Articles | Volume 15, issue 10
https://doi.org/10.5194/amt-15-3121-2022
https://doi.org/10.5194/amt-15-3121-2022
Research article
 | 
19 May 2022
Research article |  | 19 May 2022

DARCLOS: a cloud shadow detection algorithm for TROPOMI

Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma

Related authors

Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
A directional surface reflectance climatology determined from TROPOMI observations
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024,https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Restoring the top-of-atmosphere reflectance during solar eclipses: a proof of concept with the UV absorbing aerosol index measured by TROPOMI
Victor Trees, Ping Wang, and Piet Stammes
Atmos. Chem. Phys., 21, 8593–8614, https://doi.org/10.5194/acp-21-8593-2021,https://doi.org/10.5194/acp-21-8593-2021, 2021
Short summary
Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020,https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025,https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary

Cited articles

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, https://doi.org/10.1029/1998JD200032, 1998. a
Adeline, K. R. M., Chen, M., Briottet, X., Pang, S. K., and Paparoditis, N.: Shadow detection in very high spatial resolution aerial images: A comparative study, ISPRS J. Photogramm., 80, 21–38, https://doi.org/10.1016/j.isprsjprs.2013.02.003, 2013. a, b, c
Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., Wang, Y., and Wagner, T.: Pinpointing nitrogen oxide emissions from space, Science Advances, 5, eaax9800, https://doi.org/10.1126/sciadv.aax9800, 2019. a
Bo, P., Fenzhen, S., and Yunshan, M.: A Cloud and Cloud Shadow Detection Method Based on Fuzzy c-Means Algorithm, IEEE J. Sel. Top. Appl., 13, 1714–1727, https://doi.org/10.1109/JSTARS.2020.2987844, 2020. a
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. a
Download
Short summary
Cloud shadows are observed by the TROPOMI satellite instrument as a result of its high spatial resolution. These shadows contaminate TROPOMI's air quality measurements, because shadows are generally not taken into account in the models that are used for aerosol and trace gas retrievals. We present the Detection AlgoRithm for CLOud Shadows (DARCLOS) for TROPOMI, which is the first cloud shadow detection algorithm for a satellite spectrometer.