Articles | Volume 15, issue 1
Atmos. Meas. Tech., 15, 185–203, 2022
https://doi.org/10.5194/amt-15-185-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Aeolus data and their application (AMT/ACP/WCD inter-journal...
Research article
11 Jan 2022
Research article
| 11 Jan 2022
Optimization of Aeolus' aerosol optical properties by maximum-likelihood estimation
Frithjof Ehlers et al.
Related authors
Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, https://doi.org/10.5194/amt-14-7851-2021, 2021
Short summary
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA.
We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.
Holger Baars, Joshua Walchester, Elizaveta Basharova, Henriette Gebauer, Martin Radenz, Johannes Bühl, Boris Barja, Ulla Wandinger, and Patric Seifert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-331, https://doi.org/10.5194/amt-2022-331, 2022
Preprint under review for AMT
Short summary
Short summary
In 2018, the Aeolus satellite of the European Space Agency (ESA) was launched to improve weather forecast through global measurements of wind profiles. Given the novel technique onboard, extensive validation efforts have been needed to verify the observations. For this reason, we performed long-term validation measurements in Germany and Chile. We found a significant improvement of the data products due to new algorithm version and can confirm the general validity of Aeolus observations.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
EGUsphere, https://doi.org/10.5194/egusphere-2022-1241, https://doi.org/10.5194/egusphere-2022-1241, 2022
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-306, https://doi.org/10.5194/amt-2022-306, 2022
Preprint under review for AMT
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio), and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarisation lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Pantelis Kiriakidis, Antonis Gkikas, George Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2022-819, https://doi.org/10.5194/egusphere-2022-819, 2022
Short summary
Short summary
With the launch of the Aeolus satellite higher accuracy wind products became available. The research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the East Mediterranean and Middle East region for two, two-month long periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts both quantitatively and qualitatively for the autumn season.
Albert Ansmann, Kevin Ohneiser, Alexandra Chudnovsky, Daniel A. Knopf, Edwin W. Eloranta, Diego Villanueva, Patric Seifert, Martin Radenz, Boris Barja, Félix Zamorano, Cristofer Jimenez, Ronny Engelmann, Holger Baars, Hannes Griesche, Julian Hofer, Dietrich Althausen, and Ulla Wandinger
Atmos. Chem. Phys., 22, 11701–11726, https://doi.org/10.5194/acp-22-11701-2022, https://doi.org/10.5194/acp-22-11701-2022, 2022
Short summary
Short summary
For the first time we present a systematic study on the impact of wildfire smoke on ozone depletion in the Arctic (2020) and Antarctic stratosphere (2020, 2021). Two major fire events in Siberia and Australia were responsible for the observed record-breaking stratospheric smoke pollution. Our analyses were based on lidar observations of smoke parameters (Polarstern, Punta Arenas) and NDACC Arctic and Antarctic ozone profiles as well as on Antarctic OMI satellite observations of column ozone.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Bernd Heinold, Holger Baars, Boris Barja, Matthew Christensen, Anne Kubin, Kevin Ohneiser, Kerstin Schepanski, Nick Schutgens, Fabian Senf, Roland Schrödner, Diego Villanueva, and Ina Tegen
Atmos. Chem. Phys., 22, 9969–9985, https://doi.org/10.5194/acp-22-9969-2022, https://doi.org/10.5194/acp-22-9969-2022, 2022
Short summary
Short summary
The extreme 2019–2020 Australian wildfires produced massive smoke plumes lofted into the lower stratosphere by pyrocumulonimbus convection. Most climate models do not adequately simulate the injection height of such intense fires. By combining aerosol-climate modeling with prescribed pyroconvective smoke injection and lidar observations, this study shows the importance of the representation of the most extreme wildfire events for estimating the atmospheric energy budget.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elissavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-412, https://doi.org/10.5194/acp-2022-412, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Modern satellite-born sensors have the ability to derive accurate geometrical features of lofted aerosol layers on a continental scale, such as the S5P/TROPOMI instrument. Comparisons with ground-based correlative measurements constitute a key component in the validation of the more recent-in-existence satellite aerosol products. Three days with sufficient dust and smoke aerosol load over the Mediterranean are used to illustrate the performance of the TROPOMI ALH product.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-205, https://doi.org/10.5194/amt-2022-205, 2022
Revised manuscript under review for AMT
Short summary
Short summary
We perform an assessment analysis of Aeolus L2A backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki, Antikythera) of the PANACEA network. Overall, 46 cases are analyzed whereas emphasis is given of specific aerosol scenarios in the vicinity of the Antikythera island (SW Greece). All key Cal/Val aspects and recommendations as well as the ongoing related activities are thoroughly discussed.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022, https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
Short summary
Numerical models are an important tool to assess the air quality in cities,
as they can provide near-continouos data in time and space. In this paper,
air pollution for an entire city is simulated at a high spatial resolution of 40 m.
At this spatial scale, the effects of buildings on the atmosphere,
like channeling or blocking of the air flow, are directly represented by diffuse obstacles in the used model CAIRDIO. For model validation, measurements from air-monitoring sites are used.
Xiaoxia Shang, Holger Baars, Iwona S. Stachlewska, Ina Mattis, and Mika Komppula
Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, https://doi.org/10.5194/acp-22-3931-2022, 2022
Short summary
Short summary
This study reports pollen observations at four lidar stations (Hohenpeißenberg, Germany; Kuopio, Finland; Leipzig, Germany; and Warsaw, Poland) during the intensive observation campaign organized in May 2020. A novel simple method for the characterization of the pure pollen is proposed, based on lidar measurements. It was applied to evaluate the pollen depolarization ratio and for the aerosol classifications.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Birgit Heese, Athena Augusta Floutsi, Holger Baars, Dietrich Althausen, Julian Hofer, Alina Herzog, Silke Mewes, Martin Radenz, and Yoav Y. Schechner
Atmos. Chem. Phys., 22, 1633–1648, https://doi.org/10.5194/acp-22-1633-2022, https://doi.org/10.5194/acp-22-1633-2022, 2022
Short summary
Short summary
The aerosol distribution over Haifa, Israel, was measured for 2 years by a laser-based vertically resolved measurement technique called lidar. From these data, the aerosol types and their percentages of the observed aerosol mixtures were identified in terms of their size and shape. We found mostly desert dust from the surrounding deserts and sea salt from the close-by Mediterranean Sea. But aerosols from anthropogenic and industrial pollution from local and far away sources were also detected.
Jerónimo Escribano, Enza Di Tomaso, Oriol Jorba, Martina Klose, Maria Gonçalves Ageitos, Francesca Macchia, Vassilis Amiridis, Holger Baars, Eleni Marinou, Emmanouil Proestakis, Claudia Urbanneck, Dietrich Althausen, Johannes Bühl, Rodanthi-Elisavet Mamouri, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 535–560, https://doi.org/10.5194/acp-22-535-2022, https://doi.org/10.5194/acp-22-535-2022, 2022
Short summary
Short summary
We explore the benefits and consistency in adding lidar dust observations in a dust optical depth assimilation. We show that adding lidar data to a dust optical depth assimilation has valuable benefits and the dust analysis improves. We discuss the impact of the narrow satellite footprint of the lidar dust observations on the assimilation.
Moritz Haarig, Albert Ansmann, Ronny Engelmann, Holger Baars, Carlos Toledano, Benjamin Torres, Dietrich Althausen, Martin Radenz, and Ulla Wandinger
Atmos. Chem. Phys., 22, 355–369, https://doi.org/10.5194/acp-22-355-2022, https://doi.org/10.5194/acp-22-355-2022, 2022
Short summary
Short summary
The irregular shape of dust particles makes it difficult to treat them correctly in optical models. Atmospheric measurements of dust optical properties are therefore of great importance. The present study increases the space of observed parameters from 355 and 532 nm towards 1064 nm, which is of special importance for large dust particles. The lidar ratio influenced by mineralogy and the depolarization ratio influenced by shape are measured for the first time at all three wavelengths.
Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, https://doi.org/10.5194/amt-14-7851-2021, 2021
Short summary
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA.
We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.
Martin Radenz, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann
Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, https://doi.org/10.5194/acp-21-17969-2021, 2021
Short summary
Short summary
This study brings together long-term ground-based remote-sensing observations of mixed-phase clouds at three key locations of aerosol–cloud interactions in the Northern and Southern Hemisphere midlatitudes. The findings contribute several new aspects on the nature of the excess of supercooled liquid clouds in the Southern Hemisphere, such as a long-term lidar-based estimate of ice-nucleating particle profiles as well as the effects of boundary layer coupling and gravity waves on ice formation.
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021, https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
Short summary
The work deals with optical properties of aerosol particles in dried and atmospheric states. Based on two measurement campaigns in the rural background of central Europe, different measurement approaches were compared with each other, such as modeling based on Mie theory and direct in situ or remote sensing measurements. Among others, it was shown that the aerosol extinction-to-backscatter ratio is relative humidity dependent, and refinement with respect to the model input parameters is needed.
Kevin Ohneiser, Albert Ansmann, Alexandra Chudnovsky, Ronny Engelmann, Christoph Ritter, Igor Veselovskii, Holger Baars, Henriette Gebauer, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, and Marion Maturilli
Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021, https://doi.org/10.5194/acp-21-15783-2021, 2021
Short summary
Short summary
The highlight of the lidar measurements during the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition of the German icebreaker Polarstern (October 2019–October 2020) was the detection of a persistent, 10 km deep Siberian wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7–8 km to 17–18 km height that could potentially have impacted the record-breaking ozone depletion over the Arctic in the spring of 2020.
Mariana Adam, Iwona S. Stachlewska, Lucia Mona, Nikolaos Papagiannopoulos, Juan Antonio Bravo-Aranda, Michaël Sicard, Doina N. Nicolae, Livio Belegante, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Arnoud Apituley, Ina Mattis, Anatoli Chaikovsky, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-759, https://doi.org/10.5194/acp-2021-759, 2021
Revised manuscript not accepted
Short summary
Short summary
Results over 10 years of biomass burning events measured by EARLINET are analysed by means of the intensive parameters, based on the methodology described in Part I. Smoke type is characterized for each of the four geographical regions based on continental smoke origin. Relationships between intensive parameters or colour ratios are shown. The smoke is labelled in average as aged smoke.
Ronny Engelmann, Albert Ansmann, Kevin Ohneiser, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, Marion Maturilli, Igor Veselovskii, Cristofer Jimenez, Robert Wiesen, Holger Baars, Johannes Bühl, Henriette Gebauer, Moritz Haarig, Patric Seifert, Ulla Wandinger, and Andreas Macke
Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021, https://doi.org/10.5194/acp-21-13397-2021, 2021
Short summary
Short summary
A Raman lidar was operated aboard the icebreaker Polarstern during MOSAiC and monitored aerosol and cloud layers in the central Arctic up to 30 km height. The article provides an overview of the spectrum of aerosol profiling observations and shows aerosol–cloud interaction studies for liquid-water and ice clouds. A highlight was the detection of a 10 km deep wildfire smoke layer over the North Pole up to 17 km height from the fire season of 2019, which persisted over the whole winter period.
