Articles | Volume 15, issue 2
Atmos. Meas. Tech., 15, 365–381, 2022
https://doi.org/10.5194/amt-15-365-2022

Special issue: Fusion of radar polarimetry and numerical atmospheric modelling...

Atmos. Meas. Tech., 15, 365–381, 2022
https://doi.org/10.5194/amt-15-365-2022
Research article
24 Jan 2022
Research article | 24 Jan 2022

Using artificial neural networks to predict riming from Doppler cloud radar observations

Teresa Vogl et al.

Related authors

The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-252,https://doi.org/10.5194/amt-2022-252, 2022
Revised manuscript under review for AMT
Short summary
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022,https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021,https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Choosing an optimal β factor for relaxed eddy accumulation applications across vegetated and non-vegetated surfaces
Teresa Vogl, Amy Hrdina, and Christoph K. Thomas
Biogeosciences, 18, 5097–5115, https://doi.org/10.5194/bg-18-5097-2021,https://doi.org/10.5194/bg-18-5097-2021, 2021
Short summary
Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N
Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021,https://doi.org/10.5194/acp-21-11613-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023,https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022,https://doi.org/10.5194/amt-15-7119-2022, 2022
Short summary
A CO2-independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022,https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary
Retrieval of ice water path from the Microwave Humidity Sounder (MWHS) aboard FengYun-3B (FY-3B) satellite polarimetric measurements based on a deep neural network
Wenyu Wang, Zhenzhan Wang, Qiurui He, and Lanjie Zhang
Atmos. Meas. Tech., 15, 6489–6506, https://doi.org/10.5194/amt-15-6489-2022,https://doi.org/10.5194/amt-15-6489-2022, 2022
Short summary
Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace gas retrievals
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022,https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary

Cited articles

Atmospheric Radiation Measurement (ARM) user facility: Ka ARM Zenith Radar (KAZRSPECCMASKMDCOPOL), 2014-02-21 to 2014-02-22, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Lindenmaier, I., Bharadwaj, N., Johnson, K., Nelson, D., Matthews, A., Wendler, T., and Castro, V., ARM Data Center, https://doi.org/10.5439/1095603, 2014a. a
Atmospheric Radiation Measurement (ARM) user facility: Microwave Radiometer (MWRLOS), 2014-02-21 to 2014-02-22, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Cadeddu, M., ARM Data Center., https://doi.org/10.5439/1046211, 2014b. a
Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN), 2014-02-01 to 2014-03-20, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Keeler, E., Coulter, R., and Kyrouac, J., ARM Data Center, https://doi.org/10.5439/1021460, 2014c. a
Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis, Atmos. Chem. Phys., 19, 5753–5769, https://doi.org/10.5194/acp-19-5753-2019, 2019. a
Bühl, J., Seifert, P., Myagkov, A., and Ansmann, A.: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station, Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, 2016. a
Download
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.