondary organic aerosols (SOAs) at a reasonable computational cost. Thus, we developed GENOA v1.0, a mechanism reduction algorithm that preserves the accuracy of detailed gas-phase chemical mechanisms for SOA formation, thereby improving the practical use of actual chemistry in SOA models. With GENOA, a near-explicit chemical scheme was reduced to 2 % of its original size and computational time, with an average error of less than 3 %.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022, https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Short summary
This paper presents the latest version of the street-network model MUNICH, v2.0. The description of MUNICH v1.0, which models gas-phase pollutants in a street network, was published in GMD in 2018. Since then, major modifications have been made to MUNICH. The comprehensive aerosol model SSH-aerosol is now coupled to MUNICH to simulate primary and secondary aerosol concentrations. New parameterisations have also been introduced. Test cases are defined to illustrate the new model functionalities.
Alice Maison, Cédric Flageul, Bertrand Carissimo, Yunyi Wang, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 22, 9369–9388, https://doi.org/10.5194/acp-22-9369-2022, https://doi.org/10.5194/acp-22-9369-2022, 2022
Short summary
Short summary
This paper presents a parameterization of the tree crown effect on air flow and pollutant dispersion in a street network model used to simulate air quality at the street level. The new parameterization is built using a finer-scale model (computational fluid dynamics). The tree effect increases with the leaf area index and the crown volume fraction of the trees; the street horizontal velocity is reduced by up to 68 % and the vertical transfer into or out of the street by up to 23 %.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596, https://doi.org/10.5194/acp-22-8579-2022, https://doi.org/10.5194/acp-22-8579-2022, 2022
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterisations (binary, ternary involving sulfuric acid and ammonia, and heteromolecular involving sulfuric acid and extremely low-volatility organics, ELVOCs). The comparisons show that ternary nucleation may not be a dominant process for new particle formation in cities, but they stress the role of ELVOCs.
Junteng Wu, Nicolas Brun, Juan Miguel González-Sánchez, Badr R'Mili, Brice Temime Roussel, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Meas. Tech., 15, 3859–3874, https://doi.org/10.5194/amt-15-3859-2022, https://doi.org/10.5194/amt-15-3859-2022, 2022
Short summary
Short summary
This work quantified and tentatively identified the organic impurities on ammonium sulfate aerosols generated in the laboratory. They are likely low volatile and high mass molecules containing oxygen, nitrogen, and/or sulfur. Our results show that these organic impurities likely originate from the commercial AS crystals. It is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
Lya Lugon, Jérémy Vigneron, Christophe Debert, Olivier Chrétien, and Karine Sartelet
Geosci. Model Dev., 14, 7001–7019, https://doi.org/10.5194/gmd-14-7001-2021, https://doi.org/10.5194/gmd-14-7001-2021, 2021
Short summary
Short summary
The multiscale Street-in-Grid model is used to simulate black carbon (BC) concentrations in streets. To respect street-surface mass balance, particle resuspension is estimated with a new approach based on deposited mass. The contribution of resuspension is low, but non-exhaust emissions from tyre wear may largely contribute to BC concentrations. The impact of the two-way dynamic coupling between scales on BC concentrations varies depending on the street geometry and traffic emission intensity.
Eve-Agnès Fiorentino, Henri Wortham, and Karine Sartelet
Geosci. Model Dev., 14, 2747–2780, https://doi.org/10.5194/gmd-14-2747-2021, https://doi.org/10.5194/gmd-14-2747-2021, 2021
Short summary
Short summary
Indoor air quality (IAQ) is strongly influenced by reactivity with surfaces, which is called heterogeneous reactivity. To date, this reactivity is barely integrated into numerical models due to the strong uncertainties it is subjected to. In this work, an open-source IAQ model, called the H2I model, is developed to consider both gas-phase and heterogeneous reactivity and simulate indoor concentrations of inorganic compounds.
Benjamin Chazeau, Brice Temime-Roussel, Grégory Gille, Boualem Mesbah, Barbara D'Anna, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 21, 7293–7319, https://doi.org/10.5194/acp-21-7293-2021, https://doi.org/10.5194/acp-21-7293-2021, 2021
Short summary
Short summary
The temporal trends in the chemical composition and particle number of the submicron aerosols in a Mediterranean city, Marseille, are investigated over 14 months. Fifteen days were found to exceed the WHO PM2.5 daily limit (25 µg m−3) only during the cold period, with two distinct origins: local pollution events with an increased fraction of the carbonaceous fraction due to domestic wood burning and long-range pollution events with a high level of oxygenated organic aerosol and ammonium nitrate.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Evangelia Kostenidou, Alvaro Martinez-Valiente, Badr R'Mili, Baptiste Marques, Brice Temime-Roussel, Amandine Durand, Michel André, Yao Liu, Cédric Louis, Boris Vansevenant, Daniel Ferry, Carine Laffon, Philippe Parent, and Barbara D'Anna
Atmos. Chem. Phys., 21, 4779–4796, https://doi.org/10.5194/acp-21-4779-2021, https://doi.org/10.5194/acp-21-4779-2021, 2021
Short summary
Short summary
Passenger vehicle emissions can be a significant source of particulate matter in urban areas. In this study the particle-phase emissions of seven Euro 5 passenger vehicles were characterized. Changes in engine technologies and after-treatment devices can alter the chemical composition and the size of the emitted particulate matter. The condition of the diesel particle filter (DPF) plays an important role in the emitted pollutants.
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Short summary
New particle formation is a key process influencing both local air quality and climatically active cloud condensation nuclei concentrations. This study has carried out fundamental measurements of nucleation processes in Barcelona, Spain, and concludes that a mechanism involving stabilisation of sulfuric acid clusters by low molecular weight amines is primarily responsible for new particle formation events.
Eve-Agnès Fiorentino, Henri Wortham, and Karine Sartelet
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-192, https://doi.org/10.5194/gmd-2020-192, 2020
Preprint withdrawn
Lya Lugon, Karine Sartelet, Youngseob Kim, Jérémy Vigneron, and Olivier Chrétien
Atmos. Chem. Phys., 20, 7717–7740, https://doi.org/10.5194/acp-20-7717-2020, https://doi.org/10.5194/acp-20-7717-2020, 2020
Short summary
Short summary
This study presents a new version of the multi-scale model Street-in-Grid (SinG) that interconnects regional and local scales in air-quality modeling in urban areas. The new version of SinG performs the finest coupling between transport and chemistry, leading to a numerically stable partitioning between NO and NO2. Multi-scale, local-scale and regional-scale simulations of NO, NO2 and NOx over Paris are compared to observations, and SinG shows good performance for both local and regional scales.
Marc D. Mallet, Barbara D'Anna, Aurélie Même, Maria Chiara Bove, Federico Cassola, Giandomenico Pace, Karine Desboeufs, Claudia Di Biagio, Jean-Francois Doussin, Michel Maille, Dario Massabò, Jean Sciare, Pascal Zapf, Alcide Giorgio di Sarra, and Paola Formenti
Atmos. Chem. Phys., 19, 11123–11142, https://doi.org/10.5194/acp-19-11123-2019, https://doi.org/10.5194/acp-19-11123-2019, 2019
Short summary
Short summary
We present findings from a summertime field campaign at the remote island of Lampedusa in the central Mediterranean Sea. We show that the aerosol loading is similar to coastal sites around the Mediterranean. We observe higher loadings of sulfate and aged organic aerosol from air masses transported over the central and eastern Mediterranean in comparison to those from the western Mediterranean. These results highlight the rarity of pristine air masses, even in remote marine environments.
Marwa Majdi, Karine Sartelet, Grazia Maria Lanzafame, Florian Couvidat, Youngseob Kim, Mounir Chrit, and Solene Turquety
Atmos. Chem. Phys., 19, 5543–5569, https://doi.org/10.5194/acp-19-5543-2019, https://doi.org/10.5194/acp-19-5543-2019, 2019
Youngseob Kim, Karine Sartelet, and Florian Couvidat
Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019, https://doi.org/10.5194/acp-19-1241-2019, 2019
Short summary
Short summary
Assumptions (ideality and thermodynamic equilibrium) commonly made in 3-dimensional air quality models were reconsidered to evaluate their impacts on secondary organic aerosol (SOA) formation. Non-ideality (short-, medium- and long-range interactions of organics and inorganics) influences SOA concentrations by about 30 % over Europe. If SOA are highly viscous rather than inviscid, hydrophobic SOA concentrations increase by 6 % but can increase by an order of magnitude for volatile compounds.
Marwa Majdi, Solene Turquety, Karine Sartelet, Carole Legorgeu, Laurent Menut, and Youngseob Kim
Atmos. Chem. Phys., 19, 785–812, https://doi.org/10.5194/acp-19-785-2019, https://doi.org/10.5194/acp-19-785-2019, 2019
Mounir Chrit, Karine Sartelet, Jean Sciare, Marwa Majdi, José Nicolas, Jean-Eudes Petit, and François Dulac
Atmos. Chem. Phys., 18, 18079–18100, https://doi.org/10.5194/acp-18-18079-2018, https://doi.org/10.5194/acp-18-18079-2018, 2018
Cristina Carnerero, Noemí Pérez, Cristina Reche, Marina Ealo, Gloria Titos, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Lubna Dada, Pauli Paasonen, Veli-Matti Kerminen, Enrique Mantilla, Miguel Escudero, Francisco J. Gómez-Moreno, Elisabeth Alonso-Blanco, Esther Coz, Alfonso Saiz-Lopez, Brice Temime-Roussel, Nicolas Marchand, David C. S. Beddows, Roy M. Harrison, Tuukka Petäjä, Markku Kulmala, Kang-Ho Ahn, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, https://doi.org/10.5194/acp-18-16601-2018, 2018
Short summary
Short summary
The vertical distribution of new particle formation events was studied using tethered balloons carrying miniaturized instrumentation. Results show that new particle formation and growth occurs only in the lower layer of the atmosphere, where aerosols are mixed due to convection, especially when the atmosphere is clean. A comparison of urban and suburban surface stations was also made, suggesting that such events may have a significant impact on ultrafine particle concentrations in a wide area.