Carmen Córdoba-Jabonero, Albert Ansmann, Cristofer Jiménez, Holger Baars, María-Ángeles López-Cayuela, and Ronny Engelmann
Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021, https://doi.org/10.5194/amt-14-5225-2021, 2021
Short summary
Short summary
An experimental assessment of a polarized micro-pulse lidar (P-MPL) in comparison to reference lidars is presented regarding the retrieval of aerosol optical properties. The evaluation is focused on both the optimally determined overlap function and volume linear depolarization ratio. A P-MPL overlap must be regularly estimated to derive suitable aerosol products (backscatter, extinction, and particle depolarization ratio). This methodology can be easily applied to other P-MPL systems.
Albert Ansmann, Kevin Ohneiser, Rodanthi-Elisavet Mamouri, Daniel A. Knopf, Igor Veselovskii, Holger Baars, Ronny Engelmann, Andreas Foth, Cristofer Jimenez, Patric Seifert, and Boris Barja
Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, https://doi.org/10.5194/acp-21-9779-2021, 2021
Short summary
Short summary
We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area concentration of wildfire smoke layers, and related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The new analysis scheme is applied to ground-based lidar observations of stratospheric Australian smoke over southern South America and to spaceborne lidar observations of tropospheric North American smoke.
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
Short summary
Mineral dust concentrations in the diameter range from 0.4 to 14.0 μm were measured with the balloon-borne UCASS optical particle counter. Launches were coordinated with ground-based remote-sensing and airborne in situ measurements during a Saharan dust outbreak over Cyprus. Particle number concentrations reached 50 cm−3 for the diameter range 0.8–13.9 μm. Comparisons with aircraft data show reasonable agreement in magnitude and shape of the particle size distribution.
Ville Vakkari, Holger Baars, Stephanie Bohlmann, Johannes Bühl, Mika Komppula, Rodanthi-Elisavet Mamouri, and Ewan James O'Connor
Atmos. Chem. Phys., 21, 5807–5820, https://doi.org/10.5194/acp-21-5807-2021, https://doi.org/10.5194/acp-21-5807-2021, 2021
Short summary
Short summary
The depolarization ratio is a valuable parameter for aerosol categorization from remote sensing measurements. Here, we introduce particle depolarization ratio measurements at the 1565 nm wavelength, which is substantially longer than previously utilized wavelengths and enhances our capabilities to study the wavelength dependency of the particle depolarization ratio.
Martin Radenz, Patric Seifert, Holger Baars, Athena Augusta Floutsi, Zhenping Yin, and Johannes Bühl
Atmos. Chem. Phys., 21, 3015–3033, https://doi.org/10.5194/acp-21-3015-2021, https://doi.org/10.5194/acp-21-3015-2021, 2021
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021, https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Short summary
We introduce an automated aerosol type classification method, SCAN. The output of SCAN is compared with two aerosol classification methods: (1) the Mahalanobis distance automatic aerosol type classification and (2) a neural network aerosol typing algorithm. A total of 97 free tropospheric aerosol layers from four EARLINET stations in the period 2014–2018 were classified.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Holger Baars, Alina Herzog, Birgit Heese, Kevin Ohneiser, Karsten Hanbuch, Julian Hofer, Zhenping Yin, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, https://doi.org/10.5194/amt-13-6007-2020, 2020
Short summary
Short summary
A first validation for the European satellite Aeolus is presented. Aeolus is the first satellite that can actively measure horizontal wind profiles from space.
Radiosonde launches on board the German research vessel Polarstern have been utilized to validate Aeolus observations over the Atlantic Ocean, a region where almost no other reference measurements are available. It is shown that Aeolus is able to measure accurately atmospheric winds and thus may significantly improve weather forecasts.
Hannes J. Griesche, Patric Seifert, Albert Ansmann, Holger Baars, Carola Barrientos Velasco, Johannes Bühl, Ronny Engelmann, Martin Radenz, Yin Zhenping, and Andreas Macke
Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020, https://doi.org/10.5194/amt-13-5335-2020, 2020
Short summary
Short summary
In summer 2017, the research vessel Polarstern performed cruise PS106 to the Arctic north of Svalbard. In the frame of the cruise, remote-sensing observations of the atmosphere were performed on Polarstern to continuously monitor aerosol and clouds above the vessel. In our study, we present the deployed instrumentation and applied data analysis methods and provide case studies of the aerosol and cloud observations made during the cruise. Statistics of low-cloud occurrence are presented as well.
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020, https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
Short summary
Volcanic and desert dust particles affect human activities in manifold ways; consequently, mitigation tools are important. Their early detection and the issuance of early warnings are key elements in the initiation of operational response procedures. A methodology for the early warning of these hazards using European Aerosol Research Lidar Network (EARLINET) data is presented. The tailored product is investigated during a volcanic eruption and mineral dust advected in the eastern Mediterranean.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Khanneh Wadinga Fomba, Ulla Wandinger, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, https://doi.org/10.5194/acp-20-9265-2020, 2020
Short summary
Short summary
For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign. The found optical properties reflect the large range of occurring aerosol mixtures.
Mariana Adam, Doina Nicolae, Livio Belegante, Iwona S. Stachlewska, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christiana Anna Papanikolaou, Nikos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Juan Antonio Bravo-Aranda, Arnoud Apituley, Nikolaos Papagiannopoulos, Lucia Mona, Ina Mattis, Anatoli Chaikovsky, Michaël Sicard, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-647, https://doi.org/10.5194/acp-2020-647, 2020
Revised manuscript not accepted
Short summary
Short summary
Results over 10 years of biomass burning events measured by EARLINET are analysed by means of the intensive parameters based on the methodology described in Part I. Smoke type is characterized for each of the four geographical regions based on continental smoke origin. Relationships between intensive parameters or colour ratios are shown. The smoke is labelled in average as aged smoke. The local smoke has a smaller lidar ratio while the depolarization is smaller for long range transported smoke.
Christa Genz, Roland Schrödner, Bernd Heinold, Silvia Henning, Holger Baars, Gerald Spindler, and Ina Tegen
Atmos. Chem. Phys., 20, 8787–8806, https://doi.org/10.5194/acp-20-8787-2020, https://doi.org/10.5194/acp-20-8787-2020, 2020
Short summary
Short summary
Atmospheric aerosols are the precondition for the formation of cloud droplets and thus have a large influence on cloud properties. Concentrations of cloud condensation nuclei of the period with highest aerosol concentrations over central Europe are uncertain. In this work, modeled estimates of CCN from today and the mid-1980s are compared to available in situ and remote sensing observations. A scaling factor between today and the 1980s for the CCN concentrations has been derived.
Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger
Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, https://doi.org/10.5194/acp-20-8003-2020, 2020
Short summary
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Athena Augusta Floutsi, Holger Baars, Martin Radenz, Moritz Haarig, Zhenping Yin, Patric Seifert, Cristofer Jimenez, Ulla Wandinger, Ronny Engelmann, Boris Barja, Felix Zamorano, and Albert Ansmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-453, https://doi.org/10.5194/acp-2020-453, 2020
Preprint withdrawn
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
Short summary
The impact of anthropogenic aerosols on clouds is a key uncertainty in climate change. This study analyses large-domain simulations with a new high-resolution model to investigate the differences in clouds between 1985 and 2013 comparing multiple observational datasets. The differences in aerosol and in cloud droplet concentrations are clearly detectable. For other quantities, the detection and attribution proved difficult, despite a substantial impact on the Earth's energy budget.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 4695–4711, https://doi.org/10.5194/acp-20-4695-2020, https://doi.org/10.5194/acp-20-4695-2020, 2020
Short summary
Short summary
For the first time, continuous, vertically resolved long-term aerosol measurements were conducted with a state-of-the-art multiwavelength lidar over a Central Asian site. Such observations are urgently required in efforts to predict future climate and environmental conditions and to support spaceborne remote sensing (ground truth activities).
Johannes Bühl, Patric Seifert, Martin Radenz, Holger Baars, and Albert Ansmann
Atmos. Meas. Tech., 12, 6601–6617, https://doi.org/10.5194/amt-12-6601-2019, https://doi.org/10.5194/amt-12-6601-2019, 2019
Short summary
Short summary
In the present paper, we present a novel remote-sensing technique for the measurement of ice crystal number concentrations in clouds. The fall velocity of ice crystals measured with values from cloud radar and a radar wind profiler is used in order to derive information about ice crystal size and number concentration. In contrast to existing methods based on the combination of lidar and cloud radar, the present method can also be used in optically thick clouds.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Rebecca M. Pauly, John E. Yorks, Dennis L. Hlavka, Matthew J. McGill, Vassilis Amiridis, Stephen P. Palm, Sharon D. Rodier, Mark A. Vaughan, Patrick A. Selmer, Andrew W. Kupchock, Holger Baars, and Anna Gialitaki
Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019, https://doi.org/10.5194/amt-12-6241-2019, 2019
Short summary
Short summary
The Cloud Aerosol Transport System (CATS) demonstrated that direct calibration of 1064 nm lidar data from a spaceborne platform is possible. By normalizing the CATS signal to a modeled molecular backscatter profile the CATS data were calibrated, enabling the derivation of optical properties of clouds and aerosols. Comparisons of the calibrated signal with airborne lidar, ground-based lidar, and spaceborne lidar all show agreement within the estimated error bars of the respective instruments.
