Articles | Volume 15, issue 2
https://doi.org/10.5194/amt-15-365-2022
https://doi.org/10.5194/amt-15-365-2022
Research article
 | 
24 Jan 2022
Research article |  | 24 Jan 2022

Using artificial neural networks to predict riming from Doppler cloud radar observations

Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los

Related authors

Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
Atmos. Meas. Tech., 18, 1499–1517, https://doi.org/10.5194/amt-18-1499-2025,https://doi.org/10.5194/amt-18-1499-2025, 2025
Short summary
Investigating KDP signatures inside and below the dendritic growth layer with W-band Doppler Radar and in situ snowfall camera
Anton Kötsche, Alexander Myagkov, Leonie von Terzi, Maximilian Maahn, Veronika Ettrichrätz, Teresa Vogl, Alexander Ryzhkov, Petar Bukovcic, Davide Ori, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2025-734,https://doi.org/10.5194/egusphere-2025-734, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023,https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022,https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025,https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025,https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025,https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Satellite-based detection of deep convective clouds: the sensitivity of infrared methods, and implications for cloud climatology
Andrzej Zbigniew Kotarba and Izabela Wojciechowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-3693,https://doi.org/10.5194/egusphere-2024-3693, 2025
Short summary

Cited articles

Atmospheric Radiation Measurement (ARM) user facility: Ka ARM Zenith Radar (KAZRSPECCMASKMDCOPOL), 2014-02-21 to 2014-02-22, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Lindenmaier, I., Bharadwaj, N., Johnson, K., Nelson, D., Matthews, A., Wendler, T., and Castro, V., ARM Data Center, https://doi.org/10.5439/1095603, 2014a. a
Atmospheric Radiation Measurement (ARM) user facility: Microwave Radiometer (MWRLOS), 2014-02-21 to 2014-02-22, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Cadeddu, M., ARM Data Center., https://doi.org/10.5439/1046211, 2014b. a
Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN), 2014-02-01 to 2014-03-20, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Keeler, E., Coulter, R., and Kyrouac, J., ARM Data Center, https://doi.org/10.5439/1021460, 2014c. a
Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis, Atmos. Chem. Phys., 19, 5753–5769, https://doi.org/10.5194/acp-19-5753-2019, 2019. a
Bühl, J., Seifert, P., Myagkov, A., and Ansmann, A.: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station, Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, 2016. a
Download
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Share