Anne-Cyrielle Genard-Zielinski, Christophe Boissard, Elena Ormeño, Juliette Lathière, Ilja M. Reiter, Henri Wortham, Jean-Philippe Orts, Brice Temime-Roussel, Bertrand Guenet, Svenja Bartsch, Thierry Gauquelin, and Catherine Fernandez
Biogeosciences, 15, 4711–4730, https://doi.org/10.5194/bg-15-4711-2018, https://doi.org/10.5194/bg-15-4711-2018, 2018
Short summary
Short summary
From seasonal in situ observations on how a Mediterranean ecosystem responds to drought, a specific isoprene emission (ER, emission rates) algorithm was developed, upon which 2100 projections (IPCC RCP2.6 and RCP8.5 scenarios) were made. Emission rates were found to be mainly sensitive to future temperature changes and poorly represented by current empirical emission models. Drought was found to aggravate thermal stress on emission rates.
Amelie Bertrand, Giulia Stefenelli, Simone M. Pieber, Emily A. Bruns, Brice Temime-Roussel, Jay G. Slowik, Henri Wortham, André S. H. Prévôt, Imad El Haddad, and Nicolas Marchand
Atmos. Chem. Phys., 18, 10915–10930, https://doi.org/10.5194/acp-18-10915-2018, https://doi.org/10.5194/acp-18-10915-2018, 2018
Short summary
Short summary
We model the evolution of several BBOA markers including levoglucosan during aging experiments conducted in an atmospheric Teflon chamber, in order to evaluate the influence of vapor wall loss on the determination of the rate constants of the compounds with hydroxyl radicals (OH).
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, José B. Nicolas, Nicolas Marchand, Evelyn Freney, Karine Sellegri, Matthias Beekmann, and François Dulac
Atmos. Chem. Phys., 18, 9631–9659, https://doi.org/10.5194/acp-18-9631-2018, https://doi.org/10.5194/acp-18-9631-2018, 2018
Short summary
Short summary
Fine particulate matter (PM) in the atmosphere is of concern due to its effects on health, climate, ecosystems and biological cycles, and visibility.
These effects are especially important in the Mediterranean region. In this study, the air quality model Polyphemus is used to understand the
sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters and hypotheses related to condensation/evaporation in the model.
Amelie Bertrand, Giulia Stefenelli, Coty N. Jen, Simone M. Pieber, Emily A. Bruns, Haiyan Ni, Brice Temime-Roussel, Jay G. Slowik, Allen H. Goldstein, Imad El Haddad, Urs Baltensperger, André S. H. Prévôt, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 18, 7607–7624, https://doi.org/10.5194/acp-18-7607-2018, https://doi.org/10.5194/acp-18-7607-2018, 2018
Short summary
Short summary
A thermal desorption aerosol gas chromatograph coupled to an aerosol mass spectrometer (TAG–AMS) is connected to an atmospheric chamber. The setup serves the quantitative study of the impact of combustion conditions and atmospheric aging on the chemical fingerprint at the molecular level of biomass burning organic aerosol.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Evelyn Freney, Karine Sellegri, Mounir Chrit, Kouji Adachi, Joel Brito, Antoine Waked, Agnès Borbon, Aurélie Colomb, Régis Dupuy, Jean-Marc Pichon, Laetitia Bouvier, Claire Delon, Corinne Jambert, Pierre Durand, Thierry Bourianne, Cécile Gaimoz, Sylvain Triquet, Anaïs Féron, Matthias Beekmann, François Dulac, and Karine Sartelet
Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018, https://doi.org/10.5194/acp-18-7041-2018, 2018
Short summary
Short summary
The focus of these experiments, within the ChArMEx project, were to better understand the chemical properties of ambient aerosols over the Mediterranean region. A series of airborne measurements were performed aboard the French research aircraft, the ATR42, during the summer period. Aerosol and gas-phase chemical mass spectrometry allowed us to understand the sources and formation of organic aerosols. Numerical models were incorporated into this study to help interpret our observations.
Xavier Querol, Andrés Alastuey, Gotzon Gangoiti, Noemí Perez, Hong K. Lee, Heeram R. Eun, Yonghee Park, Enrique Mantilla, Miguel Escudero, Gloria Titos, Lucio Alonso, Brice Temime-Roussel, Nicolas Marchand, Juan R. Moreta, M. Arantxa Revuelta, Pedro Salvador, Begoña Artíñano, Saúl García dos Santos, Mónica Anguas, Alberto Notario, Alfonso Saiz-Lopez, Roy M. Harrison, Millán Millán, and Kang-Ho Ahn
Atmos. Chem. Phys., 18, 6511–6533, https://doi.org/10.5194/acp-18-6511-2018, https://doi.org/10.5194/acp-18-6511-2018, 2018
Short summary
Short summary
We show the main drivers of high O3 episodes in and around Madrid. High levels of ultrafine particles (UFPs) are evidenced, but we demonstrate that most O3 arises from the fumigation of high atmospheric layers, whereas UFPs are generated inside the PBL. O3 contributions from the fumigation of the vertical recirculation of regional air masses, hemispheric transport, and horizontally from direct urban plume transport are shown. Complexity arises from the need to quantify them to abate surface O3.
Evangelia Kostenidou, Eleni Karnezi, James R. Hite Jr., Aikaterini Bougiatioti, Kate Cerully, Lu Xu, Nga L. Ng, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 5799–5819, https://doi.org/10.5194/acp-18-5799-2018, https://doi.org/10.5194/acp-18-5799-2018, 2018
Short summary
Short summary
The volatility distribution of organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS) was estimated. The volatility distribution of all components covered a wide range including both semi-volatile and low-volatility components. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
Ningxin Wang, Evangelia Kostenidou, Neil M. Donahue, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 3589–3601, https://doi.org/10.5194/acp-18-3589-2018, https://doi.org/10.5194/acp-18-3589-2018, 2018
Short summary
Short summary
This study investigates aging in the α-pinene ozonolysis system with hydroxyl radicals (OH) through smog chamber experiments. After an equivalent of 2–4 days of typical atmospheric oxidation conditions, homogeneous OH oxidation of the α-pinene ozonolysis products resulted in a 20–40 % net increase in the organic aerosol concentration and an increase in aerosol O : C by up to 0.04. The relative humidity in the 5–50 % range had a minimum effect on aging.
Allison N. Schwier, Karine Sellegri, Sébastien Mas, Bruno Charrière, Jorge Pey, Clémence Rose, Brice Temime-Roussel, Jean-Luc Jaffrezo, David Parin, David Picard, Mickael Ribeiro, Greg Roberts, Richard Sempéré, Nicolas Marchand, and Barbara D'Anna
Atmos. Chem. Phys., 17, 14645–14660, https://doi.org/10.5194/acp-17-14645-2017, https://doi.org/10.5194/acp-17-14645-2017, 2017
Short summary
Short summary
In the present paper, we quantify sea-to-air emission fluxes of aerosol to the atmosphere and characterize their physical and chemical properties as a function of the seawater biochemical and physical properties. Fluxes are evaluated with an original approach, a "lab in the field" experiment that preserves the seawater and atmospheric complexity while isolating air-to-sea exchanges from their surroundings. We show different features of the aerosol emission fluxes compared to previous findings.
Evangelos E. Louvaris, Eleni Karnezi, Evangelia Kostenidou, Christos Kaltsonoudis, and Spyros N. Pandis
Atmos. Meas. Tech., 10, 3909–3918, https://doi.org/10.5194/amt-10-3909-2017, https://doi.org/10.5194/amt-10-3909-2017, 2017
Short summary
Short summary
A method for the determination of the organic aerosol volatility distribution combining thermodenuder and isothermal dilution measurements is developed. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol produced during meat charbroiling. Addition of the dilution measurements to the thermodenuder data results in a lower uncertainty of the estimated vaporization enthalpy as well as the semivolatile content of the aerosol.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, Nicolas Marchand, Florian Couvidat, Karine Sellegri, and Matthias Beekmann
Atmos. Chem. Phys., 17, 12509–12531, https://doi.org/10.5194/acp-17-12509-2017, https://doi.org/10.5194/acp-17-12509-2017, 2017
Kevin Berland, Clémence Rose, Jorge Pey, Anais Culot, Evelyn Freney, Nikolaos Kalivitis, Giorgios Kouvarakis, José Carlos Cerro, Marc Mallet, Karine Sartelet, Matthias Beckmann, Thierry Bourriane, Greg Roberts, Nicolas Marchand, Nikolaos Mihalopoulos, and Karine Sellegri
Atmos. Chem. Phys., 17, 9567–9583, https://doi.org/10.5194/acp-17-9567-2017, https://doi.org/10.5194/acp-17-9567-2017, 2017
Short summary
Short summary
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive the total number concentration of particles in the atmosphere. Here we use measurements performed simultaneously in Corsica, Crete and Mallorca to show that the spatial extent of the NPF events are several hundreds of kilometers large. Airborne measurements additionally show that nanoparticles in the marine atmosphere can either be of marine origin or from higher altitudes above the continent.
Amélie Saunier, Elena Ormeño, Christophe Boissard, Henri Wortham, Brice Temime-Roussel, Caroline Lecareux, Alexandre Armengaud, and Catherine Fernandez
Atmos. Chem. Phys., 17, 7555–7566, https://doi.org/10.5194/acp-17-7555-2017, https://doi.org/10.5194/acp-17-7555-2017, 2017
Short summary
Short summary
We investigated the BVOC emissions variations of Quercus Pubescens, under natural and amplified drought, in situ, in order to determine the dependency to light and/or temperature of these emissions. Our results showed that all BVOC emissions were reduced with amplified drought.
Moreover, we highlighted two dependences: (i) light and temperature and (ii) light and temperature during the day and to temperature during the night. These results can be useful to enhance emission models.
Christos Kaltsonoudis, Evangelia Kostenidou, Evangelos Louvaris, Magda Psichoudaki, Epameinondas Tsiligiannis, Kalliopi Florou, Aikaterini Liangou, and Spyros N. Pandis
Atmos. Chem. Phys., 17, 7143–7155, https://doi.org/10.5194/acp-17-7143-2017, https://doi.org/10.5194/acp-17-7143-2017, 2017
Short summary
Short summary
Cooking emissions can be a significant source of particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. More than 99% of the aerosol emitted was composed of organic compounds. The fresh particles were similar to the cooking organic aerosol over Greek cities during the winter, while the reacted particles were similar to those found in the atmosphere during the summer.