Zhenping Yin, Albert Ansmann, Holger Baars, Patric Seifert, Ronny Engelmann, Martin Radenz, Cristofer Jimenez, Alina Herzog, Kevin Ohneiser, Karsten Hanbuch, Luc Blarel, Philippe Goloub, Gaël Dubois, Stephane Victori, and Fabrice Maupin
Atmos. Meas. Tech., 12, 5685–5698, https://doi.org/10.5194/amt-12-5685-2019, https://doi.org/10.5194/amt-12-5685-2019, 2019
Short summary
Short summary
A new shipborne Sun–sky–lunar photometer was validated through comparisons with collocated MICROTOPS II and multiwavelength Raman polarization lidar measurements during two trans-Atlantic cruises. A full diurnal cycle of mixed dust–smoke episode was captured by both the shipborne photometer and lidar. The coefficient of determination for the linear regression between MICROTOPS II and the shipborne photometer was 0.993 for AOD at 500 nm based on the entire dataset.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Ioannis Binietoglou, Albert Ansmann, Ulla Wandinger, Julian Hofer, John Yorks, Edward Nowottnick, Abduvosit Makhmudov, Alexandros Papayannis, Aleksander Pietruczuk, Anna Gialitaki, Arnoud Apituley, Artur Szkop, Constantino Muñoz Porcar, Daniele Bortoli, Davide Dionisi, Dietrich Althausen, Dimitra Mamali, Dimitris Balis, Doina Nicolae, Eleni Tetoni, Gian Luigi Liberti, Holger Baars, Ina Mattis, Iwona Sylwia Stachlewska, Kalliopi Artemis Voudouri, Lucia Mona, Maria Mylonaki, Maria Rita Perrone, Maria João Costa, Michael Sicard, Nikolaos Papagiannopoulos, Nikolaos Siomos, Pasquale Burlizzi, Rebecca Pauly, Ronny Engelmann, Sabur Abdullaev, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, https://doi.org/10.5194/acp-19-11743-2019, 2019
Short summary
Short summary
To increase accuracy and validate satellite-based products, comparison with ground-based reference observations is required. To do this, we present evaluation activity of EARLINET for the qualitative and quantitative assessment of NASA's CATS lidar operating aboard the International Space Station (ISS) while identified discrepancies are discussed. Better understanding CATS performance and limitations provides a valuable basis for scientific studies implementing the satellite-based lidar system.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Julian Hofer, Holger Baars, Dietrich Althausen, and Sabur F. Abdullaev
Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019, https://doi.org/10.5194/amt-12-4849-2019, 2019
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
Andreas Foth, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann
Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019, https://doi.org/10.5194/acp-19-6217-2019, 2019
Short summary
Short summary
In this study, we present the vertical aerosol distribution in the pristine region of the southern tip of South America determined by ground-based and spaceborne lidar observations. Most aerosol load is contained within the planetary boundary layer up to about 1200 m. The free troposphere is characterized by a very low aerosol concentration but a frequent occurrence of clouds. Lofted aerosol layers were rarely observed and, when present, were characterized by very low optical thicknesses.
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018, https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary
Short summary
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over Europe by interactive regional dust modeling. Dust particles are very efficient ice-nucleating particles promoting the formation of ice crystals in clouds. The simulations show that the observed extensive cirrus development was likely related to the above-average dust load. The interactive dust–cloud feedback in the model significantly improves the agreement with aircraft and satellite observations.
Nikolaos Papagiannopoulos, Lucia Mona, Aldo Amodeo, Giuseppe D'Amico, Pilar Gumà Claramunt, Gelsomina Pappalardo, Lucas Alados-Arboledas, Juan Luís Guerrero-Rascado, Vassilis Amiridis, Panagiotis Kokkalis, Arnoud Apituley, Holger Baars, Anja Schwarz, Ulla Wandinger, Ioannis Binietoglou, Doina Nicolae, Daniele Bortoli, Adolfo Comerón, Alejandro Rodríguez-Gómez, Michaël Sicard, Alex Papayannis, and Matthias Wiegner
Atmos. Chem. Phys., 18, 15879–15901, https://doi.org/10.5194/acp-18-15879-2018, https://doi.org/10.5194/acp-18-15879-2018, 2018
Short summary
Short summary
A stand-alone automatic method for typing observations of the European Aerosol Research Lidar Network (EARLINET) is presented. The method compares the observations to model distributions that were constructed using EARLINET pre-classified data. The algorithm’s versatility and adaptability makes it suitable for network-wide typing studies.
Albert Ansmann, Holger Baars, Alexandra Chudnovsky, Ina Mattis, Igor Veselovskii, Moritz Haarig, Patric Seifert, Ronny Engelmann, and Ulla Wandinger
Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, https://doi.org/10.5194/acp-18-11831-2018, 2018
Short summary
Short summary
Extremely large light extinction coefficients of 500 Mm-1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by EARLINET lidars in the stratosphere over central Europe from 21 to 22 August, 2017. This paper provides an overview based on ground-based (lidar, AERONET) and satellite (MODIS, OMI) remote sensing.
Moritz Haarig, Albert Ansmann, Holger Baars, Cristofer Jimenez, Igor Veselovskii, Ronny Engelmann, and Dietrich Althausen
Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, https://doi.org/10.5194/acp-18-11847-2018, 2018
Short summary
Short summary
The worldwide only triple-wavelength polarization/Raman lidar was used to measure optical, microphysical, and morphological properties of aged Canadian wildfire smoke occurring in the troposphere and stratosphere over Leipzig, Germany, in August 2017. A strong contrast between the tropospheric and stratospheric smoke properties was found.
Carmen Córdoba-Jabonero, Michaël Sicard, Albert Ansmann, Ana del Águila, and Holger Baars
Atmos. Meas. Tech., 11, 4775–4795, https://doi.org/10.5194/amt-11-4775-2018, https://doi.org/10.5194/amt-11-4775-2018, 2018
Short summary
Short summary
The high potential of the MPLNET polarized Micro-Pulse LiDAR (P-MPL) is demonstrated in synergy with the POLIPHON (POlarization-LIdar PHOtometer Networking) method to retrieve the vertical separation of both the optical and mass features of the dust, smoke and pollen components mixed with other aerosols. This synergetic procedure can be easily applied to the worldwide MPLNET lidar systems and to space-borne lidars: the ongoing NASA CALIPSO/CALIOP and the forthcoming ESA EarthCARE/ATLID.
Daniel Moran-Zuloaga, Florian Ditas, David Walter, Jorge Saturno, Joel Brito, Samara Carbone, Xuguang Chi, Isabella Hrabě de Angelis, Holger Baars, Ricardo H. M. Godoi, Birgit Heese, Bruna A. Holanda, Jošt V. Lavrič, Scot T. Martin, Jing Ming, Mira L. Pöhlker, Nina Ruckteschler, Hang Su, Yaqiang Wang, Qiaoqiao Wang, Zhibin Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10055–10088, https://doi.org/10.5194/acp-18-10055-2018, https://doi.org/10.5194/acp-18-10055-2018, 2018
Short summary
Short summary
This study presents multiple years of aerosol coarse mode observations at the remote ATTO site in the Amazon Basin. The results are discussed in light of the frequent and episodic long-range transport of Saharan dust plumes in the early wet season as well as the persistent background bioaerosol cycling in the rain forest ecosystem. This work provides a solid basis for future studies on the dynamic coarse mode aerosol cycling and its biogeochemical relevance in the Amazon.
Stephanie Bohlmann, Holger Baars, Martin Radenz, Ronny Engelmann, and Andreas Macke
Atmos. Chem. Phys., 18, 9661–9679, https://doi.org/10.5194/acp-18-9661-2018, https://doi.org/10.5194/acp-18-9661-2018, 2018
Short summary
Short summary
Lidar measurements of two expeditions across the Atlantic Ocean aboard the research vessel Polarstern are presented. In addition to Saharan dust layers and complex dust–smoke mixtures, pure marine conditions with enhanced particle depolarisation ratios on top of the marine boundary layer could be observed. A statistical analysis shows latitudinal differences in the optical properties within the marine boundary layer and illustrates the potential of these properties for aerosol classification.
Barbara Altstädter, Andreas Platis, Michael Jähn, Holger Baars, Janine Lückerath, Andreas Held, Astrid Lampert, Jens Bange, Markus Hermann, and Birgit Wehner
Atmos. Chem. Phys., 18, 8249–8264, https://doi.org/10.5194/acp-18-8249-2018, https://doi.org/10.5194/acp-18-8249-2018, 2018
Short summary
Short summary
This article describes the appearance of ultrafine aerosol particles (size < 12 nm) within the atmospheric boundary layer under cloudy conditions. New particle formation (NPF) was observed with the ALADINA unmanned aerial system in relation to increased turbulence near the inversion layer. Fast mixing processes and rapid dilution of surrounding air led to an insufficient particle growth rate, seen in sporadic clusters at ground. These events might not have been classified as NPF by surface data.
Dimitra Mamali, Eleni Marinou, Jean Sciare, Michael Pikridas, Panagiotis Kokkalis, Michael Kottas, Ioannis Binietoglou, Alexandra Tsekeri, Christos Keleshis, Ronny Engelmann, Holger Baars, Albert Ansmann, Vassilis Amiridis, Herman Russchenberg, and George Biskos
Atmos. Meas. Tech., 11, 2897–2910, https://doi.org/10.5194/amt-11-2897-2018, https://doi.org/10.5194/amt-11-2897-2018, 2018
Short summary
Short summary
The paper's scope is to evaluate the performance of in situ atmospheric aerosol instrumentation on board unmanned aerial vehicles (UAVs) and the performance of algorithms used to calculate the aerosol mass from remote sensing instruments by comparing the two independent techniques to each other. Our results indicate that UAV-based aerosol measurements (using specific in situ and remote sensing instrumentation) can provide reliable ways to determine the aerosol mass throughout the atmosphere.
Livio Belegante, Juan Antonio Bravo-Aranda, Volker Freudenthaler, Doina Nicolae, Anca Nemuc, Dragos Ene, Lucas Alados-Arboledas, Aldo Amodeo, Gelsomina Pappalardo, Giuseppe D'Amico, Francesco Amato, Ronny Engelmann, Holger Baars, Ulla Wandinger, Alexandros Papayannis, Panos Kokkalis, and Sérgio N. Pereira
Atmos. Meas. Tech., 11, 1119–1141, https://doi.org/10.5194/amt-11-1119-2018, https://doi.org/10.5194/amt-11-1119-2018, 2018
Short summary
Short summary
This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected EARLINET lidar instruments. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is accepted in the literature. The depolarization accuracy estimate at 532 nm is better than ±0.03 for all cases.
Sebastian Düsing, Birgit Wehner, Patric Seifert, Albert Ansmann, Holger Baars, Florian Ditas, Silvia Henning, Nan Ma, Laurent Poulain, Holger Siebert, Alfred Wiedensohler, and Andreas Macke
Atmos. Chem. Phys., 18, 1263–1290, https://doi.org/10.5194/acp-18-1263-2018, https://doi.org/10.5194/acp-18-1263-2018, 2018
Alexandra Tsekeri, Anton Lopatin, Vassilis Amiridis, Eleni Marinou, Julia Igloffstein, Nikolaos Siomos, Stavros Solomos, Panagiotis Kokkalis, Ronny Engelmann, Holger Baars, Myrto Gratsea, Panagiotis I. Raptis, Ioannis Binietoglou, Nikolaos Mihalopoulos, Nikolaos Kalivitis, Giorgos Kouvarakis, Nikolaos Bartsotas, George Kallos, Sara Basart, Dirk Schuettemeyer, Ulla Wandinger, Albert Ansmann, Anatoli P. Chaikovsky, and Oleg Dubovik
Atmos. Meas. Tech., 10, 4995–5016, https://doi.org/10.5194/amt-10-4995-2017, https://doi.org/10.5194/amt-10-4995-2017, 2017
Short summary
Short summary
The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean.
