Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7851-2021
https://doi.org/10.5194/amt-14-7851-2021
Research article
 | 
16 Dec 2021
Research article |  | 16 Dec 2021

Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm

Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber

Related authors

Cross validations of the Aeolus aerosol products and new developments with airborne high spectral resolution lidar measurements above the Tropical Atlantic during JATAC
Dimitri Trapon, Holger Baars, Athena Floutsi, Sebastian Bley, Adrien Lacour, Thomas Flament, Alain Dabas, Amin R. Nehrir, Frithjof Ehlers, and Dorit Huber
EGUsphere, https://doi.org/10.5194/egusphere-2025-462,https://doi.org/10.5194/egusphere-2025-462, 2025
Short summary
Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022,https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Optimization of Aeolus' aerosol optical properties by maximum-likelihood estimation
Frithjof Ehlers, Thomas Flament, Alain Dabas, Dimitri Trapon, Adrien Lacour, Holger Baars, and Anne Grete Straume-Lindner
Atmos. Meas. Tech., 15, 185–203, https://doi.org/10.5194/amt-15-185-2022,https://doi.org/10.5194/amt-15-185-2022, 2022
Short summary
Simultaneous solution for mass trends on the West Antarctic Ice Sheet
N. Schoen, A. Zammit-Mangion, J. C. Rougier, T. Flament, F. Rémy, S. Luthcke, and J. L. Bamber
The Cryosphere, 9, 805–819, https://doi.org/10.5194/tc-9-805-2015,https://doi.org/10.5194/tc-9-805-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multi-layer retrieval of aerosol optical depth in the troposphere using SEVIRI data: a case study of the European continent
Maryam Pashayi, Mehran Satari, and Mehdi Momeni Shahraki
Atmos. Meas. Tech., 18, 1415–1439, https://doi.org/10.5194/amt-18-1415-2025,https://doi.org/10.5194/amt-18-1415-2025, 2025
Short summary
Star photometry with all-sky cameras to retrieve aerosol optical depth at night-time
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
EGUsphere, https://doi.org/10.5194/egusphere-2025-667,https://doi.org/10.5194/egusphere-2025-667, 2025
Short summary
Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc E. J. Stettler
Atmos. Meas. Tech., 18, 37–56, https://doi.org/10.5194/amt-18-37-2025,https://doi.org/10.5194/amt-18-37-2025, 2025
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, and J. Pepijn Veefkind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-198,https://doi.org/10.5194/amt-2024-198, 2025
Revised manuscript accepted for AMT
Short summary
Satellite Aerosol Composition Retrieval from a combination of three different Instruments: Information content analysis
Ulrike Stöffelmair, Thomas Popp, Marco Vountas, and Hartmut Bösch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2800,https://doi.org/10.5194/egusphere-2024-2800, 2024
Short summary

Cited articles

Ackermann, J.: The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A Numerical Study, J. Atmos. Ocean. Tech., 15, 1043– 1050, https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2, 1998. a
Ansmann, A., Wandinger, U., Le Rille, O., Lajas, D., and Straume, A. G.: Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations, Appl. Optics, 46, 6606, https://doi.org/10.1364/AO.46.006606, 2007. a
Baars, H., Radenz, M., Floutsi, A. A., Engelmann, R., Althausen, D., Heese, B., Ansmann, A., Flament, T., Dabas, A., Trapon, D., Reitebuch, O., Bley, S., and Wandinger, U.: Californian Wildfire Smoke Over Europe: A First Example of the Aerosol Observing Capabilities of Aeolus Compared to Ground‐Based Lidar, Geophys. Res. Lett., 48, e2020GL092194, https://doi.org/10.1029/2020GL092194, 2021. a
CALIPSO: CALIPSO, available at: https://www-calipso.larc.nasa.gov/products/lidar/browse_images/show_v4_detail.php?s=production&v=V4-10&browse_date=2020-06-19&orbit_time=04-07-30&page=1&granule_name=CAL_LID_L1-Standard-V4-10.2020-06-19T04-07-30ZN.hdf, last access: 1 March 2021. a
Collis, R. and Russell, P.: Lidar measurement of particles and gases by elastic backscattering and differential absorption, chap. Lidar measurement of particles and gases by elastic backscattering and differential absorption, Springer, Berlin, Heidelberg, 71–151, https://doi.org/10.1007/3-540-07743-X_18, 1976. a, b
Download
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA. We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.
Share