Jovanna Arndt, Jean Sciare, Marc Mallet, Greg C. Roberts, Nicolas Marchand, Karine Sartelet, Karine Sellegri, François Dulac, Robert M. Healy, and John C. Wenger
Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, https://doi.org/10.5194/acp-17-6975-2017, 2017
Short summary
Short summary
The chemical composition of individual PM2.5 particles was measured at a background site on Corsica in the Mediterranean to determine the contribution of different sources to background aerosol in the region. Most of the particles were from fossil fuel combustion and biomass burning, transported to the site from France, Italy and eastern Europe, and also accumulated other species en route. This work shows that largest impact on air quality in the Mediterranean is from anthropogenic emissions.
Emily A. Bruns, Jay G. Slowik, Imad El Haddad, Dogushan Kilic, Felix Klein, Josef Dommen, Brice Temime-Roussel, Nicolas Marchand, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 705–720, https://doi.org/10.5194/acp-17-705-2017, https://doi.org/10.5194/acp-17-705-2017, 2017
Short summary
Short summary
We characterize primary and aged gaseous emissions from residential wood combustion using proton transfer reaction time-of-flight mass spectrometry. This approach allows for improved characterization, particularly of oxygenated gases, which are a considerable fraction of the total gaseous mass emitted during residential wood combustion. This study is the first thorough characterization of organic gases from this source and provides a benchmark for future studies.
Christos Kaltsonoudis, Evangelia Kostenidou, Kalliopi Florou, Magda Psichoudaki, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 14825–14842, https://doi.org/10.5194/acp-16-14825-2016, https://doi.org/10.5194/acp-16-14825-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) were monitored in urban backgrounds sites, in Athens and Patras in Greece. In summer most of the measured VOCs were due to biogenic and traffic emissions. Winter measurements in Athens revealed that biomass burning used for residential heating was the dominant VOC source. The biomass burning VOC emission ratios and emission factors were estimated.
Rachel Gemayel, Stig Hellebust, Brice Temime-Roussel, Nathalie Hayeck, Johannes T. Van Elteren, Henri Wortham, and Sasho Gligorovski
Atmos. Meas. Tech., 9, 1947–1959, https://doi.org/10.5194/amt-9-1947-2016, https://doi.org/10.5194/amt-9-1947-2016, 2016
Short summary
Short summary
LAAP-ToF-MS has been optimized for particle size and number concentration evolution and characterization of the chemical composition of ambient particles by following specific ions.
The advantage of this instrument is that it can analyze the ambient particles online and continuously. It is capable of analyzing inorganic material in ambient particles; in particular the presence of metals can be analyzed. Last but not least, it is a compact and easily transportable tool for field measurements.
Andrea Paciga, Eleni Karnezi, Evangelia Kostenidou, Lea Hildebrandt, Magda Psichoudaki, Gabriella J. Engelhart, Byong-Hyoek Lee, Monica Crippa, André S. H. Prévôt, Urs Baltensperger, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 2013–2023, https://doi.org/10.5194/acp-16-2013-2016, https://doi.org/10.5194/acp-16-2013-2016, 2016
Short summary
Short summary
We estimate the volatility distribution for the organic aerosol (OA) components during summer and winter field campaigns in Paris, France as part of the collaborative project MEGAPOLI. The OA factors (hydrocarbon like OA, cooking OA, marine OA, oxygenated OA) had a broad spectrum of volatilities with no direct link between the average volatility and average oxygen to carbon of the OA components.
L. Brégonzio-Rozier, C. Giorio, F. Siekmann, E. Pangui, S. B. Morales, B. Temime-Roussel, A. Gratien, V. Michoud, M. Cazaunau, H. L. DeWitt, A. Tapparo, A. Monod, and J.-F. Doussin
Atmos. Chem. Phys., 16, 1747–1760, https://doi.org/10.5194/acp-16-1747-2016, https://doi.org/10.5194/acp-16-1747-2016, 2016
Short summary
Short summary
The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene/ NOx/light system in an atmospheric simulation chamber. aqSOA formation can be linked to water soluble volatile organic compounds' dissolution in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.
E. Kostenidou, K. Florou, C. Kaltsonoudis, M. Tsiflikiotou, S. Vratolis, K. Eleftheriadis, and S. N. Pandis
Atmos. Chem. Phys., 15, 11355–11371, https://doi.org/10.5194/acp-15-11355-2015, https://doi.org/10.5194/acp-15-11355-2015, 2015
Short summary
Short summary
The concentration and chemical composition of fine particulate matter were measured during the summer of 2012 in two Greek cities, Patras and Athens. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources. Analysis of the Aerosol Mass Spectrometer data suggested that the contribution of the primary sources to organic aerosol was important (22% in Patras and 35% in Athens) but not dominant.
M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis
Atmos. Chem. Phys., 15, 10219–10237, https://doi.org/10.5194/acp-15-10219-2015, https://doi.org/10.5194/acp-15-10219-2015, 2015
Short summary
Short summary
Aerosol size distribution measurements from three ground sites, two mobile laboratories, and one airplane are combined to investigate the spatial and temporal variability of ultrafine particles in and around Paris during the summer and winter MEGAPOLI campaigns. The role of nucleation as a particle source and the influence of Paris emissions on their surroundings are examined.
C. Di Biagio, L. Doppler, C. Gaimoz, N. Grand, G. Ancellet, J.-C. Raut, M. Beekmann, A. Borbon, K. Sartelet, J.-L. Attié, F. Ravetta, and P. Formenti
Atmos. Chem. Phys., 15, 9611–9630, https://doi.org/10.5194/acp-15-9611-2015, https://doi.org/10.5194/acp-15-9611-2015, 2015
Short summary
Short summary
Observations from this study indicate that continental pollution largely affects the atmospheric composition and structure of the western Mediterranean basin. Pollution plumes reach 3000-4000 m in altitude and present a very complex and highly stratified structure, characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Also we report the observations of high levels of ultrafine particles over the basin, possibly linked to new particle formation events.
S. Zhu, K. N. Sartelet, and C. Seigneur
Geosci. Model Dev., 8, 1595–1612, https://doi.org/10.5194/gmd-8-1595-2015, https://doi.org/10.5194/gmd-8-1595-2015, 2015
Short summary
Short summary
This article presents the Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. Then, the importance of representing the mixing state when modelling atmospheric aerosol concentrations is investigated in a box model simulation using data representative of air pollution in Greater Paris.
H. L. DeWitt, S. Hellebust, B. Temime-Roussel, S. Ravier, L. Polo, V. Jacob, C. Buisson, A. Charron, M. André, A. Pasquier, J. L. Besombes, J. L. Jaffrezo, H. Wortham, and N. Marchand
Atmos. Chem. Phys., 15, 4373–4387, https://doi.org/10.5194/acp-15-4373-2015, https://doi.org/10.5194/acp-15-4373-2015, 2015
Short summary
Short summary
By performing source-apportionment modeling, the amount of primary and secondary organic emissions was resolved from a bulk aerosol data set measured adjacent to a major highway in France. Over 70% of vehicles on this highway were diesel, and a high concentration of BC and NOx were measured. Even close to a major highway, the bulk of the aerosol mass was secondary in nature. Radiocarbon data revealed that most of the fossil organic carbon was from primary vehicular emissions and not from SOA.
F. Couvidat and K. Sartelet
Geosci. Model Dev., 8, 1111–1138, https://doi.org/10.5194/gmd-8-1111-2015, https://doi.org/10.5194/gmd-8-1111-2015, 2015
C. Denjean, P. Formenti, B. Picquet-Varrault, E. Pangui, P. Zapf, Y. Katrib, C. Giorio, A. Tapparo, A. Monod, B. Temime-Roussel, P. Decorse, C. Mangeney, and J. F. Doussin
Atmos. Chem. Phys., 15, 3339–3358, https://doi.org/10.5194/acp-15-3339-2015, https://doi.org/10.5194/acp-15-3339-2015, 2015
L. Brégonzio-Rozier, F. Siekmann, C. Giorio, E. Pangui, S. B. Morales, B. Temime-Roussel, A. Gratien, V. Michoud, S. Ravier, M. Cazaunau, A. Tapparo, A. Monod, and J.-F. Doussin
Atmos. Chem. Phys., 15, 2953–2968, https://doi.org/10.5194/acp-15-2953-2015, https://doi.org/10.5194/acp-15-2953-2015, 2015
Short summary
Short summary
First- and higher order -generation products formed from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber. Differences in light source are proposed to partially explain the discrepancies observed between different studies in the literature for both isoprene- and methacrolein-SOA mass yields. According to our results, these SOA yields in the atmosphere could be lower than suggested by most of the current chamber studies.