Albert Ansmann, Franziska Rittmeister, Ronny Engelmann, Sara Basart, Oriol Jorba, Christos Spyrou, Samuel Remy, Annett Skupin, Holger Baars, Patric Seifert, Fabian Senf, and Thomas Kanitz
Atmos. Chem. Phys., 17, 14987–15006, https://doi.org/10.5194/acp-17-14987-2017, https://doi.org/10.5194/acp-17-14987-2017, 2017
Julian Hofer, Dietrich Althausen, Sabur F. Abdullaev, Abduvosit N. Makhmudov, Bakhron I. Nazarov, Georg Schettler, Ronny Engelmann, Holger Baars, K. Wadinga Fomba, Konrad Müller, Bernd Heinold, Konrad Kandler, and Albert Ansmann
Atmos. Chem. Phys., 17, 14559–14577, https://doi.org/10.5194/acp-17-14559-2017, https://doi.org/10.5194/acp-17-14559-2017, 2017
Short summary
Short summary
The Central Asian Dust Experiment provides unprecedented data on vertically resolved aerosol optical properties over Central Asia from continuous 18-month polarization Raman lidar observations in Dushanbe, Tajikistan. Central Asia is affected by climate change (e.g. glacier retreat) but in a large part missing vertically resolved aerosol measurements, which would help to better understand transport of dust and pollution aerosol across Central Asia and their influence on climate and health.
Moritz Haarig, Albert Ansmann, Josef Gasteiger, Konrad Kandler, Dietrich Althausen, Holger Baars, Martin Radenz, and David A. Farrell
Atmos. Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017, https://doi.org/10.5194/acp-17-14199-2017, 2017
Short summary
Short summary
The depolarization ratio and the backscatter coefficient of marine particles are correlated with the relative humidity. The measurements were performed under atmospheric conditions with a multi-wavelength lidar system in pure marine conditions over Barbados in February 2014. For RH < 50 % the sea salt particles have a cubic-like shape resulting in an enhanced depolarization ratio of up to 0.15. This agrees with model results of cubic sea salt. The extinction enhancement f(RH) factor was derived.
Maria Filioglou, Anna Nikandrova, Sami Niemelä, Holger Baars, Tero Mielonen, Ari Leskinen, David Brus, Sami Romakkaniemi, Elina Giannakaki, and Mika Komppula
Atmos. Meas. Tech., 10, 4303–4316, https://doi.org/10.5194/amt-10-4303-2017, https://doi.org/10.5194/amt-10-4303-2017, 2017
Franziska Rittmeister, Albert Ansmann, Ronny Engelmann, Annett Skupin, Holger Baars, Thomas Kanitz, and Stefan Kinne
Atmos. Chem. Phys., 17, 12963–12983, https://doi.org/10.5194/acp-17-12963-2017, https://doi.org/10.5194/acp-17-12963-2017, 2017
Moritz Haarig, Albert Ansmann, Dietrich Althausen, André Klepel, Silke Groß, Volker Freudenthaler, Carlos Toledano, Rodanthi-Elisavet Mamouri, David A. Farrell, Damien A. Prescod, Eleni Marinou, Sharon P. Burton, Josef Gasteiger, Ronny Engelmann, and Holger Baars
Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, https://doi.org/10.5194/acp-17-10767-2017, 2017
Short summary
Short summary
Our measurements performed with a lidar on Barbados give a vertical profile of Saharan dust, which was transported over 5000 km across the Atlantic. The new triple-wavelength depolarization technique reveals more information about the shape and size of dust, which will improve our understanding of the aging process of dust in the atmosphere and its representation in dust models. Changing properties of dust particles influence the solar radiation and the cloud properties and thus our climate.
Holger Baars, Patric Seifert, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 10, 3175–3201, https://doi.org/10.5194/amt-10-3175-2017, https://doi.org/10.5194/amt-10-3175-2017, 2017
Short summary
Short summary
A novel technique for multiwavelength lidars is introduced to derive information on the particle type in the tropospheric profile in analogy to the Cloudnet target classification. Four different aerosol classes and several cloud classes are defined. The technique is based on absolute calibrated lidar signals in temporally high resolution and thus is also well suited for aerosol–cloud-interaction studies. The approach was applied on a 2-month data set of the HOPE campaign in western Germany.
Birgit Heese, Holger Baars, Stephanie Bohlmann, Dietrich Althausen, and Ruru Deng
Atmos. Chem. Phys., 17, 6679–6691, https://doi.org/10.5194/acp-17-6679-2017, https://doi.org/10.5194/acp-17-6679-2017, 2017
Pablo Ortiz-Amezcua, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, José Antonio Benavent-Oltra, Christine Böckmann, Stefanos Samaras, Iwona S. Stachlewska, Łucja Janicka, Holger Baars, Stephanie Bohlmann, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 17, 5931–5946, https://doi.org/10.5194/acp-17-5931-2017, https://doi.org/10.5194/acp-17-5931-2017, 2017
Short summary
Short summary
Strong events of biomass burning aerosol transported from North American forest fires were detected during July 2013 at three European stations from EARLINET. Satellite observations and models were used to estimate the smoke sources and transport paths. Using lidar techniques and regularization algorithms, the aerosol layers were optically and microphysically characterized, finding some common features among the events, concerning the similar aging processes undergone by the particles.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Jann Schrod, Daniel Weber, Jaqueline Drücke, Christos Keleshis, Michael Pikridas, Martin Ebert, Bojan Cvetković, Slobodan Nickovic, Eleni Marinou, Holger Baars, Albert Ansmann, Mihalis Vrekoussis, Nikos Mihalopoulos, Jean Sciare, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 17, 4817–4835, https://doi.org/10.5194/acp-17-4817-2017, https://doi.org/10.5194/acp-17-4817-2017, 2017
Short summary
Short summary
In this paper we present data of ice-nucleating particles (INPs) from a 1-month campaign in the Eastern Mediterranean using unmanned aircraft systems (UASs, drones) and offline sampling with subsequent laboratory analysis. To our knowledge, this is the first time INPs were measured onboard a UAS. We find that INP concentrations were 1 magnitude higher aloft than at the ground, highlighting that surface-based measurement of INP may only be of limited significance for the situation at cloud level.
Diego A. Gouveia, Boris Barja, Henrique M. J. Barbosa, Patric Seifert, Holger Baars, Theotonio Pauliquevis, and Paulo Artaxo
Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, https://doi.org/10.5194/acp-17-3619-2017, 2017
Short summary
Short summary
We derive the first comprehensive statistics of cirrus clouds over a tropical rain forest. Monthly frequency of occurrence can be as high as 88 %. The diurnal cycle follows that of precipitation, and frequently cirrus is found in the tropopause layer. The mean values of cloud top, base, thickness, optical depth and lidar ratio were 14.3 km, 12.9 km, 1.4 km, 0.25, and 23 sr respectively. The high fraction (42 %) of subvisible clouds may contaminate satellite measurements to an unknown extent.
Ina Mattis, Giuseppe D'Amico, Holger Baars, Aldo Amodeo, Fabio Madonna, and Marco Iarlori
Atmos. Meas. Tech., 9, 3009–3029, https://doi.org/10.5194/amt-9-3009-2016, https://doi.org/10.5194/amt-9-3009-2016, 2016
Short summary
Short summary
We present an automated software tool for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the modules of the Single Calculus Chain of the European Aerosol Research Lidar Network (EARLINET). It allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way.
Ronny Engelmann, Thomas Kanitz, Holger Baars, Birgit Heese, Dietrich Althausen, Annett Skupin, Ulla Wandinger, Mika Komppula, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Ina Mattis, Holger Linné, and Albert Ansmann
Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, https://doi.org/10.5194/amt-9-1767-2016, 2016
Short summary
Short summary
The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly
was developed at TROPOS in 2003. This lidar type was continuously improved with gained experience from EARLINET, worldwide field campaigns, and institute collaborations within the last 10 years. We present recent changes to the setup of our portable multiwavelength Raman and polarization lidar PollyXT.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
Nikolaos Papagiannopoulos, Lucia Mona, Lucas Alados-Arboledas, Vassilis Amiridis, Holger Baars, Ioannis Binietoglou, Daniele Bortoli, Giuseppe D'Amico, Aldo Giunta, Juan Luis Guerrero-Rascado, Anja Schwarz, Sergio Pereira, Nicola Spinelli, Ulla Wandinger, Xuan Wang, and Gelsomina Pappalardo
Atmos. Chem. Phys., 16, 2341–2357, https://doi.org/10.5194/acp-16-2341-2016, https://doi.org/10.5194/acp-16-2341-2016, 2016
Short summary
Short summary
Satellite-derived products must undergo data evaluation with reference data sets in order to identify any possible reasons of discrepancy or to assess their representativity. In that direction, data coming from CALIPSO satellite were compared with observations from the ground. We identified a CALIPSO underestimation that could be linked to an assumption in the satellites' algorithms. The proposed correction improves the performance and could enhance aerosol modeling.
L. Belegante, J. A. Bravo-Aranda, V. Freudenthaler, D. Nicolae, A. Nemuc, L. Alados-Arboledas, A. Amodeo, G. Pappalardo, G. D’Amico, R. Engelmann, H. Baars, U. Wandinger, A. Papayannis, P. Kokkalis, and S. N. Pereira
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2015-337, https://doi.org/10.5194/amt-2015-337, 2016
Revised manuscript has not been submitted
Short summary
Short summary
This study aims to present techniques developed to calibrate the lidar depolarization channels.
The experimental approach of the paper is designed to present how calibration procedures are implemented. Most of the literature is focused on the theoretical perspective of the topic and practical issues usually remain an open topic. A hands on approach for the assessment of the lidar polarization sensitivity is welcomed since most of these techniques require comprehensive practical description.
G. D'Amico, A. Amodeo, H. Baars, I. Binietoglou, V. Freudenthaler, I. Mattis, U. Wandinger, and G. Pappalardo
Atmos. Meas. Tech., 8, 4891–4916, https://doi.org/10.5194/amt-8-4891-2015, https://doi.org/10.5194/amt-8-4891-2015, 2015
M. Sicard, G. D'Amico, A. Comerón, L. Mona, L. Alados-Arboledas, A. Amodeo, H. Baars, J. M. Baldasano, L. Belegante, I. Binietoglou, J. A. Bravo-Aranda, A. J. Fernández, P. Fréville, D. García-Vizcaíno, A. Giunta, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, D. Hadjimitsis, A. Haefele, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, R. E. Mamouri, I. Mattis, F. Molero, N. Montoux, A. Muñoz, C. Muñoz Porcar, F. Navas-Guzmán, D. Nicolae, A. Nisantzi, N. Papagiannopoulos, A. Papayannis, S. Pereira, J. Preißler, M. Pujadas, V. Rizi, F. Rocadenbosch, K. Sellegri, V. Simeonov, G. Tsaknakis, F. Wagner, and G. Pappalardo
Atmos. Meas. Tech., 8, 4587–4613, https://doi.org/10.5194/amt-8-4587-2015, https://doi.org/10.5194/amt-8-4587-2015, 2015
Short summary
Short summary
In the framework of the ACTRIS summer 2012 measurement campaign (8 June–17 July 2012), EARLINET organized and performed a controlled exercise of feasibility to demonstrate its potential to perform operational, coordinated measurements and deliver products in near-real time. The paper describes the measurement protocol and discusses the delivery of real-time and near-real-time lidar-derived products.
