Articles | Volume 14, issue 12
Atmos. Meas. Tech., 14, 7851–7871, 2021
https://doi.org/10.5194/amt-14-7851-2021

Special issue: Aeolus data and their application (AMT/ACP/WCD inter-journal...

Atmos. Meas. Tech., 14, 7851–7871, 2021
https://doi.org/10.5194/amt-14-7851-2021

Research article 16 Dec 2021

Research article | 16 Dec 2021

Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm

Thomas Flament et al.

Related authors

Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022,https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Optimization of Aeolus' aerosol optical properties by maximum-likelihood estimation
Frithjof Ehlers, Thomas Flament, Alain Dabas, Dimitri Trapon, Adrien Lacour, Holger Baars, and Anne Grete Straume-Lindner
Atmos. Meas. Tech., 15, 185–203, https://doi.org/10.5194/amt-15-185-2022,https://doi.org/10.5194/amt-15-185-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars
Marco Di Paolantonio, Davide Dionisi, and Gian Luigi Liberti
Atmos. Meas. Tech., 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022,https://doi.org/10.5194/amt-15-1217-2022, 2022
Short summary
Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022,https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary
Aerosol models from the AERONET database: application to surface reflectance validation
Jean-Claude Roger, Eric Vermote, Sergii Skakun, Emilie Murphy, Oleg Dubovik, Natacha Kalecinski, Bruno Korgo, and Brent Holben
Atmos. Meas. Tech., 15, 1123–1144, https://doi.org/10.5194/amt-15-1123-2022,https://doi.org/10.5194/amt-15-1123-2022, 2022
Short summary
Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6  ×  6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022,https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022,https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary

Cited articles

Ackermann, J.: The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A Numerical Study, J. Atmos. Ocean. Tech., 15, 1043– 1050, https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2, 1998. a
Ansmann, A., Wandinger, U., Le Rille, O., Lajas, D., and Straume, A. G.: Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations, Appl. Optics, 46, 6606, https://doi.org/10.1364/AO.46.006606, 2007. a
Baars, H., Radenz, M., Floutsi, A. A., Engelmann, R., Althausen, D., Heese, B., Ansmann, A., Flament, T., Dabas, A., Trapon, D., Reitebuch, O., Bley, S., and Wandinger, U.: Californian Wildfire Smoke Over Europe: A First Example of the Aerosol Observing Capabilities of Aeolus Compared to Ground‐Based Lidar, Geophys. Res. Lett., 48, e2020GL092194, https://doi.org/10.1029/2020GL092194, 2021. a
CALIPSO: CALIPSO, available at: https://www-calipso.larc.nasa.gov/products/lidar/browse_images/show_v4_detail.php?s=production&v=V4-10&browse_date=2020-06-19&orbit_time=04-07-30&page=1&granule_name=CAL_LID_L1-Standard-V4-10.2020-06-19T04-07-30ZN.hdf, last access: 1 March 2021. a
Collis, R. and Russell, P.: Lidar measurement of particles and gases by elastic backscattering and differential absorption, chap. Lidar measurement of particles and gases by elastic backscattering and differential absorption, Springer, Berlin, Heidelberg, 71–151, https://doi.org/10.1007/3-540-07743-X_18, 1976. a, b
Download
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA. We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.