C. Denjean, P. Formenti, B. Picquet-Varrault, M. Camredon, E. Pangui, P. Zapf, Y. Katrib, C. Giorio, A. Tapparo, B. Temime-Roussel, A. Monod, B. Aumont, and J. F. Doussin
Atmos. Chem. Phys., 15, 883–897, https://doi.org/10.5194/acp-15-883-2015, https://doi.org/10.5194/acp-15-883-2015, 2015
P. Renard, F. Siekmann, G. Salque, C. Demelas, B. Coulomb, L. Vassalo, S. Ravier, B. Temime-Roussel, D. Voisin, and A. Monod
Atmos. Chem. Phys., 15, 21–35, https://doi.org/10.5194/acp-15-21-2015, https://doi.org/10.5194/acp-15-21-2015, 2015
Y. Wang, K. N. Sartelet, M. Bocquet, P. Chazette, M. Sicard, G. D'Amico, J. F. Léon, L. Alados-Arboledas, A. Amodeo, P. Augustin, J. Bach, L. Belegante, I. Binietoglou, X. Bush, A. Comerón, H. Delbarre, D. García-Vízcaino, J. L. Guerrero-Rascado, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, F. Molero, N. Montoux, A. Muñoz, C. Muñoz, D. Nicolae, A. Papayannis, G. Pappalardo, J. Preissler, V. Rizi, F. Rocadenbosch, K. Sellegri, F. Wagner, and F. Dulac
Atmos. Chem. Phys., 14, 12031–12053, https://doi.org/10.5194/acp-14-12031-2014, https://doi.org/10.5194/acp-14-12031-2014, 2014
A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A. S. H. Prévôt, A. Nenes, S. N. Pandis, and N. Mihalopoulos
Atmos. Chem. Phys., 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014, https://doi.org/10.5194/acp-14-4793-2014, 2014
Y. Wang, K. N. Sartelet, M. Bocquet, and P. Chazette
Atmos. Chem. Phys., 14, 3511–3532, https://doi.org/10.5194/acp-14-3511-2014, https://doi.org/10.5194/acp-14-3511-2014, 2014
E. Kostenidou, C. Kaltsonoudis, M. Tsiflikiotou, E. Louvaris, L. M. Russell, and S. N. Pandis
Atmos. Chem. Phys., 13, 8797–8811, https://doi.org/10.5194/acp-13-8797-2013, https://doi.org/10.5194/acp-13-8797-2013, 2013
Y. Zhang, K. Sartelet, S.-Y. Wu, and C. Seigneur
Atmos. Chem. Phys., 13, 6807–6843, https://doi.org/10.5194/acp-13-6807-2013, https://doi.org/10.5194/acp-13-6807-2013, 2013
Y. Zhang, K. Sartelet, S. Zhu, W. Wang, S.-Y. Wu, X. Zhang, K. Wang, P. Tran, C. Seigneur, and Z.-F. Wang
Atmos. Chem. Phys., 13, 6845–6875, https://doi.org/10.5194/acp-13-6845-2013, https://doi.org/10.5194/acp-13-6845-2013, 2013
A. Waked, C. Seigneur, F. Couvidat, Y. Kim, K. Sartelet, C. Afif, A. Borbon, P. Formenti, and S. Sauvage
Atmos. Chem. Phys., 13, 5873–5886, https://doi.org/10.5194/acp-13-5873-2013, https://doi.org/10.5194/acp-13-5873-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
F. Couvidat, Y. Kim, K. Sartelet, C. Seigneur, N. Marchand, and J. Sciare
Atmos. Chem. Phys., 13, 983–996, https://doi.org/10.5194/acp-13-983-2013, https://doi.org/10.5194/acp-13-983-2013, 2013
Y. Wang, K. N. Sartelet, M. Bocquet, and P. Chazette
Atmos. Chem. Phys., 13, 269–283, https://doi.org/10.5194/acp-13-269-2013, https://doi.org/10.5194/acp-13-269-2013, 2013
Related subject area
Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Estimating errors in vehicle secondary aerosol production factors due to oxidation flow reactor response time
Quantifying functional group compositions of household fuel-burning emissions
A new software toolkit for optical apportionment of carbonaceous aerosol
Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models
An extraction method for nitrogen isotope measurement of ammonium in a low-concentration environment
Estimation of secondary organic aerosol formation parameters for the volatility basis set combining thermodenuder, isothermal dilution, and yield measurements
Characterization of offline analysis of particulate matter with FIGAERO-CIMS
Mass spectrometry-based Aerosolomics: a new approach to resolve sources, composition, and partitioning of secondary organic aerosol
A universally applicable method of calculating confidence bands for ice nucleation spectra derived from droplet freezing experiments
Thermal–optical analysis of quartz fiber filters loaded with snow samples – determination of iron based on interferences caused by mineral dust
Modelling ultrafine particle growth in a flow tube reactor
Substantial organic impurities at the surface of synthetic ammonium sulfate particles
Contrasting mineral dust abundances from X-ray diffraction and reflectance spectroscopy
Fragment ion–functional group relationships in organic aerosols using aerosol mass spectrometry and mid-infrared spectroscopy
Quantification of isomer-resolved iodide chemical ionization mass spectrometry sensitivity and uncertainty using a voltage-scanning approach
Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors – a comparative study
High-resolution optical constants of crystalline ammonium nitrate for infrared remote sensing of the Asian Tropopause Aerosol Layer
Assessing the accuracy of low-cost optical particle sensors using a physics-based approach
Comparison of dimension reduction techniques in the analysis of mass spectrometry data
Development of a new correction algorithm applicable to any filter-based absorption photometer
Chemical discrimination of the particulate and gas phases of miniCAST exhausts using a two-filter collection method
External and internal cloud condensation nuclei (CCN) mixtures: controlled laboratory studies of varying mixing states
Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning
Method to measure the size-resolved real part of aerosol refractive index using differential mobility analyzer in tandem with single-particle soot photometer
Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic ∕ inorganic particles
Revisiting the differential freezing nucleus spectra derived from drop-freezing experiments: methods of calculation, applications, and confidence limits
Particle wall-loss correction methods in smog chamber experiments
Improved real-time bio-aerosol classification using artificial neural networks
Machine learning for improved data analysis of biological aerosol using the WIBS
A machine learning approach to aerosol classification for single-particle mass spectrometry
Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques
Using depolarization to quantify ice nucleating particle concentrations: a new method
Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry
Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer
Size distribution of particle-associated polybrominated diphenyl ethers (PBDEs) and their implications for health
Predicting ambient aerosol thermal–optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites
Electrodynamic balance measurements of thermodynamic, kinetic, and optical aerosol properties inaccessible to bulk methods
Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer
An experiment to measure raindrop collection efficiencies: influence of rear capture
Quantitative single-particle analysis with the Aerodyne aerosol mass spectrometer: development of a new classification algorithm and its application to field data
A modeling approach to evaluate the uncertainty in estimating the evaporation behaviour and volatility of organic aerosols
A model of aerosol evaporation kinetics in a thermodenuder
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
Atmos. Meas. Tech., 17, 3219–3236, https://doi.org/10.5194/amt-17-3219-2024, https://doi.org/10.5194/amt-17-3219-2024, 2024
Short summary
Short summary
Secondary aerosol is formed in the atmosphere from gaseous emissions. Oxidation flow reactors used in secondary aerosol research do not immediately respond to changes in the inlet concentration of gases because of their broad transfer functions. This may result in incorrect secondary aerosol production factors determined for vehicles. We studied the extent of possible errors and found that oxidation flow reactors with faster responses result in smaller errors.
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024, https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
Short summary
Infrared spectroscopy is a cost-effective measurement technique to characterize the chemical composition of organic aerosol emissions. This technique differentiates the organic matter emission factor from different fuel sources by their characteristic functional groups. Comparison with collocated measurements suggests that polycyclic aromatic hydrocarbon concentrations in emissions estimated by conventional chromatography may be substantially underestimated.
Tommaso Isolabella, Vera Bernardoni, Alessandro Bigi, Marco Brunoldi, Federico Mazzei, Franco Parodi, Paolo Prati, Virginia Vernocchi, and Dario Massabò
Atmos. Meas. Tech., 17, 1363–1373, https://doi.org/10.5194/amt-17-1363-2024, https://doi.org/10.5194/amt-17-1363-2024, 2024
Short summary
Short summary
We present an innovative software toolkit to differentiate sources of carbonaceous aerosol in the atmosphere. Our toolkit implements an upgraded mathematical model which allows for determination of fundamental optical properties of the aerosol, its sources, and the mass concentration of different carbonaceous species of particulate matter. We have tested the functionality of the software by re-analysing published data, and we obtained a compatible results with additional information.
Radhika A. Chipade and Mehul R. Pandya
Atmos. Meas. Tech., 16, 5443–5459, https://doi.org/10.5194/amt-16-5443-2023, https://doi.org/10.5194/amt-16-5443-2023, 2023
Short summary
Short summary
The extinction-to-backscattering ratio, popularly known as lidar ratio of atmospheric aerosols, is an important optical property, which is essential to retrieve the extinction profiles of atmospheric aerosols. A physics-based theoretical approach is presented in the present paper that estimates lidar ratio values for CALIPSO and OPAC aerosol models, which can be used as inputs to determine the extinction profiles of aerosols using CALIPSO data.
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023, https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary
Short summary
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its emissions and how it reacts is a hot topic that can be addressed from the past. Stable isotopes (the mass of the molecule) measured in ice cores (glacial archives) can teach us a lot. However, the concentrations in ice cores are very small. We propose a protocol to limit the contamination and apply it to one ice core drilled in Mont Blanc, describing the opportunities our method brings.
Petro Uruci, Dontavious Sippial, Anthoula Drosatou, and Spyros N. Pandis
Atmos. Meas. Tech., 16, 3155–3172, https://doi.org/10.5194/amt-16-3155-2023, https://doi.org/10.5194/amt-16-3155-2023, 2023
Short summary
Short summary
In this work we develop an algorithm for the synthesis of the measurements performed in atmospheric simulation chambers regarding the formation of secondary organic aerosol (SOA). Novel features of the algorithm are its ability to use measurements of SOA yields, thermodenuders, and isothermal dilution; its estimation of parameters that can be used directly in atmospheric chemical transport models; and finally its estimates of the uncertainty in SOA formation yields.
Jing Cai, Kaspar R. Daellenbach, Cheng Wu, Yan Zheng, Feixue Zheng, Wei Du, Sophie L. Haslett, Qi Chen, Markku Kulmala, and Claudia Mohr
Atmos. Meas. Tech., 16, 1147–1165, https://doi.org/10.5194/amt-16-1147-2023, https://doi.org/10.5194/amt-16-1147-2023, 2023
Short summary
Short summary
We introduce the offline application of FIGAERO-CIMS by analyzing Teflon and quartz filter samples that were collected at a typical urban site in Beijing with the deposition time varying from 30 min to 24 h. This method provides a feasible, simple, and quantitative way to investigate the molecular composition and volatility of OA compounds by using FIGAERO-CIMS to analyze offline samples.
Markus Thoma, Franziska Bachmeier, Felix Leonard Gottwald, Mario Simon, and Alexander Lucas Vogel
Atmos. Meas. Tech., 15, 7137–7154, https://doi.org/10.5194/amt-15-7137-2022, https://doi.org/10.5194/amt-15-7137-2022, 2022
Short summary
Short summary
We introduce the aerosolomics database and apply it to particulate matter samples. Nine VOCs were oxidized under various conditions in an oxidation flow reactor, and the formed SOA was measured using liquid chromatography mass spectrometry. With the database, an unambiguous top-down attribution of atmospheric oxidation products to their parent VOCs is now possible. Combining the database with hierarchical clustering enables a better understanding of sources, formation, and partitioning of SOA.
