Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-3859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Substantial organic impurities at the surface of synthetic ammonium sulfate particles
Aix Marseille Univ, CNRS, LCE, Marseille, France
Nicolas Brun
Aix Marseille Univ, CNRS, LCE, Marseille, France
Juan Miguel González-Sánchez
Aix Marseille Univ, CNRS, LCE, Marseille, France
Badr R'Mili
Aix Marseille Univ, CNRS, LCE, Marseille, France
Brice Temime Roussel
Aix Marseille Univ, CNRS, LCE, Marseille, France
Sylvain Ravier
Aix Marseille Univ, CNRS, LCE, Marseille, France
Jean-Louis Clément
Aix-Marseille Univ, CNRS, ICR, Marseille, France
Anne Monod
CORRESPONDING AUTHOR
Aix Marseille Univ, CNRS, LCE, Marseille, France
Related authors
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Marwa Shahin, Julien Kammer, Brice Temime-Roussel, and Barbara D'Anna
Atmos. Chem. Phys., 25, 10267–10292, https://doi.org/10.5194/acp-25-10267-2025, https://doi.org/10.5194/acp-25-10267-2025, 2025
Short summary
Short summary
Air pollution and climate change are influenced by tiny airborne particles called aerosols. This study explores how pollutants from urban sources, as m-xylene and naphthalene, form new particles in the atmosphere under different conditions. Using advanced techniques, we show how temperature and nitrogen oxides affect the formation and behavior of these particles. Our findings will improve our understanding of secondary organic particle and air quality models.
Manon Rocco, Julien Kammer, Mathieu Santonja, Brice Temime-Roussel, Cassandra Saignol, Caroline Lecareux, Etienne Quivet, Henri Wortham, and Elena Ormeño
Biogeosciences, 22, 3661–3680, https://doi.org/10.5194/bg-22-3661-2025, https://doi.org/10.5194/bg-22-3661-2025, 2025
Short summary
Short summary
Soil emissions of biogenic volatile organic compounds (BVOCs) play a significant role in ecosystems, yet the impact of litter accumulation on these emissions is often overlooked, particularly in Mediterranean deciduous forests. A study in downy oak forest identified over 135 BVOCs, with many being absorbed by the soil, while others were emitted and increased with litter biomass. This underscores the critical role of litter and microbial activity in shaping soil BVOC dynamics under a changing climate.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D'Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
Atmos. Chem. Phys., 25, 6575–6605, https://doi.org/10.5194/acp-25-6575-2025, https://doi.org/10.5194/acp-25-6575-2025, 2025
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, such as ultra-fine particles, were higher in the port than in the city and offer strong support to improve emission inventories. These findings may also serve as reference to assess the benefits of a sulfur Emission Control Area in the Mediterranean in 2025.
Johannes Heuser, Claudia Di Biagio, Jérôme Yon, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Marco Zanatta, Laura Renzi, Angela Marinoni, Satoshi Inomata, Chenjie Yu, Vera Bernardoni, Servanne Chevaillier, Daniel Ferry, Paolo Laj, Michel Maillé, Dario Massabò, Federico Mazzei, Gael Noyalet, Hiroshi Tanimoto, Brice Temime-Roussel, Roberta Vecchi, Virginia Vernocchi, Paola Formenti, Bénédicte Picquet-Varrault, and Jean-François Doussin
Atmos. Chem. Phys., 25, 6407–6428, https://doi.org/10.5194/acp-25-6407-2025, https://doi.org/10.5194/acp-25-6407-2025, 2025
Short summary
Short summary
The spectral optical properties of combustion soot aerosols with varying black (BC) and brown carbon (BrC) content were studied in an atmospheric simulation chamber. Measurements of the mass spectral absorption cross section (MAC), supplemented by literature data, allowed us to establish a generalised exponential relationship between the spectral absorption and the elemental-to-total-carbon ratio (EC / TC) in soot. This relationship can provide a useful tool for modelling the properties of soot.