I. Binietoglou, S. Basart, L. Alados-Arboledas, V. Amiridis, A. Argyrouli, H. Baars, J. M. Baldasano, D. Balis, L. Belegante, J. A. Bravo-Aranda, P. Burlizzi, V. Carrasco, A. Chaikovsky, A. Comerón, G. D'Amico, M. Filioglou, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, L. Ilic, P. Kokkalis, A. Maurizi, L. Mona, F. Monti, C. Muñoz-Porcar, D. Nicolae, A. Papayannis, G. Pappalardo, G. Pejanovic, S. N. Pereira, M. R. Perrone, A. Pietruczuk, M. Posyniak, F. Rocadenbosch, A. Rodríguez-Gómez, M. Sicard, N. Siomos, A. Szkop, E. Terradellas, A. Tsekeri, A. Vukovic, U. Wandinger, and J. Wagner
Atmos. Meas. Tech., 8, 3577–3600, https://doi.org/10.5194/amt-8-3577-2015, https://doi.org/10.5194/amt-8-3577-2015, 2015
A. Foth, H. Baars, P. Di Girolamo, and B. Pospichal
Atmos. Chem. Phys., 15, 7753–7763, https://doi.org/10.5194/acp-15-7753-2015, https://doi.org/10.5194/acp-15-7753-2015, 2015
Short summary
Short summary
We present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour from a collocated microwave radiometer. These simultaneous observations provide an operational and continuous measurement of water vapour profiles. The stability of the calibration factor allows for the calibration of the lidar even in the presence of clouds. Based on this approach, water vapour profiles can be retrieved during all non-precipitating conditions.
E. Giannakaki, A. Pfüller, K. Korhonen, T. Mielonen, L. Laakso, V. Vakkari, H. Baars, R. Engelmann, J. P. Beukes, P. G. Van Zyl, M. Josipovic, P. Tiitta, K. Chiloane, S. Piketh, H. Lihavainen, K. E. J. Lehtinen, and M. Komppula
Atmos. Chem. Phys., 15, 5429–5442, https://doi.org/10.5194/acp-15-5429-2015, https://doi.org/10.5194/acp-15-5429-2015, 2015
Short summary
Short summary
In this study we summarize 1 year of Raman lidar observations over South Africa. The analyses of lidar measurements presented here could assist in bridging existing gaps in the knowledge of vertical distribution of aerosols above South Africa, since limited long-term data of this type are available for this region. For the first time, we have been able to cover the full seasonal cycle on geometrical characteristics and optical properties of free tropospheric aerosol layers in the region.
B. Altstädter, A. Platis, B. Wehner, A. Scholtz, N. Wildmann, M. Hermann, R. Käthner, H. Baars, J. Bange, and A. Lampert
Atmos. Meas. Tech., 8, 1627–1639, https://doi.org/10.5194/amt-8-1627-2015, https://doi.org/10.5194/amt-8-1627-2015, 2015
Short summary
Short summary
The unmanned research aircraft Carolo P360 "ALADINA" is a flexible tool for investigating the horizontal and vertical distribution of freshly formed particles in the atmospheric boundary layer (ABL) combined with measurements of turbulent fluxes derived by fast meteorological sensors. First results of a feasibility study show, among others, events of particle bursts in an internal
layer of the ABL. Comparisons with ground-based instruments and a lidar present the reliability of the new system.
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
T. Kanitz, A. Ansmann, A. Foth, P. Seifert, U. Wandinger, R. Engelmann, H. Baars, D. Althausen, C. Casiccia, and F. Zamorano
Atmos. Meas. Tech., 7, 2061–2072, https://doi.org/10.5194/amt-7-2061-2014, https://doi.org/10.5194/amt-7-2061-2014, 2014
C. Klein and A. Dabas
Atmos. Meas. Tech., 7, 1277–1287, https://doi.org/10.5194/amt-7-1277-2014, https://doi.org/10.5194/amt-7-1277-2014, 2014
K. Korhonen, E. Giannakaki, T. Mielonen, A. Pfüller, L. Laakso, V. Vakkari, H. Baars, R. Engelmann, J. P. Beukes, P. G. Van Zyl, A. Ramandh, L. Ntsangwane, M. Josipovic, P. Tiitta, G. Fourie, I. Ngwana, K. Chiloane, and M. Komppula
Atmos. Chem. Phys., 14, 4263–4278, https://doi.org/10.5194/acp-14-4263-2014, https://doi.org/10.5194/acp-14-4263-2014, 2014
A. Skupin, A. Ansmann, R. Engelmann, H. Baars, and T. Müller
Atmos. Meas. Tech., 7, 701–712, https://doi.org/10.5194/amt-7-701-2014, https://doi.org/10.5194/amt-7-701-2014, 2014
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Volcanic cloud detection using Sentinel-3 satellite data by means of neural networks: the Raikoke 2019 eruption test case
The new MISR research aerosol retrieval algorithm: a multi-angle, multi-spectral, bounded-variable least squares retrieval of aerosol particle properties over both land and water
Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data
The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm
Atmospheric visibility inferred from continuous-wave Doppler wind lidar
Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra
Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology
Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean
Employing relaxed smoothness constraints on imaginary part of refractive index in AERONET aerosol retrieval algorithm
Observation of bioaerosol transport using wideband integrated bioaerosol sensor and coherent Doppler lidar
Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system
Enhancing MAX-DOAS atmospheric state retrievals by multispectral polarimetry – studies using synthetic data
Assessing the benefits of Imaging Infrared Radiometer observations for the CALIOP version 4 cloud and aerosol discrimination algorithm
A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars
Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index
Aerosol models from the AERONET database: application to surface reflectance validation
Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6 × 6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data
Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product
Retrieval of UV–visible aerosol absorption using AERONET and OMI–MODIS synergy: spatial and temporal variability across major aerosol environments
Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements
Ash particle refractive index model for simulating the brightness temperature spectrum of volcanic ash clouds from satellite infrared sounder measurements
Retrieval of aerosol properties using relative radiance measurements from an all-sky camera
A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments
Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm
Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models
Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations
Mass concentration estimates of long-range-transported Canadian biomass burning aerosols from a multi-wavelength Raman polarization lidar and a ceilometer in Finland
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Introducing the MISR level 2 near real-time aerosol product
Estimation of PM2.5 concentration in China using linear hybrid machine learning model
Species correlation measurements in turbulent flare plumes: considerations for field measurements
Retrieval of aerosol microphysical properties from atmospheric lidar sounding: an investigation using synthetic measurements and data from the ACEPOL campaign
Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns
Deriving boundary layer height from aerosol lidar using machine learning: KABL and ADABL algorithms
Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model
Quantitative comparison of measured and simulated O4 absorptions for one day with extremely low aerosol load over the tropical Atlantic
A Dark Target research aerosol algorithm for MODIS observations over eastern China: increasing coverage while maintaining accuracy at high aerosol loading
Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals
Analysis of simultaneous aerosol and ocean glint retrieval using multi-angle observations
Model-enforced post-process correction of satellite aerosol retrievals
Explicit and consistent aerosol correction for visible wavelength satellite cloud and nitrogen dioxide retrievals based on optical properties from a global aerosol analysis
Reducing cloud contamination in aerosol optical depth (AOD) measurements
Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: applications to radiometer, lidar and radiosonde observations
Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths
Relative sky radiance from multi-exposure all-sky camera images
An uncertainty-based protocol for the setup and measurement of soot–black carbon emissions from gas flares using sky-LOSA
A new measurement approach for validating satellite-based above-cloud aerosol optical depth
OMPS LP Version 2.0 multi-wavelength aerosol extinction coefficient retrieval algorithm
Simulated reflectance above snow constrained by airborne measurements of solar radiation: implications for the snow grain morphology in the Arctic
Ilaria Petracca, Davide De Santis, Matteo Picchiani, Stefano Corradini, Lorenzo Guerrieri, Fred Prata, Luca Merucci, Dario Stelitano, Fabio Del Frate, Giorgia Salvucci, and Giovanni Schiavon
Atmos. Meas. Tech., 15, 7195–7210, https://doi.org/10.5194/amt-15-7195-2022, https://doi.org/10.5194/amt-15-7195-2022, 2022
Short summary
Short summary
The authors propose a near-real-time procedure for the detection of volcanic clouds by means of Sentinel-3 satellite data and neural networks. The algorithm results in an automatic image classification where ashy pixels are distinguished from other surfaces with remarkable accuracy. The model is considerably faster if compared to other approaches which are time consuming, case specific, and not automatic. The algorithm can be significantly helpful for emergency management during eruption events.
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022, https://doi.org/10.5194/amt-15-6865-2022, 2022
Short summary
Short summary
Launched in December 1999, NASA’s Multi-angle Imaging SpectroRadiometer (MISR) has given researchers qualitative constraints on aerosol particle properties for the past 22 years. Here, we present a new MISR research aerosol retrieval algorithm (RA) that utilizes over-land surface reflectance data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) to address limitations of the MISR operational aerosol retrieval algorithm and improve retrievals of aerosol particle properties.
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, Xi Chen, Yele Sun, Jianjun Li, Guigang Tang, and Wenxuan Chai
Atmos. Meas. Tech., 15, 6127–6144, https://doi.org/10.5194/amt-15-6127-2022, https://doi.org/10.5194/amt-15-6127-2022, 2022
Short summary
Short summary
We develop a new algorithm to get the vertical mass concentration profiles of fine aerosol components based on the synergy of ground-based remote sensing for the first time. The comparisons with in situ observations and chemistry transport models validate the performance of the algorithm. Uncertainties caused by input parameters are also assessed in this paper. We expected that the algorithm can provide a new idea for lidar inversion and promote the development of aerosol component profiles.