William D. Fahy, Cosma Rohilla Shalizi, and Ryan Christopher Sullivan
Atmos. Meas. Tech., 15, 6819–6836, https://doi.org/10.5194/amt-15-6819-2022, https://doi.org/10.5194/amt-15-6819-2022, 2022
Short summary
Short summary
Heterogeneous ice nucleation (IN) alters cloud microphysics and climate, and droplet freezing assays are widely used to determine a material's IN ability. Existing statistical procedures require restrictive assumptions that may bias reported results, and there is no rigorous way to compare IN spectra. To improve the accuracy of reported IN data, we present a method for calculating statistics and confidence bands and testing statistical differences between IN activities in different materials.
Daniela Kau, Marion Greilinger, Bernadette Kirchsteiger, Aron Göndör, Christopher Herzig, Andreas Limbeck, Elisabeth Eitenberger, and Anne Kasper-Giebl
Atmos. Meas. Tech., 15, 5207–5217, https://doi.org/10.5194/amt-15-5207-2022, https://doi.org/10.5194/amt-15-5207-2022, 2022
Short summary
Short summary
The use of thermal–optical analysis for the determination of elemental carbon (EC) and organic carbon (OC) can be biased by mineral dust (MD). We present a method that utilizes this interference to quantify iron contained in MD in snow samples. Possibilities and limitations of applying this method to particulate matter samples are presented. The influence of light-absorbing iron compounds in MD on the transmittance signal can be used to identify samples experiencing a bias of the OC / EC split.
Michael S. Taylor Jr., Devon N. Higgins, and Murray V. Johnston
Atmos. Meas. Tech., 15, 4663–4674, https://doi.org/10.5194/amt-15-4663-2022, https://doi.org/10.5194/amt-15-4663-2022, 2022
Short summary
Short summary
This modelling study investigates the complex growth kinetics of ultrafine particles in a flow tube reactor. When both surface- and volume-limited growth processes occur, the particle diameter growth rate changes as a function of time in the flow tube. We show that this growth can be represented by a parameter (growth factor, GF) which can be obtained experimentally from the outlet-minus-inlet particle diameter change without foreknowledge of the chemical growth processes involved.
Junteng Wu, Nicolas Brun, Juan Miguel González-Sánchez, Badr R'Mili, Brice Temime Roussel, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Meas. Tech., 15, 3859–3874, https://doi.org/10.5194/amt-15-3859-2022, https://doi.org/10.5194/amt-15-3859-2022, 2022
Short summary
Short summary
This work quantified and tentatively identified the organic impurities on ammonium sulfate aerosols generated in the laboratory. They are likely low volatile and high mass molecules containing oxygen, nitrogen, and/or sulfur. Our results show that these organic impurities likely originate from the commercial AS crystals. It is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
Mohammad R. Sadrian, Wendy M. Calvin, and John McCormack
Atmos. Meas. Tech., 15, 3053–3074, https://doi.org/10.5194/amt-15-3053-2022, https://doi.org/10.5194/amt-15-3053-2022, 2022
Short summary
Short summary
Mineral dust particles originate from surface soils, primarily in arid regions. They can stay suspended in the atmosphere, impacting Earth's radiation budget. Dust particles will have different perturbation effects depending on their composition. We obtained compositional information on dust collected in an urban setting using two different techniques. We recommended using the combination of measurements to determine the variability in dust mineral abundances.
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2857–2874, https://doi.org/10.5194/amt-15-2857-2022, https://doi.org/10.5194/amt-15-2857-2022, 2022
Short summary
Short summary
While the aerosol mass spectrometer provides high-time-resolution characterization of the overall extent of oxidation, the extensive fragmentation of molecules and specificity of the technique have posed challenges toward deeper understanding of molecular structures in aerosols. This work demonstrates how functional group information can be extracted from a suite of commonly measured mass fragments using collocated infrared spectroscopy measurements.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6835–6850, https://doi.org/10.5194/amt-14-6835-2021, https://doi.org/10.5194/amt-14-6835-2021, 2021
Short summary
Short summary
Iodide-adduct chemical ionization mass spectrometry (I-CIMS) has been widely used to analyze airborne organics. In this study, I-CIMS sensitivities of isomers within a formula are found to generally vary by 1 and up to 2 orders of magnitude. Comparisons between measured and predicted moles, obtained using a voltage-scanning calibration approach, show that predictions for individual compounds or formulas might carry high uncertainty, yet the summed moles of analytes agree reasonably well.
Dimitrios Bousiotis, Ajit Singh, Molly Haugen, David C. S. Beddows, Sebastián Diez, Killian L. Murphy, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 14, 4139–4155, https://doi.org/10.5194/amt-14-4139-2021, https://doi.org/10.5194/amt-14-4139-2021, 2021
Short summary
Short summary
Measurement and source apportionment of atmospheric pollutants are crucial for the assessment of air quality and the implementation of policies for their improvement. This study highlights the current capability of low-cost sensors in source identification and differentiation using clustering approaches. Future directions towards particulate matter source apportionment using low-cost OPCs are highlighted.
Robert Wagner, Baptiste Testa, Michael Höpfner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, Jörn Ungermann, and Thomas Leisner
Atmos. Meas. Tech., 14, 1977–1991, https://doi.org/10.5194/amt-14-1977-2021, https://doi.org/10.5194/amt-14-1977-2021, 2021
Short summary
Short summary
During the Asian summer monsoon period, air pollutants are transported from layers near the ground to high altitudes of 13 to 18 km in the atmosphere. Infrared measurements have shown that particles composed of solid ammonium nitrate are a major part of these pollutants. To enable the quantitative analysis of the infrared spectra, we have determined for the first time accurate optical constants of ammonium nitrate for the low-temperature conditions of the upper atmosphere.
David H. Hagan and Jesse H. Kroll
Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020, https://doi.org/10.5194/amt-13-6343-2020, 2020
Short summary
Short summary
Assessing the error of low-cost particulate matter (PM) sensors has been difficult as each empirical study presents unique limitations. Here, we present a new, open-sourced, physics-based model (opcsim) and use it to understand how the properties of different particle sensors alter their accuracy. We offer a summary of likely sources of error for different sensor types, environmental conditions, and particle classes and offer recommendations for the choice of optimal calibrant.
Sini Isokääntä, Eetu Kari, Angela Buchholz, Liqing Hao, Siegfried Schobesberger, Annele Virtanen, and Santtu Mikkonen
Atmos. Meas. Tech., 13, 2995–3022, https://doi.org/10.5194/amt-13-2995-2020, https://doi.org/10.5194/amt-13-2995-2020, 2020
Short summary
Short summary
Online mass spectrometry produces large amounts of data. These data can be interpreted with statistical methods, enabling scientists to more easily understand the underlying processes. We compared these techniques on car exhaust measurements. We show differences and similarities between the methods and give recommendations on applicability of the methods on certain types of data. We show that applying multiple methods leads to more robust results, thus increasing reliability of the findings.
Hanyang Li, Gavin R. McMeeking, and Andrew A. May
Atmos. Meas. Tech., 13, 2865–2886, https://doi.org/10.5194/amt-13-2865-2020, https://doi.org/10.5194/amt-13-2865-2020, 2020
Short summary
Short summary
We present a new correction algorithm that addresses biases in measurements of aerosol light absorption by filter-based photometers, incorporating the transmission of light through the filter and some aerosol optical properties. It was developed using biomass burning aerosols and tested using rural ambient aerosols. This new algorithm is applicable to any filter-based photometer, resulting in good agreement between different colocated instruments in both the laboratory and the field.
Linh Dan Ngo, Dumitru Duca, Yvain Carpentier, Jennifer A. Noble, Raouf Ikhenazene, Marin Vojkovic, Cornelia Irimiea, Ismael K. Ortega, Guillaume Lefevre, Jérôme Yon, Alessandro Faccinetto, Eric Therssen, Michael Ziskind, Bertrand Chazallon, Claire Pirim, and Cristian Focsa
Atmos. Meas. Tech., 13, 951–967, https://doi.org/10.5194/amt-13-951-2020, https://doi.org/10.5194/amt-13-951-2020, 2020
Short summary
Short summary
The partitioning of noxious chemical compounds between the particulate and gas phases in combustion emissions is key to delineate their exact impacts on atmospheric chemistry and human health. We developed a two-filter sampling system, a multi-technique analytical approach, and advanced statistical methods to fully characterize the composition of both phases in combustion emissions. We could successfully discriminate samples from a standard soot generator by their volatile–non-volatile species.
Diep Vu, Shaokai Gao, Tyler Berte, Mary Kacarab, Qi Yao, Kambiz Vafai, and Akua Asa-Awuku
Atmos. Meas. Tech., 12, 4277–4289, https://doi.org/10.5194/amt-12-4277-2019, https://doi.org/10.5194/amt-12-4277-2019, 2019
Short summary
Short summary
Aerosol–cloud interactions contribute the greatest uncertainty to cloud formation. Aerosol composition is complex and can change quickly in the atmosphere. In this work, we recreate a transition in aerosol mixing state in the laboratory, which (to date) has only been observed in the ambient state. We then report the subsequent changes on cloud condensation nuclei (CCN) activation.
Kara D. Lamb
Atmos. Meas. Tech., 12, 3885–3906, https://doi.org/10.5194/amt-12-3885-2019, https://doi.org/10.5194/amt-12-3885-2019, 2019
Short summary
Short summary
Recent atmospheric observations have indicated emissions of iron-oxide-containing aerosols from anthropogenic sources could be 8x higher than previous estimates, leading models to underestimate their climate impact. Previous studies have shown the single particle soot photometer (SP2) can quantify the atmospheric abundance of these aerosols. Here, I explore a machine learning approach to improve SP2 detection, significantly reducing misclassifications of other aerosols as iron oxide aerosols.
Gang Zhao, Weilun Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3541–3550, https://doi.org/10.5194/amt-12-3541-2019, https://doi.org/10.5194/amt-12-3541-2019, 2019
Short summary
Short summary
A new method is proposed to retrieve the size-resolved real part of the refractive index (RRI). The main principle of deriving the RRI is measuring the scattering intensity by a single-particle soot photometer of a size-selected aerosol. This method is validated by a series of calibration experiments using the components of the known RI. The retrieved size-resolved RRI covers a wide range, from 200 nm to 450 nm, with uncertainty of less than 0.02.
Matthew Fraund, Tim Park, Lin Yao, Daniel Bonanno, Don Q. Pham, and Ryan C. Moffet
Atmos. Meas. Tech., 12, 1619–1633, https://doi.org/10.5194/amt-12-1619-2019, https://doi.org/10.5194/amt-12-1619-2019, 2019
Short summary
Short summary
Scanning transmission X-ray microscopy (STXM) is a powerful tool which is able to determine the elemental and functional composition of aerosols on a subparticle level. The current work validates the use of STXM for quantitatively calculating the organic volume fraction of individual aerosols by applying the calculation to lab-prepared samples. The caveats and limitations for this calculation are shown as well.
Gabor Vali
Atmos. Meas. Tech., 12, 1219–1231, https://doi.org/10.5194/amt-12-1219-2019, https://doi.org/10.5194/amt-12-1219-2019, 2019
Short summary
Short summary
The abundance of freezing nuclei in water samples is routinely determined by experiments involving the cooling of sample drops and observing the temperatures at which the drops freeze. This is used for characterizing the nucleating abilities of materials in laboratory preparations or to determine the numbers of nucleating particles in rain, snow, river water or other natural waters. The evaluation of drop-freezing experiments in terms of differential nucleus spectra is advocated in the paper.
Ningxin Wang, Spiro D. Jorga, Jeffery R. Pierce, Neil M. Donahue, and Spyros N. Pandis
Atmos. Meas. Tech., 11, 6577–6588, https://doi.org/10.5194/amt-11-6577-2018, https://doi.org/10.5194/amt-11-6577-2018, 2018
Short summary
Short summary
The interaction of particles with the chamber walls has been a significant source of uncertainty when analyzing results of secondary organic aerosol formation experiments performed in Teflon chambers. We evaluated the performance of several particle wall-loss correction methods for aging experiments of α-pinene ozonolysis products. Experimental procedures are proposed for the characterization of particle losses during different stages of these experiments.
Maciej Leśkiewicz, Miron Kaliszewski, Maksymilian Włodarski, Jarosław Młyńczak, Zygmunt Mierczyk, and Krzysztof Kopczyński
Atmos. Meas. Tech., 11, 6259–6270, https://doi.org/10.5194/amt-11-6259-2018, https://doi.org/10.5194/amt-11-6259-2018, 2018
Short summary
Short summary
In this study we demonstrate the application of artificial neural networks to the real-time analysis of single-particle fluorescence fingerprints acquired using BARDet (a BioAeRosol Detector). 48 different aerosols including pollens, bacteria, fungi, spores and nonbiological substances were characterized. An entirely new approach to data analysis using a decision tree comprising 22 independent neural networks was discussed. A very high accuracy of aerosol classification in real time resulted.
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 11, 6203–6230, https://doi.org/10.5194/amt-11-6203-2018, https://doi.org/10.5194/amt-11-6203-2018, 2018
Short summary
Short summary
Pollen, bacteria and fungal spores are common in the environment, can have very important implications for public health and may influence the weather. Biological sensors potentially could be used to monitor quantities of these types of particles. However, it is important to transform the measurements from these instruments into counts of these biological particles. The paper tests a variety of approaches for achieving this aim on data collected in a laboratory.
Costa D. Christopoulos, Sarvesh Garimella, Maria A. Zawadowicz, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Meas. Tech., 11, 5687–5699, https://doi.org/10.5194/amt-11-5687-2018, https://doi.org/10.5194/amt-11-5687-2018, 2018
Short summary
Short summary
Compositional analysis of atmospheric and laboratory aerosols is often conducted with mass spectrometry. In this study, machine learning is used to automatically differentiate particles on the basis of chemistry and size. The ability of the machine learning algorithm was then tested on a data set for which the particles were not initially known to judge its ability.
Nicole J. Savage and J. Alex Huffman
Atmos. Meas. Tech., 11, 4929–4942, https://doi.org/10.5194/amt-11-4929-2018, https://doi.org/10.5194/amt-11-4929-2018, 2018
Short summary
Short summary
We show the systematic application of hierarchical agglomerative clustering (HAC) to comprehensive bioaerosol and non-bioaerosol laboratory data collected with the wideband integrated bioaerosol sensor (WIBS-4A). This study investigated various input conditions and used individual matchups and computational mixtures of particles; it will help improve clustering results applied to data from the ultraviolet laser and light-induced fluorescence instruments commonly used for bioaerosol research.
Jake Zenker, Kristen N. Collier, Guanglang Xu, Ping Yang, Ezra J. T. Levin, Kaitlyn J. Suski, Paul J. DeMott, and Sarah D. Brooks
Atmos. Meas. Tech., 10, 4639–4657, https://doi.org/10.5194/amt-10-4639-2017, https://doi.org/10.5194/amt-10-4639-2017, 2017
Short summary
Short summary
We have developed a new method which employs single particle depolarization to determine ice nucleating particle (INP) concentrations and to differentiate between ice crystals, water droplets, and aerosols. The method is used to interpret measurements collected using the Texas A&M Continuous Flow Diffusion Chamber (TAMU CFDC) coupled to a Cloud and Aerosol Spectrometer with Polarization (CASPOL). This new method extends the range of operating conditions for the CFDC to higher supersaturations.
Matthew Osman, Maria A. Zawadowicz, Sarah B. Das, and Daniel J. Cziczo
Atmos. Meas. Tech., 10, 4459–4477, https://doi.org/10.5194/amt-10-4459-2017, https://doi.org/10.5194/amt-10-4459-2017, 2017
Short summary
Short summary
This study presents the first-time attempt at using time-of-flight single particle mass spectrometry (SPMS) as an emerging online technique for measuring insoluble particles in glacial snow and ice. Using samples from two Greenlandic ice cores, we show that SPMS can constrain the aerodynamic size, composition, and relative abundance of most particulate types on a per-particle basis, reducing the preparation time and resources required of conventional, filter-based particle retrieval methods.
Simon Ruske, David O. Topping, Virginia E. Foot, Paul H. Kaye, Warren R. Stanley, Ian Crawford, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 10, 695–708, https://doi.org/10.5194/amt-10-695-2017, https://doi.org/10.5194/amt-10-695-2017, 2017
Short summary
Short summary
Particles such as bacteria, pollen and fungal spores have important implications within the environment and public health sectors. Here we evaluate the performance of various different methods for distinguishing between these different types of particles using a new instrument. We demonstrate that there may be better alternatives to the currently used methods which can be further investigated in future research.
Yan Lyu, Tingting Xu, Xiang Li, Tiantao Cheng, Xin Yang, Xiaomin Sun, and Jianmin Chen
Atmos. Meas. Tech., 9, 1025–1037, https://doi.org/10.5194/amt-9-1025-2016, https://doi.org/10.5194/amt-9-1025-2016, 2016
Short summary
Short summary
This study presents the particle size distribution of PBDEs in the atmosphere of a megacity and evaluates the contribution of size-fractionated PBDEs' deposition in the human respiratory tract.
Matteo Reggente, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 9, 441–454, https://doi.org/10.5194/amt-9-441-2016, https://doi.org/10.5194/amt-9-441-2016, 2016
Short summary
Short summary
Organic carbon and elemental carbon are major components of atmospheric PM. Typically they are measured using destructive and relatively expensive methods (e.g., TOR). We aim to reduce the operating costs of large air quality monitoring networks using FT-IR spectra of ambient PTFE filters and PLS regression. We achieve accurate predictions for models (calibrated in 2011) that use samples collected at the same or different sites of the calibration data set and in a different year (2013).
S. S. Steimer, U. K. Krieger, Y.-F. Te, D. M. Lienhard, A. J. Huisman, B. P. Luo, M. Ammann, and T. Peter
Atmos. Meas. Tech., 8, 2397–2408, https://doi.org/10.5194/amt-8-2397-2015, https://doi.org/10.5194/amt-8-2397-2015, 2015
Short summary
Short summary
Atmospheric aerosol is often subject to supersaturated or supercooled conditions where bulk measurements are not possible. Here we demonstrate how measurements using single particle electrodynamic levitation combined with light scattering spectroscopy allow the retrieval of thermodynamic data, optical properties and water diffusivity of such metastable particles even when auxiliary bulk data are not available due to lack of sufficient amounts of sample.
N. Utry, T. Ajtai, M. Pintér, E. Tombácz, E. Illés, Z. Bozóki, and G. Szabó
Atmos. Meas. Tech., 8, 401–410, https://doi.org/10.5194/amt-8-401-2015, https://doi.org/10.5194/amt-8-401-2015, 2015
A. Quérel, P. Lemaitre, M. Monier, E. Porcheron, A. I. Flossmann, and M. Hervo
Atmos. Meas. Tech., 7, 1321–1330, https://doi.org/10.5194/amt-7-1321-2014, https://doi.org/10.5194/amt-7-1321-2014, 2014
F. Freutel, F. Drewnick, J. Schneider, T. Klimach, and S. Borrmann
Atmos. Meas. Tech., 6, 3131–3145, https://doi.org/10.5194/amt-6-3131-2013, https://doi.org/10.5194/amt-6-3131-2013, 2013
E. Fuentes and G. McFiggans
Atmos. Meas. Tech., 5, 735–757, https://doi.org/10.5194/amt-5-735-2012, https://doi.org/10.5194/amt-5-735-2012, 2012
C. D. Cappa
Atmos. Meas. Tech., 3, 579–592, https://doi.org/10.5194/amt-3-579-2010, https://doi.org/10.5194/amt-3-579-2010, 2010
Cited articles
André, M.: The ARTEMIS European driving cycles for measuring car
pollutant emissions, Sci. Total Environ., 334–335, 73–84,
https://doi.org/10.1016/j.scitotenv.2004.04.070, 2004.
André, M., Roche, A.-L., and Bourcier, L.: Statistiques de parcs et
trafic pour le calcul des émissions de polluants des transports routiers
en France, IFSTTAR, Marne-la-Vallée, France, 2014.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Babar, Z. B., Park, J.-H., Kang, J., and Lim, H.-J.: Characterization of a
Smog Chamber for Studying Formation and Physicochemical Properties of
Secondary Organic Aerosol, Aerosol Air Qual. Res., 16, 3102–3113,
https://doi.org/10.4209/aaqr.2015.10.0580, 2017.