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-289, https://doi.org/10.5194/amt-2022-289, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosol in the stratosphere from volcanic eruptions and major wildfire events. This manuscript describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022, https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary
Short summary
Visibility is how well we can see something. Visibility sensors, such as employed in meteorological observatories and airports, measure at a point at the instrument location, which may not be representative of visibilities further away, e.g. near the sea surface during sea spray. Light detecting and ranging (lidar) can measure visibility further away. We find wind lidar to be a viable tool to measure visibility with low accuracy, which could suffice for safety-uncritical applications.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Boris Barchunov, and Mikhail Korenskii
Atmos. Meas. Tech., 15, 4881–4900, https://doi.org/10.5194/amt-15-4881-2022, https://doi.org/10.5194/amt-15-4881-2022, 2022
Short summary
Short summary
An approach to reveal variability in aerosol type at a high spatiotemporal resolution, by combining fluorescence and Mie–Raman lidar data, is presented. We applied this new classification scheme to lidar data obtained by LOA, University of Lille, in 2020–2021. It is demonstrated that the separation of the main particle types, such as smoke, dust, pollen, and urban, can be performed with a height resolution of 60 m and temporal resolution better than 10 min for the current lidar configuration.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Oleg Dubovik, Joel S. Schafer, Alexander Smirnov, and Mikhail Sorokin
Atmos. Meas. Tech., 15, 4135–4151, https://doi.org/10.5194/amt-15-4135-2022, https://doi.org/10.5194/amt-15-4135-2022, 2022
Short summary
Short summary
This paper describes modification of smoothness constraints on the imaginary part of the refractive index employed in the AERONET aerosol retrieval algorithm. This modification is termed relaxed due to the weaker strength of this new smoothness constraint. Applying the modified version of the smoothness constraint results in a significant reduction of retrieved light absorption by brown-carbon-containing aerosols.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Jan-Lukas Tirpitz, Udo Frieß, Robert Spurr, and Ulrich Platt
Atmos. Meas. Tech., 15, 2077–2098, https://doi.org/10.5194/amt-15-2077-2022, https://doi.org/10.5194/amt-15-2077-2022, 2022
Short summary
Short summary
MAX-DOAS is a widely used measurement technique for the remote detection of atmospheric aerosol and trace gases. It relies on the analysis of ultra-violet and visible radiation spectra of skylight. To date, information contained in the skylight's polarisation state has not been utilised. On the basis of synthetic data, we carried out sensitivity analyses to assess the potential of polarimetry for MAX-DOAS applications.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Marco Di Paolantonio, Davide Dionisi, and Gian Luigi Liberti
Atmos. Meas. Tech., 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022, https://doi.org/10.5194/amt-15-1217-2022, 2022
Short summary
Short summary
A procedure for the characterization of the lidar transmitter–receiver geometry was developed. This characterization is currently implemented in the Rome RMR lidar to optimize the telescope/beam alignment, retrieve the overlap function, and estimate the absolute and relative tilt of the laser beam. This procedure can be potentially used to complement the standard EARLINET quality assurance tests.
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022, https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary
Short summary
The aerosol optical depth (AOD) characteristics in an urban area of Rome were retrieved over a period of 11 years (2010–2020) to determine, for the first time, their effect on the incoming ultraviolet (UV) solar radiation. The surface forcing efficiency shows that the AOD is the primary parameter affecting the surface irradiance in Rome, and it is found to be greater for smaller zenith angles and for larger and more absorbing particles in the UV range (such as, e.g., mineral dust).
Jean-Claude Roger, Eric Vermote, Sergii Skakun, Emilie Murphy, Oleg Dubovik, Natacha Kalecinski, Bruno Korgo, and Brent Holben
Atmos. Meas. Tech., 15, 1123–1144, https://doi.org/10.5194/amt-15-1123-2022, https://doi.org/10.5194/amt-15-1123-2022, 2022
Short summary
Short summary
From measurements of the sky performed by AERONET, we determined the microphysical properties of the atmospheric particles (aerosols) for each AERONET site. We used the aerosol optical thickness and its variation over the visible spectrum. This allows us to determine an aerosol model useful for (but not only) the validation of the surface reflectance satellite-derived product. The impact of the aerosol model uncertainties on the surface reflectance validation has been found to be 1 % to 3 %.
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022, https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Short summary
This paper uses a machine learning algorithm to infer high-resolution maps of particulate air quality in eastern China, Japan, and the Korean peninsula, using data from a geostationary satellite along with meteorology. We then perform an extensive evaluation of this inferred air quality and use it to diagnose trends in the region. We hope this paper and the associated data will be valuable to other scientists interested in epidemiology, air quality, remote sensing, and machine learning.
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Short summary
We have developed a machine-learning-based model that can be used to correct the Sentinel-3 satellite-based aerosol parameter data of the Synergy data product. The strength of the model is that the original satellite data processing does not have to be carried out again but the correction can be carried out with the data already available. We show that the correction significantly improves the accuracy of the satellite aerosol parameters.
Vinay Kayetha, Omar Torres, and Hiren Jethva
Atmos. Meas. Tech., 15, 845–877, https://doi.org/10.5194/amt-15-845-2022, https://doi.org/10.5194/amt-15-845-2022, 2022
Short summary
Short summary
Existing measurements of spectral aerosol absorption are limited, particularly in the UV region. We use the synergy of satellite and ground measurements to derive spectral single scattering albedo of aerosols from the UV–visible spectrum. The resulting spectral SSAs are used to investigate seasonality in absorption for carbonaceous, dust, and urban aerosols. Regional aerosol absorption models that could be used to make reliable assumptions in satellite remote sensing of aerosols are derived.
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022, https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary
Short summary
Aerosols are tiny particles suspended in the atmosphere. A fraction of these particles can form clouds and are called cloud condensation nuclei (CCN). Measurements of such aerosol particles are necessary to study the aerosol–cloud interactions and reduce the uncertainty in our future climate predictions. We present a novel methodology to estimate global 3D CCN concentrations from the CALIPSO satellite measurements. The final data set will be used to study the aerosol–cloud interactions.
Hiroshi Ishimoto, Masahiro Hayashi, and Yuzo Mano
Atmos. Meas. Tech., 15, 435–458, https://doi.org/10.5194/amt-15-435-2022, https://doi.org/10.5194/amt-15-435-2022, 2022
Short summary
Short summary
Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds (VACs) and radiative transfer calculations, we attempt to simulate the measured brightness temperature spectra (BTS) of volcanic ash aerosols in the infrared region. In particular, the dependence on the ash refractive index (RI) model is investigated.
Roberto Román, Juan C. Antuña-Sánchez, Victoria E. Cachorro, Carlos Toledano, Benjamín Torres, David Mateos, David Fuertes, César López, Ramiro González, Tatyana Lapionok, Marcos Herreras-Giralda, Oleg Dubovik, and Ángel M. de Frutos
Atmos. Meas. Tech., 15, 407–433, https://doi.org/10.5194/amt-15-407-2022, https://doi.org/10.5194/amt-15-407-2022, 2022
Short summary
Short summary
An all-sky camera is used to obtain the relative sky radiance, and this radiance is used as input in an inversion code to obtain aerosol properties. This paper is really interesting because it pushes forward the use and capability of sky cameras for more advanced science purposes. Enhanced aerosol properties can be retrieved with accuracy using only an all-sky camera, but synergy with other instruments providing aerosol optical depth could even increase the power of these low-cost instruments.
Alberto Sorrentino, Alessia Sannino, Nicola Spinelli, Michele Piana, Antonella Boselli, Valentino Tontodonato, Pasquale Castellano, and Xuan Wang
Atmos. Meas. Tech., 15, 149–164, https://doi.org/10.5194/amt-15-149-2022, https://doi.org/10.5194/amt-15-149-2022, 2022
Short summary
Short summary
We present a novel approach that can be used to obtain microphysical properties of atmospheric aerosol, up to several kilometers in the atmosphere, from lidar measurements taken from the ground. Our approach provides accurate reconstructions under many different experimental conditions. Our results can contribute to the expansion of the use of remote sensing techniques for air quality monitoring and atmospheric science in general.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Michal Segal Rozenhaimer, Meloë Kacenelenbogen, Yohei Shinozuka, Connor Flynn, Rich Ferrare, Sharon Burton, Chris Hostetler, Marc Mallet, and Paquita Zuidema
Atmos. Meas. Tech., 15, 61–77, https://doi.org/10.5194/amt-15-61-2022, https://doi.org/10.5194/amt-15-61-2022, 2022
Short summary
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, https://doi.org/10.5194/amt-14-7851-2021, 2021
Short summary
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA.
We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.
Oscar S. Sandvik, Johan Friberg, Moa K. Sporre, and Bengt G. Martinsson
Atmos. Meas. Tech., 14, 7153–7165, https://doi.org/10.5194/amt-14-7153-2021, https://doi.org/10.5194/amt-14-7153-2021, 2021
Short summary
Short summary
A method to form SO2 profiles in the stratosphere with high vertical resolution following volcanic eruptions is introduced. The method combines space-based high-resolution vertical aerosol profiles and SO2 measurements the first 2 weeks after an eruption with air mass trajectory analyses. The SO2 is located at higher altitude than in most previous studies. The detailed resolution of the SO2 profile is unprecedented compared to other methods.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, Mikhail V. Panchenko, and Meinrat O. Andreae
Atmos. Meas. Tech., 14, 6647–6673, https://doi.org/10.5194/amt-14-6647-2021, https://doi.org/10.5194/amt-14-6647-2021, 2021
Short summary
Short summary
The absorption of solar light by organic matter, known as brown carbon (BrC), contributes significantly to the radiative budget of the Earth’s atmosphere, but its representation in atmospheric models is uncertain. This paper advances a methodology to constrain model parameters characterizing BrC absorption of atmospheric aerosol originating from biomass burning with the available remote ground-based observations of atmospheric aerosol.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021, https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Short summary
This article documents the development and testing of a new near real-time (NRT) aerosol product from the MISR instrument on NASA’s Terra platform. The NRT product capitalizes on the unique attributes of the MISR retrieval approach, which leads to a high-quality and reliable aerosol data product. Several modifications are described that allow for rapid product generation within a 3 h window following acquisition. Implications for the product quality and consistency are discussed.
Zhihao Song, Bin Chen, Yue Huang, Li Dong, and Tingting Yang
Atmos. Meas. Tech., 14, 5333–5347, https://doi.org/10.5194/amt-14-5333-2021, https://doi.org/10.5194/amt-14-5333-2021, 2021
Short summary
Short summary
The linear hybrid machine learning model achieves the expected target well. The overall inversion accuracy (R2) of the model is 0.84, and the RMSE is 12.92 µg m−3. R2 was above 0.7 in more than 70 % of the sites, whereas RMSE and mean absolute error were below 20 and 15 µg m−3, respectively. There was severe pollution in winter with an average PM2.5 concentration of 62.10 µg m−3. However, there was only slight pollution in summer with an average PM2.5 concentration of 47.39 µg m−3.
Scott P. Seymour and Matthew R. Johnson
Atmos. Meas. Tech., 14, 5179–5197, https://doi.org/10.5194/amt-14-5179-2021, https://doi.org/10.5194/amt-14-5179-2021, 2021
Short summary
Short summary
Field measurements of gas flare emissions often assume that combustion species are spatially and temporally correlated in the plume. By measuring black carbon (BC) and water vapour in turbulent lab-scale flare plumes, this study shows that the well-correlated species assumption is not universally valid and that field measurements may be subject to large added uncertainty. Further analysis suggests that this uncertainty is easily avoided, and initial guidance is provided on sampling protocols.
William G. K. McLean, Guangliang Fu, Sharon P. Burton, and Otto P. Hasekamp
Atmos. Meas. Tech., 14, 4755–4771, https://doi.org/10.5194/amt-14-4755-2021, https://doi.org/10.5194/amt-14-4755-2021, 2021
Short summary
Short summary
In this study, we present results from aerosol retrievals using both synthetic and real lidar datasets, including measurements from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, a combined initiative between NASA and SRON (the Netherlands Institute for Space Research). Aerosol microphysical retrievals were performed using the High Spectral Resolution Lidar-2 (HSRL-2) setup, alongside several others, with the ACEPOL retrievals also compared to polarimeter retrievals.