Barone, T. L., Lall, A. A., Storey, J. M. E., Mulholland, G. W., Prikhodko,
V. Y., Frankland, J. H., Parks, J. E., and Zachariah, M. R.: Size-Resolved
Density Measurements of Particle Emissions from an Advanced Combustion
Diesel Engine: Effect of Aggregate Morphology, Energ. Fuel., 25, 1978–1988,
https://doi.org/10.1021/ef200084k, 2011.
Charan, S. M., Kong, W., Flagan, R. C., and Seinfeld, J. H.: Effect of
particle charge on aerosol dynamics in Teflon environmental chambers, Aerosol Sci. Tech., 52, 854–871, https://doi.org/10.1080/02786826.2018.1474167, 2018.
Charan, S. M., Buenconsejo, R. S., and Seinfeld, J. H.: Secondary organic aerosol yields from the oxidation of benzyl alcohol, Atmos. Chem. Phys., 20, 13167–13190, https://doi.org/10.5194/acp-20-13167-2020, 2020.
Chen, T., Liu, Y., Chu, B., Liu, C., Liu, J., Ge, Y., Ma, Q., Ma, J., and
He, H.: Differences of the oxidation process and secondary organic aerosol
formation at low and high precursor concentrations, J. Environ.
Sci., 79, 256–263, https://doi.org/10.1016/j.jes.2018.11.011, 2019.
Chu, B., Liu, Y., Ma, Q., Ma, J., He, H., Wang, G., Cheng, S., and Wang, X.:
Distinct potential aerosol masses under different scenarios of transport at
a suburban site of Beijing, J. Environ. Sci., 39, 52–61,
https://doi.org/10.1016/j.jes.2015.11.003, 2016.
Corner, J. and Pendlebury, E. D.: The Coagulation and Deposition of a
Stirred Aerosol, P. Phys. Soc. Lond. B, 64, 645–654, https://doi.org/10.1088/0370-1301/64/8/304,
1951.
Crump, J. G. and Seinfeld, J. H.: Turbulent deposition and gravitational
sedimentation of an aerosol in a vessel of arbitrary shape, J. Aerosol Sci., 12, 405–415,
https://doi.org/10.1016/0021-8502(81)90036-7, 1981.
Crump, J. G., Flagan, R. C., and Seinfeld, J. H.: Particle Wall Loss Rates
in Vessels, Aerosol Sci. Tech., 2, 303–309, https://doi.org/10.1080/02786828308958636, 1982.
Drozd, G. T., Zhao, Y., Saliba, G., Frodin, B., Maddox, C., Oliver Chang,
M.-C., Maldonado, H., Sardar, S., Weber, R. J., Robinson, A. L., and
Goldstein, A. H.: Detailed Speciation of Intermediate Volatility and
Semivolatile Organic Compound Emissions from Gasoline Vehicles: Effects of
Cold-Starts and Implications for Secondary Organic Aerosol Formation,
Environ. Sci. Technol., 53, 1706–1714,
https://doi.org/10.1021/acs.est.8b05600, 2019.
European Environment Agency: Average age of road vehicles per country, available at:
https://www.eea.europa.eu/data-and-maps/daviz/average-age-of-road-vehicles-6#tab-chart_1, last access: 6 November 2020.
Giechaskiel, B., Ntziachristos, L., Samaras, Z., Scheer, V., Casati, R., and
Vogt, R.: Formation potential of vehicle exhaust nucleation mode particles
on-road and in the laboratory, Atmos. Environ., 39, 3191–3198,
https://doi.org/10.1016/j.atmosenv.2005.02.019, 2005.
Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, Atmos. Chem. Phys., 9, 1263–1277, https://doi.org/10.5194/acp-9-1263-2009, 2009.
Guo, S., Hu, M., Peng, J., Wu, Z., Zamora, M. L., Shang, D., Du, Z., Zheng,
J., Fang, X., Tang, R., Wu, Y., Zeng, L., Shuai, S., Zhang, W., Wang, Y.,
Ji, Y., Li, Y., Zhang, A. L., Wang, W., Zhang, F., Zhao, J., Gong, X., Wang,
C., Molina, M. J., and Zhang, R.: Remarkable nucleation and growth of
ultrafine particles from vehicular exhaust, P. Natl. Acad. Sci. USA, 117,
3427–3432, https://doi.org/10.1073/pnas.1916366117, 2020.
Harrison, R. M., Rob MacKenzie, A., Xu, H., Alam, M. S., Nikolova, I.,
Zhong, J., Singh, A., Zeraati-Rezaei, S., Stark, C., Beddows, D. C. S.,
Liang, Z., Xu, R., and Cai, X.: Diesel exhaust nanoparticles and their
behaviour in the atmosphere, Proc. R. Soc. A, 474, 20180492,
https://doi.org/10.1098/rspa.2018.0492, 2018.
Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W.-M., Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., Collett Jr., J. L., Kreidenweis, S. M., and Robinson, A. L.: Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber, Atmos. Chem. Phys., 11, 7669–7686, https://doi.org/10.5194/acp-11-7669-2011, 2011.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and
Prévôt, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
IARC: Outdoor aur pollution, IARC, Lyon, France, 2016.
Imhof, D., Weingartner, E., Prévôt, A. S. H., Ordóñez, C., Kurtenbach, R., Wiesen, P., Rodler, J., Sturm, P., McCrae, I., Ekström, M., and Baltensperger, U.: Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes, Atmos. Chem. Phys., 6, 2215–2230, https://doi.org/10.5194/acp-6-2215-2006, 2006.
Jeong, C.-H., Evans, G. J., Healy, R. M., Jadidian, P., Wentzell, J.,
Liggio, J., and Brook, J. R.: Rapid physical and chemical transformation of
traffic-related atmospheric particles near a highway, Atmos. Pollut.
Res., 6, 662–672, https://doi.org/10.5094/APR.2015.075, 2015.
Kaltsonoudis, C., Jorga, S. D., Louvaris, E., Florou, K., and Pandis, S. N.: A portable dual-smog-chamber system for atmospheric aerosol field studies, Atmos. Meas. Tech., 12, 2733–2743, https://doi.org/10.5194/amt-12-2733-2019, 2019.
Kostenidou, E., Martinez-Valiente, A., R'Mili, B., Marques, B., Temime-Roussel, B., Durand, A., André, M., Liu, Y., Louis, C., Vansevenant, B., Ferry, D., Laffon, C., Parent, P., and D'Anna, B.: Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles, Atmos. Chem. Phys., 21, 4779–4796, https://doi.org/10.5194/acp-21-4779-2021, 2021.
Kozawa, K. H., Winer, A. M., and Fruin, S. A.: Ultrafine particle size
distributions near freeways: Effects of differing wind directions on
exposure, Atmos. Environ., 63, 250–260, https://doi.org/10.1016/j.atmosenv.2012.09.045,
2012.
La, Y. S., Camredon, M., Ziemann, P. J., Valorso, R., Matsunaga, A., Lannuque, V., Lee-Taylor, J., Hodzic, A., Madronich, S., and Aumont, B.: Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation, Atmos. Chem. Phys., 16, 1417–1431, https://doi.org/10.5194/acp-16-1417-2016, 2016.
Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P., Ahern, A. T., Williams, L. R., Worsnop, D. R., Brune, W. H., and Davidovits, P.: Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA), Atmos. Chem. Phys., 11, 8913–8928, https://doi.org/10.5194/acp-11-8913-2011, 2011.
Leskinen, A., Yli-Pirilä, P., Kuuspalo, K., Sippula, O., Jalava, P., Hirvonen, M.-R., Jokiniemi, J., Virtanen, A., Komppula, M., and Lehtinen, K. E. J.: Characterization and testing of a new environmental chamber, Atmos. Meas. Tech., 8, 2267–2278, https://doi.org/10.5194/amt-8-2267-2015, 2015.
Louis, C., Liu, Y., Tassel, P., Perret, P., Chaumond, A., and André, M.:
PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle
dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline
passenger cars, Atmos. Environ., 141, 80–95, https://doi.org/10.1016/j.atmosenv.2016.06.055,
2016.
Louis, C., Liu, Y., Martinet, S., D'Anna, B., Valiente, A. M., Boreave, A.,
R'Mili, B., Tassel, P., Perret, P., and André, M.: Dilution effects on
ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline
vehicles, Atmos. Environ., 169, 80–88, https://doi.org/10.1016/j.atmosenv.2017.09.007, 2017.
Lu, J., Ge, X., Liu, Y., Chen, Y., Xie, X., Ou, Y., Ye, Z., and Chen, M.:
Significant secondary organic aerosol production from aqueous-phase
processing of two intermediate volatility organic compounds, Atmos. Environ., 211, 63–68, https://doi.org/10.1016/j.atmosenv.2019.05.014,
2019.
Lu, Q., Zhao, Y., and Robinson, A. L.: Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions, Atmos. Chem. Phys., 18, 17637–17654, https://doi.org/10.5194/acp-18-17637-2018, 2018.
Matsunaga, A. and Ziemann, P. J.: Gas-Wall Partitioning of
Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction
Product and Aerosol Yield Measurements, Aerosol Sci. Tech., 44,
881–892, https://doi.org/10.1080/02786826.2010.501044, 2010.
May, A. A., Nguyen, N. T., Presto, A. A., Gordon, T. D., Lipsky, E. M.,
Karve, M., Gutierrez, A., Robertson, W. H., Zhang, M., Brandow, C., Chang,
O., Chen, S., Cicero-Fernandez, P., Dinkins, L., Fuentes, M., Huang, S.-M.,
Ling, R., Long, J., Maddox, C., Massetti, J., McCauley, E., Miguel, A., Na,
K., Ong, R., Pang, Y., Rieger, P., Sax, T., Truong, T., Vo, T.,
Chattopadhyay, S., Maldonado, H., Maricq, M. M., and Robinson, A. L.: Gas-
and particle-phase primary emissions from in-use, on-road gasoline and
diesel vehicles, Atmos. Environ., 88, 247–260,
https://doi.org/10.1016/j.atmosenv.2014.01.046, 2014.
Morawska, L., Ristovski, Z., Jayaratne, E. R., Keogh, D. U., and Ling, X.:
Ambient nano and ultrafine particles from motor vehicle emissions:
Characteristics, ambient processing and implications on human exposure, Atmos. Environ., 42,
8113–8138, https://doi.org/10.1016/j.atmosenv.2008.07.050, 2008.