Hyunkwang Lim, Sujung Go, Jhoon Kim, Myungje Choi, Seoyoung Lee, Chang-Keun Song, and Yasuko Kasai
Atmos. Meas. Tech., 14, 4575–4592, https://doi.org/10.5194/amt-14-4575-2021, https://doi.org/10.5194/amt-14-4575-2021, 2021
Short summary
Short summary
Aerosol property observations by satellites from geostationary Earth orbit (GEO) in particular have advantages of frequent sampling better than 1 h in addition to broader spatial coverage. This study provides data fusion products of aerosol optical properties from four different algorithms for two different GEO satellites: GOCI and AHI. The fused aerosol products adopted ensemble-mean and maximum-likelihood estimation methods. The data fusion provides improved results with better accuracy.
Thomas Rieutord, Sylvain Aubert, and Tiago Machado
Atmos. Meas. Tech., 14, 4335–4353, https://doi.org/10.5194/amt-14-4335-2021, https://doi.org/10.5194/amt-14-4335-2021, 2021
Short summary
Short summary
This article describes two methods to estimate the height of the very first layer of the atmosphere. It is measured with aerosol lidars, and the two new methods are based on machine learning. Both are open source and available under free licenses. A sensitivity analysis and a 2-year evaluation against meteorological balloons were carried out. One method has a good agreement with balloons but is limited by training, and the other has less good agreement with balloons but is more flexible.
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021, https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Short summary
Multi-angle polarimetric measurements can retrieve accurate aerosol properties over complex atmosphere and ocean systems; however, most retrieval algorithms require high computational costs. We propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems and then conduct simultaneous aerosol and ocean color retrievals on AirHARP measurements. The computational acceleration is 103 times with CPU or 104 times with GPU.
Thomas Wagner, Steffen Dörner, Steffen Beirle, Sebastian Donner, and Stefan Kinne
Atmos. Meas. Tech., 14, 3871–3893, https://doi.org/10.5194/amt-14-3871-2021, https://doi.org/10.5194/amt-14-3871-2021, 2021
Short summary
Short summary
We compare measured and simulated O4 absorptions for conditions of extremely low aerosol optical depth, for which the uncertainties related to imperfect knowledge of aerosol properties do not significantly affect the comparison results. The simulations underestimate the measurements by 15 % to 20 %. Even if no aerosols are considered, the simulated O4 absorptions are systematically lower than the measurements. Our results indicate a fundamental inconsistency between simulations and measurements.
Yingxi R. Shi, Robert C. Levy, Leiku Yang, Lorraine A. Remer, Shana Mattoo, and Oleg Dubovik
Atmos. Meas. Tech., 14, 3449–3468, https://doi.org/10.5194/amt-14-3449-2021, https://doi.org/10.5194/amt-14-3449-2021, 2021
Short summary
Short summary
Due to fast industrialization and development, China has been experiencing haze pollution episodes with both high frequencies and severity over the last 3 decades. This study improves the accuracy and data coverage of measured aerosol from satellites, which help quantify, characterize, and understand the impact of the haze phenomena over the entire East Asia region.
Rei Kudo, Henri Diémoz, Victor Estellés, Monica Campanelli, Masahiro Momoi, Franco Marenco, Claire L. Ryder, Osamu Ijima, Akihiro Uchiyama, Kouichi Nakashima, Akihiro Yamazaki, Ryoji Nagasawa, Nozomu Ohkawara, and Haruma Ishida
Atmos. Meas. Tech., 14, 3395–3426, https://doi.org/10.5194/amt-14-3395-2021, https://doi.org/10.5194/amt-14-3395-2021, 2021
Short summary
Short summary
A new method, Skyrad pack MRI version 2, was developed to retrieve aerosol physical and optical properties, water vapor, and ozone column concentrations from the sky radiometer, a filter radiometer deployed in the SKYNET international network. Our method showed good performance in a radiative closure study using surface solar irradiances from the Baseline Surface Radiation Network and a comparison using aircraft in situ measurements of Saharan dust events during the SAVEX-D 2015 campaign.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Antti Lipponen, Ville Kolehmainen, Pekka Kolmonen, Antti Kukkurainen, Tero Mielonen, Neus Sabater, Larisa Sogacheva, Timo H. Virtanen, and Antti Arola
Atmos. Meas. Tech., 14, 2981–2992, https://doi.org/10.5194/amt-14-2981-2021, https://doi.org/10.5194/amt-14-2981-2021, 2021
Short summary
Short summary
We have developed a new computational method to post-process-correct the satellite aerosol retrievals. The proposed method combines the conventional satellite aerosol retrievals relying on physics-based models and machine learning. The results show significantly improved accuracy in the aerosol data over the operational satellite data products. The correction can be applied to the existing satellite aerosol datasets with no need to fully reprocess the much larger original radiance data.
Alexander Vasilkov, Nickolay Krotkov, Eun-Su Yang, Lok Lamsal, Joanna Joiner, Patricia Castellanos, Zachary Fasnacht, and Robert Spurr
Atmos. Meas. Tech., 14, 2857–2871, https://doi.org/10.5194/amt-14-2857-2021, https://doi.org/10.5194/amt-14-2857-2021, 2021
Short summary
Short summary
To explicitly account for aerosol effects in the OMI cloud and nitrogen dioxide algorithms, we use a model of aerosol optical properties from a global aerosol assimilation system and radiative transfer computations. Accounting for anisotropic reflection of Earth's surface is an important feature of the approach. Comparisons of the cloud and tropospheric nitrogen dioxide retrievals with implicit and explicit aerosol corrections are carried out for a selected area with high pollution.
Verena Schenzinger and Axel Kreuter
Atmos. Meas. Tech., 14, 2787–2798, https://doi.org/10.5194/amt-14-2787-2021, https://doi.org/10.5194/amt-14-2787-2021, 2021
Short summary
Short summary
When measuring the aerosol optical depth of the atmosphere, clouds in front of the sun lead to erroneously high values. Therefore, measurements that are potentially affected by clouds need to be removed from the dataset by an automatic process. As the currently used algorithm cannot reliably identify thin clouds, we developed a new one based on a method borrowed from machine learning. Tests with 10 years of data show improved performance of the new routine and therefore higher data quality.
Anton Lopatin, Oleg Dubovik, David Fuertes, Georgiy Stenchikov, Tatyana Lapyonok, Igor Veselovskii, Frank G. Wienhold, Illia Shevchenko, Qiaoyun Hu, and Sagar Parajuli
Atmos. Meas. Tech., 14, 2575–2614, https://doi.org/10.5194/amt-14-2575-2021, https://doi.org/10.5194/amt-14-2575-2021, 2021
Short summary
Short summary
The article presents novelties in characterizing fine particles suspended in the air by means of combining various measurements that observe light propagation in atmosphere. Several non-coincident observations (some of which require sunlight, while others work only at night) could be united under the assumption that aerosol properties do not change drastically at nighttime. It also proposes how to describe particles' composition in a simplified manner that uses new types of observations.
Felix Wrana, Christian von Savigny, Jacob Zalach, and Larry W. Thomason
Atmos. Meas. Tech., 14, 2345–2357, https://doi.org/10.5194/amt-14-2345-2021, https://doi.org/10.5194/amt-14-2345-2021, 2021
Short summary
Short summary
In this paper, we describe a new method for calculating the size of naturally occurring droplets (aerosols) made mostly of sulfuric acid and water that can be found roughly at 20 km altitude in the atmosphere. We use data from the instrument SAGE III/ISS that is mounted on the International Space Station. We show that our method works well, and that the size parameters we calculate are reasonable and can be a valuable addition for a better understanding of aerosols and their effect on climate.
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021, https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
Short summary
This paper presents a new technique to exploit the potential of all-sky cameras. The sky radiance at three effective wavelengths is calculated and compared with alternative measurements and simulated data. The proposed method will be useful for the retrieval of aerosol and cloud properties.
Bradley M. Conrad and Matthew R. Johnson
Atmos. Meas. Tech., 14, 1573–1591, https://doi.org/10.5194/amt-14-1573-2021, https://doi.org/10.5194/amt-14-1573-2021, 2021
Short summary
Short summary
A general uncertainty analysis (GUA) is performed for the sky-LOSA technique used to remotely measure soot emissions from gas flares. GUA data are compiled in an open-source software tool to help sky-LOSA users select critical setup and acquisition parameters while giving quantitative visual feedback on anticipated uncertainties for a specific measurement. The software tool enables easy acquisition of optimal measurement data, significantly increasing the accessibility of the sky-LOSA technique.
Charles K. Gatebe, Hiren Jethva, Ritesh Gautam, Rajesh Poudyal, and Tamás Várnai
Atmos. Meas. Tech., 14, 1405–1423, https://doi.org/10.5194/amt-14-1405-2021, https://doi.org/10.5194/amt-14-1405-2021, 2021
Short summary
Short summary
The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is very challenging, partly because clouds and cloud-related processes significantly modify the aerosol properties and the 3D radiative effects. This study shows simultaneous retrieval of above-cloud aerosol optical depth and aerosol-corrected cloud optical depth from airborne measurements, thereby demonstrating a novel approach for assessing satellite retrievals of aerosols above clouds.
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021, https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary
Short summary
This work describes the newly released OMPS LP aerosol extinction profile multi-wavelength Version 2.0 algorithm and dataset. It is shown that the V2.0 aerosols exhibit significant improvements in OMPS LP retrieval performance in the Southern Hemisphere and at lower altitudes. The new product is compared to the SAGE III/ISS, OSIRIS and CALIPSO missions and shown to be of good quality and suitable for scientific studies.
Soheila Jafariserajehlou, Vladimir V. Rozanov, Marco Vountas, Charles K. Gatebe, and John P. Burrows
Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021, https://doi.org/10.5194/amt-14-369-2021, 2021
Short summary
Short summary
In this work, we study retrieval of snow grain morphologies and their impact on the reflectance in a coupled snow–atmosphere system. We present a sensitivity study to highlight the importance of having adequate information about snow and atmosphere. A novel two-stage algorithm for retrieving the size and shape of snow grains is presented. The reflectance simulation results are compared to that of airborne measurements; high correlations of 0.98 at IR and 0.88–0.98 at VIS are achieved.
Cited articles
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Optics, 31, 7113–7131, https://doi.org/10.1364/AO.31.007113, 1992. a
Ansmann, A., Wandinger, U., Rille, O. L., Lajas, D., and Straume, A. G.: Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations, Appl. Optics, 46, 6606–6622, https://doi.org/10.1364/AO.46.006606, 2007. a, b, c, d
Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016. a
Baars, H., Seifert, P., Engelmann, R., and Wandinger, U.: Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements, Atmos. Meas. Tech., 10, 3175–3201, https://doi.org/10.5194/amt-10-3175-2017, 2017. a
Chanin, M. L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler lidar for measuring winds in the middle atmosphere, Geophys. Res. Lett., 16, 1273–1276, https://doi.org/10.1029/GL016i011p01273, 1989. a
Dabas, A.: Generation of AUX CAL Detailed Processing Model Input Output data definition, ESA, available at: https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-AUX-CAL-IODD-DPM.pdf (last access: 3 January 2022), 2017. a
Denevi, G., Garbarino, S., and Sorrentino, A.: Iterative algorithms for a non-linear inverse problem in atmospheric lidar, Inverse Probl., 33, 085010, https://doi.org/10.1088/1361-6420/aa7904, 2017. a, b, c, d
Donovan, D. P., van Zadelhoff, G.-J., Williams, J. E., Wandinger, U., Haarig, M., and Qu, Z.: Development of ATLID Retrieval Algorithms, EPJ Web Conf., 237, 01005, https://doi.org/10.1051/epjconf/202023701005, 2020. a
Eloranta, E.: High Spectral Resolution lidar measurements of atmospheric extinction: Progress and challenges, in: 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1-8 March 2014, 1–6, https://doi.org/10.1109/AERO.2014.6836214, 2014. a
Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H., and Ansmann, A.: The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation, Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, 2016. a
ESA: TROPOMI Level 2 Ultraviolet Aerosol Index products, Version 01, Copernicus Sentinel-5P, ESA [data set], https://doi.org/10.5270/S5P-0wafvaf, 2018. a
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, Appl. Optics, 23, 652–653, https://doi.org/10.1364/AO.23.000652, 1984. a
Flamant, P., Cuesta, J., Denneulin, M.-L., Dabas, A., and Huber, D.: ADM-Aeolus retrieval algorithms for aerosol and cloud products, Tellus A, 60, 273–288, https://doi.org/10.1111/j.1600-0870.2007.00287.x, 2008. a, b
Flamant, P., Lever, V., Martinet, P., Flament, T., Cuesta, J., Dabas, A., Olivier, M., and Huber, D.: ADM-Aeolus L2A Algorithm Theoretical Baseline Document, ESA, available at: https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2A-Algorithm-Theoretical-Baseline-Document (last access: 3 January 2022), 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Flament, T., Trapon, D., Lacour, A., Dabas, A., Ehlers, F., and Huber, D.: Aeolus L2A Aerosol Optical Properties Product: Standard Correct Algorithm and Mie Correct Algorithm, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-181, in review, 2021. a, b, c
Garbarino, S., Sorrentino, A., Massone, A. M., Sannino, A., Boselli, A., Wang, X., Spinelli, N., and Piana, M.: Expectation maximization and the retrieval of the atmospheric extinction coefficients by inversion of Raman lidar data, Opt. Express, 24, 21497–21511, https://doi.org/10.1364/OE.24.021497, 2016. a, b, c, d
Garnier, A. and Chanin, M. L.: Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere, Appl. Phys. B, 55, 35–40, https://doi.org/10.1007/BF00348610, 1992. a
Gentry, B. M., Chen, H., and Li, S. X.: Wind measurements with 355-nm molecular Doppler lidar, Opt. Lett., 25, 1231–1233, https://doi.org/10.1364/OL.25.001231, 2000. a
Grund, C. J. and Eloranta, E. W.: Fiber-optic scrambler reduces the bandpass range dependence of Fabry–Perot étalons used for spectral analysis of lidar backscatter, Appl. Optics, 30, 2668–2670, https://doi.org/10.1364/AO.30.002668, 1991. a
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A., Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation, B. Am. Meteorol. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1, 2015. a, b, c, d
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013. a
Klett, J. D.: Stable analytical inversion solution for processing lidar returns, Appl. Optics, 20, 211–220, https://doi.org/10.1364/AO.20.000211, 1981. a
Korb, C. L., Gentry, B. M., and Weng, C. Y.: Edge technique: theory and application to the lidar measurement of atmospheric wind, Appl. Optics, 31, 4202–4213, https://doi.org/10.1364/AO.31.004202, 1992. a
Marais, W. J., Holz, R. E., Hu, Y. H., Kuehn, R. E., Eloranta, E. E., and Willett, R. M.: Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations, Appl. Optics, 55, 8316–8334, https://doi.org/10.1364/AO.55.008316, 2016. a, b, c, d, e, f, g
Martino, A. J., Neumann, T. A., Kurtz, N. T., and McLennan, D.: ICESat-2 mission overview and early performance, in: Sensors, Systems, and Next-Generation Satellites XXIII, edited by: Neeck, S. P., Martimort, P., and Kimura, T., International Society for Optics and Photonics, SPIE, 11151, 68–77, https://doi.org/10.1117/12.2534938, 2019. a
McGill, M. J., Yorks, J. E., Scott, V. S., Kupchock, A. W., and Selmer, P. A.: The Cloud-Aerosol Transport System (CATS): a technology demonstration on the International Space Station, in: Lidar Remote Sensing for Environmental Monitoring XV, edited by: Singh, U. N., International Society for Optics and Photonics, SPIE, 9612, 34–39, https://doi.org/10.1117/12.2190841, 2015. a
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014. a
Pornsawad, P., Böckmann, C., Ritter, C., and Rafler, M.: Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization, Appl. Optics, 47, 1649–1661, https://doi.org/10.1364/AO.47.001649, 2008. a, b
Pornsawad, P., D'Amico, G., Böckmann, C., Amodeo, A., and Pappalardo, G.: Retrieval of aerosol extinction coefficient profiles from Raman lidar data by inversion method, Appl. Optics, 51, 2035–2044, https://doi.org/10.1364/AO.51.002035, 2012. a, b
Povey, A. C., Grainger, R. G., Peters, D. M., and Agnew, J. L.: Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation, Atmos. Meas. Tech., 7, 757–776, https://doi.org/10.5194/amt-7-757-2014, 2014. a, b, c, d
Prospero, J. M. and Carlson, T. N.: Saharan air outbreaks over the tropical North Atlantic, Pure Appl. Geophys., 119, 677–691, https://doi.org/10.1007/BF00878167, 1980. a
Reitebuch, O., Marksteiner, U., Rompel, M., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Dabas, A., Marshall, J., de Bruin, F., Kanitz, T., and Straume, A.-G.: Aeolus End-To-End Simulator and Wind Retrieval Algorithms up to Level 1B, EPJ Web Conf., 176, 02010, https://doi.org/10.1051/epjconf/201817602010, 2018b. a
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiss, A., Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie, M., de Kloe, J., Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T., Straume, A.-G., Fehr, T., von Bismarck, J., Floberghagen, R., and Parrinello, T.: Initial Assessment of the Performance of the First Wind Lidar in Space on Aeolus, EPJ Web Conf., 237, 01010, https://doi.org/10.1051/epjconf/202023701010, 2020. a, b
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, Singapore, https://doi.org/10.1142/3171, 2000. a, b, c, d
She, C. Y., Alvarez, R. J., Caldwell, L. M., and Krueger, D. A.: High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles, Opt. Lett., 17, 541–543, https://doi.org/10.1364/OL.17.000541, 1992. a
Shimizu, H., Lee, S. A., and She, C. Y.: High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters, Appl. Optics, 22, 1373–1381, https://doi.org/10.1364/AO.22.001373, 1983. a
Shipley, S. T., Tracy, D. H., Eloranta, E. W., Trauger, J. T., Sroga, J. T., Roesler, F. L., and Weinman, J. A.: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation, Appl. Optics, 22, 3716–3724, https://doi.org/10.1364/AO.22.003716, 1983. a
Sica, R. J. and Haefele, A.: Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method, Appl. Optics, 54, 1872–1889, https://doi.org/10.1364/AO.54.001872, 2015. a
Souprayen, C., Garnier, A., and Hertzog, A.: Rayleigh–Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration, Appl. Optics, 38, 2422–2431, https://doi.org/10.1364/AO.38.002422, 1999a. a
Souprayen, C., Garnier, A., Hertzog, A., Hauchecorne, A., and Porteneuve, J.: Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results, Appl. Optics, 38, 2410–2421, https://doi.org/10.1364/AO.38.002410, 1999b. a
Spinhirne, J. D., Palm, S. P., Hart, W. D., Hlavka, D. L., and Welton, E. J.: Cloud and aerosol measurements from GLAS: Overview and initial results, Geophys. Res. Lett., 32, L22S03, https://doi.org/10.1029/2005GL023507, 2005. a
Stoffelen, A., Pailleux, J., Källén, E., Vaughan, J. M., Isaksen, L., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., Meynart, R., Endemann, M., and Ingmann, P.: The atmospheric dynamics mission for global wind field measurements, B. Am. Meteorol. Soc., 86, 73–88, https://doi.org/10.1175/BAMS-86-1-73, 2005. a
Wandinger, U., Amiridis, V., Freudenthaler, V., Komppula, M., Kokkalis, P., Engelmann, R., Marinou, E., and Tsekeri, A.: Validation of ADM-Aeolus L2 aerosol and cloud products employing advanced ground-based lidar measurements (VADAM), in: ADM-Aeolus Science and CAL/VAL Workshop, ESA-ESRIN, Frascati, Italy, 10–13 February 2015, 2015. a, b, c
Weiler, F.: Bias correction using ground echoes for the airborne demonstrator of the wind lidar on the ADM-Aeolus mission, Master thesis, Faculty of Geo- and Atmospheric Sciences, University of Innsbruck, Austria, 2015. a
Whiteman, D. N.: Application of statistical methods to the determination of slope in lidar data, Appl. Optics, 38, 3360–3369, https://doi.org/10.1364/AO.38.003360, 1999. a
Winker, D. M., Pelon, J. R., and McCormick, M. P.: CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, in: Lidar Remote Sensing for Industry and Environment Monitoring III, edited by: Singh, U. N., Itabe, T., and Liu, Z., International Society for Optics and Photonics, SPIE, 4893, 1–11, https://doi.org/10.1117/12.466539, 2003. a, b
Young, S. A., Winker, D., Vaughan, M., Hu, Y., and Kuehn, R.: CALIOP Algorithm Theoretical Basis Document Part 4: Extinction Retrieval Algorithms, available at: https://www-calipso.larc.nasa.gov/resources/ (last access: 3 April 2021), 2008. a
Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization, ACM T. Math. Software [code], 23, 550–560, https://doi.org/10.1145/279232.279236, 1997. a
Short summary
The Aeolus satellite observes the Earth and can vertically detect any kind of particles (aerosols or clouds) in the atmosphere below it. These observations are typically very noisy, which needs to be accounted for. This work dampens the noise in Aeolus' aerosol and cloud data, which are provided publicly by the ESA, so that the scientific community can make better use of it. This makes the data potentially more useful for weather prediction and climate research.
The Aeolus satellite observes the Earth and can vertically detect any kind of particles...