Nah, T., McVay, R. C., Pierce, J. R., Seinfeld, J. H., and Ng, N. L.: Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments, Atmos. Chem. Phys., 17, 2297–2310, https://doi.org/10.5194/acp-17-2297-2017, 2017.
Ning, Z. and Sioutas, C.: Atmospheric Processes Influencing Aerosols
Generated by Combustion and the Inference of Their Impact on Public
Exposure: A Review, Aerosol Air Qual. Res., 10, 43–58,
https://doi.org/10.4209/aaqr.2009.05.0036, 2010.
Nomura, Y., Hopke, P. K., Fitzgerald, B., and Mesbah, B.: Deposition of
Particles in a Chamber as a Function of Ventilation Rate, Aerosol Sci. Tech., 27, 62–72,
https://doi.org/10.1080/02786829708965458, 1997.
Okuyama, K., Kousaka, Y., Yamamoto, S., and Hosokawa, T.: Particle loss of
aerosols with particle diameters between 6 and 2000 nm in stirred tank, J. Colloid Interf. Sci., 110, 214–223, https://doi.org/10.1016/0021-9797(86)90370-X, 1986.
Papapostolou, V., Lawrence, J. E., Diaz, E. A., Wolfson, J. M., Ferguson, S.
T., Long, M. S., Godleski, J. J., and Koutrakis, P.: Laboratory evaluation
of a prototype photochemical chamber designed to investigate the health
effects of fresh and aged vehicular exhaust emissions, Inhal. Toxicol., 23, 495–505,
https://doi.org/10.3109/08958378.2011.587034, 2011.
Pathak, R. K., Stanier, C. O., Donahue, N. M., and Pandis, S. N.: Ozonolysis
of α-pinene at atmospherically relevant concentrations: Temperature
dependence of aerosol mass fractions (yields), J. Geophys. Res., 112, D03201,
https://doi.org/10.1029/2006JD007436, 2007.
Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Levy Zamora, M.,
Zeng, L., Shao, M., Wu, Y.-S., Zheng, J., Wang, Y., Glen, C. R., Collins, D.
R., Molina, M. J., and Zhang, R.: Markedly enhanced absorption and direct
radiative forcing of black carbon under polluted urban environments, P. Natl. Acad. Sci. USA, 113, 4266–4271, https://doi.org/10.1073/pnas.1602310113,
2016.
Pierce, J. R., Engelhart, G. J., Hildebrandt, L., Weitkamp, E. A., Pathak,
R. K., Donahue, N. M., Robinson, A. L., Adams, P. J., and Pandis, S. N.:
Constraining Particle Evolution from Wall Losses, Coagulation, and
Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation
Based on Size Distribution Measurements, Aerosol Sci. Tech., 42, 1001–1015,
https://doi.org/10.1080/02786820802389251, 2008.
Platt, S. M., El Haddad, I., Zardini, A. A., Clairotte, M., Astorga, C., Wolf, R., Slowik, J. G., Temime-Roussel, B., Marchand, N., Ježek, I., Drinovec, L., Močnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi, F., Baltensperger, U., and Prévôt, A. S. H.: Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, 2013.
Pratap, V., Kiran, S. A., Bian, Q., Pierce, J. R., Hopke, P. K., and Nakao,
S.: Observation of Vapor Wall Deposition in a Smog Chamber Using Size
Evolution of Pure Organic Particles, Aerosol Air Qual. Res., 20, 2705–2714,
https://doi.org/10.4209/aaqr.2020.05.0268, 2020.
Rivas, I., Beddows, D. C. S., Amato, F., Green, D. C., Järvi, L.,
Hueglin, C., Reche, C., Timonen, H., Fuller, G. W., Niemi, J. V., Pérez,
N., Aurela, M., Hopke, P. K., Alastuey, A., Kulmala, M., Harrison, R. M.,
Querol, X., and Kelly, F. J.: Source apportionment of particle number size
distribution in urban background and traffic stations in four European
cities, Environ. Int., 135, 105345,
https://doi.org/10.1016/j.envint.2019.105345, 2020.
Sartelet, K., Zhu, S., Moukhtar, S., André, M., André, J. M., Gros,
V., Favez, O., Brasseur, A., and Redaelli, M.: Emission of intermediate,
semi and low volatile organic compounds from traffic and their impact on
secondary organic aerosol concentrations over Greater Paris, Atmos. Environ., 180, 126–137, https://doi.org/10.1016/j.atmosenv.2018.02.031,
2018.
Sbai, S. E., Li, C., Boreave, A., Charbonnel, N., Perrier, S., Vernoux, P.,
Bentayeb, F., George, C., and Gil, S.: Atmospheric photochemistry and
secondary aerosol formation of urban air in Lyon, France, J. Environ. Sci., 99, 311–323,
https://doi.org/10.1016/j.jes.2020.06.037, 2020.
Schnell, M., Cheung, C. S., and Leung, C. W.: Investigation on the
coagulation and deposition of combustion particles in an enclosed chamber
with and without stirring, J. Aerosol Sci., 37, 1581–1595,
https://doi.org/10.1016/j.jaerosci.2006.06.001, 2006.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, 3rd edn., John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2016.
Totton, T. S., Chakrabarti, D., Misquitta, A. J., Sander, M., Wales, D. J.,
and Kraft, M.: Modelling the internal structure of nascent soot particles, Combust. Flame,
157, 909–914, https://doi.org/10.1016/j.combustflame.2009.11.013, 2010.
TSI: Aerosol Instrument Manager Software for Scanning Mobility Particle
Sizer (SMPS) Spectrometer User's Manual, TSI Incorporated, Shoreview, MN, USA, 2010.
Verheggen, B. and Mozurkewich, M.: An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions, Atmos. Chem. Phys., 6, 2927–2942, https://doi.org/10.5194/acp-6-2927-2006, 2006.
Wang, N., Kostenidou, E., Donahue, N. M., and Pandis, S. N.: Multi-generation chemical aging of α-pinene ozonolysis products by reactions with OH, Atmos. Chem. Phys., 18, 3589–3601, https://doi.org/10.5194/acp-18-3589-2018, 2018a.
Wang, N., Jorga, S. D., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Particle wall-loss correction methods in smog chamber experiments, Atmos. Meas. Tech., 11, 6577–6588, https://doi.org/10.5194/amt-11-6577-2018, 2018b.
Wang, X., Liu, T., Bernard, F., Ding, X., Wen, S., Zhang, Y., Zhang, Z., He, Q., Lü, S., Chen, J., Saunders, S., and Yu, J.: Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation, Atmos. Meas. Tech., 7, 301–313, https://doi.org/10.5194/amt-7-301-2014, 2014.
Weitkamp, E. A., Sage, A. M., Pierce, J. R., Donahue, N. M., and Robinson,
A. L.: Organic Aerosol Formation from Photochemical Oxidation of Diesel
Exhaust in a Smog Chamber, Environ. Sci. Technol., 41, 6969–6975,
https://doi.org/10.1021/es070193r, 2007.
Xu, R., Alam, M. S., Stark, C., and Harrison, R. M.: Behaviour of traffic
emitted semi-volatile and intermediate volatility organic compounds within
the urban atmosphere, Sci. Total Environ., 720, 137470,
https://doi.org/10.1016/j.scitotenv.2020.137470, 2020.
Yeh, G. K. and Ziemann, P. J.: Gas-Wall Partitioning of Oxygenated Organic
Compounds: Measurements, Structure–Activity Relationships, and Correlation
with Gas Chromatographic Retention Factor, Aerosol Sci. Tech.,
49, 727–738, https://doi.org/10.1080/02786826.2015.1068427, 2015.
Zhang, K. M. and Wexler, A. S.: Evolution of particle number distribution
near roadways – Part I: analysis of aerosol dynamics and its implications
for engine emission measurement, Atmos. Environ., 38, 6643–6653,
https://doi.org/10.1016/j.atmosenv.2004.06.043, 2004.
Zhang, K. M., Wexler, A. S., Zhu, Y. F., Hinds, W. C., and Sioutas, C.:
Evolution of particle number distribution near roadways. Part II: the
“Road-to-Ambient” process, Atmos. Environ., 38, 6655–6665,
https://doi.org/10.1016/j.atmosenv.2004.06.044, 2004.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in
laboratory chambers on yields of secondary organic aerosol,
P. Natl. Acad. Sci. USA, 111, 5802–5807,
https://doi.org/10.1073/pnas.1404727111, 2014.
Zhang, X., Schwantes, R. H., McVay, R. C., Lignell, H., Coggon, M. M., Flagan, R. C., and Seinfeld, J. H.: Vapor wall deposition in Teflon chambers, Atmos. Chem. Phys., 15, 4197–4214, https://doi.org/10.5194/acp-15-4197-2015, 2015.
Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and
Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from
On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and
Estimated Secondary Organic Aerosol Production, Environ. Sci. Technol., 49,
11516–11526, https://doi.org/10.1021/acs.est.5b02841, 2015.
Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and
Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from
On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines, Environ. Sci. Technol., 50,
4554–4563, https://doi.org/10.1021/acs.est.5b06247, 2016.
Zhao, Y., Lambe, A. T., Saleh, R., Saliba, G., and Robinson, A. L.:
Secondary Organic Aerosol Production from Gasoline Vehicle Exhaust: Effects
of Engine Technology, Cold Start, and Emission Certification Standard,
Environ. Sci. Technol., 52, 1253–1261,
https://doi.org/10.1021/acs.est.7b05045, 2018.
Zhu, J., Penner, J. E., Lin, G., Zhou, C., Xu, L., and Zhuang, B.: Mechanism
of SOA formation determines magnitude of radiative effects,
P. Natl. Acad. Sci. USA, 114, 12685–12690, https://doi.org/10.1073/pnas.1712273114, 2017.
Short summary
A new method was developed to correct wall losses of particles on Teflon walls using a new environmental chamber. It was applied to experiments with six diesel vehicles (Euro 3 to 6), tested on a chassis dynamometer. Emissions of particles and precursors were obtained under urban and motorway conditions. The chamber experiments help understand the role of physical processes in diesel particle evolutions in the dark. These results can be applied to situations such as tunnels or winter rush hours.
A new method was developed to correct wall losses of particles on Teflon walls using a new...