Quentin Gunti, Benjamin Chazeau, Brice Temime-Roussel, Irène Xueref-Remy, Alexandre Armengaud, Henri Wortham, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2025-2215, https://doi.org/10.5194/egusphere-2025-2215, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A measurement campaign in Toulon’s port area in September 2021 showed a decrease in sulfur-related emissions in both gaseous and particulate phases, while soot, organics and PAHs, remained at pre-IMO regulation levels. PMF analysis attributed 5.6% and 11.2% of OA mass to road and maritime traffic, respectively, with PAHs mostly emitted by these sectors (31% and 35%), highlighting the need for monitoring shipping emissions as the Mediterranean becomes a Sulfur Emission Control Area in May 2025.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025, https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Publication in AMT not foreseen
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Juan Miguel González-Sánchez, Miquel Huix-Rotllant, Nicolas Brun, Julien Morin, Carine Demelas, Amandine Durand, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 15135–15147, https://doi.org/10.5194/acp-23-15135-2023, https://doi.org/10.5194/acp-23-15135-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are nitrogen oxide (NOx) reservoirs. This work investigated the reaction products and mechanisms of their reactivity with light in the aqueous phase (cloud and fog conditions and wet aerosol). Our findings reveal that this chemistry leads to the formation of atmospheric nitrous acid (HONO).
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 5851–5866, https://doi.org/10.5194/acp-23-5851-2023, https://doi.org/10.5194/acp-23-5851-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are NOx reservoirs. This work investigated for the first time their reactivity with light in the aqueous phase (cloud and fog and wet aerosol), proving it slower than in the gas phase. Therefore, our findings reveal that partitioning of organic nitrates in the aqueous phase leads to longer atmospheric lifetimes of these compounds and thus a broader spatial distribution of their related pollution.
Boris Vansevenant, Cédric Louis, Corinne Ferronato, Ludovic Fine, Patrick Tassel, Pascal Perret, Evangelia Kostenidou, Brice Temime-Roussel, Barbara D'Anna, Karine Sartelet, Véronique Cerezo, and Yao Liu
Atmos. Meas. Tech., 14, 7627–7655, https://doi.org/10.5194/amt-14-7627-2021, https://doi.org/10.5194/amt-14-7627-2021, 2021
Short summary
Short summary
A new method was developed to correct wall losses of particles on Teflon walls using a new environmental chamber. It was applied to experiments with six diesel vehicles (Euro 3 to 6), tested on a chassis dynamometer. Emissions of particles and precursors were obtained under urban and motorway conditions. The chamber experiments help understand the role of physical processes in diesel particle evolutions in the dark. These results can be applied to situations such as tunnels or winter rush hours.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Benjamin Chazeau, Brice Temime-Roussel, Grégory Gille, Boualem Mesbah, Barbara D'Anna, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 21, 7293–7319, https://doi.org/10.5194/acp-21-7293-2021, https://doi.org/10.5194/acp-21-7293-2021, 2021
Short summary
Short summary
The temporal trends in the chemical composition and particle number of the submicron aerosols in a Mediterranean city, Marseille, are investigated over 14 months. Fifteen days were found to exceed the WHO PM2.5 daily limit (25 µg m−3) only during the cold period, with two distinct origins: local pollution events with an increased fraction of the carbonaceous fraction due to domestic wood burning and long-range pollution events with a high level of oxygenated organic aerosol and ammonium nitrate.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Evangelia Kostenidou, Alvaro Martinez-Valiente, Badr R'Mili, Baptiste Marques, Brice Temime-Roussel, Amandine Durand, Michel André, Yao Liu, Cédric Louis, Boris Vansevenant, Daniel Ferry, Carine Laffon, Philippe Parent, and Barbara D'Anna
Atmos. Chem. Phys., 21, 4779–4796, https://doi.org/10.5194/acp-21-4779-2021, https://doi.org/10.5194/acp-21-4779-2021, 2021
Short summary
Short summary
Passenger vehicle emissions can be a significant source of particulate matter in urban areas. In this study the particle-phase emissions of seven Euro 5 passenger vehicles were characterized. Changes in engine technologies and after-treatment devices can alter the chemical composition and the size of the emitted particulate matter. The condition of the diesel particle filter (DPF) plays an important role in the emitted pollutants.
Cited articles
Abbatt, J. P. D., Broekhuizen, K., and Pradeep Kumar, P.: Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles, Atmos. Environ., 39, 4767–4778,
https://doi.org/10.1016/j.atmosenv.2005.04.029, 2005.
Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental Analysis of
Organic Species with Electron Ionization High-Resolution Mass Spectrometry,
Anal. Chem., 79, 8350–8358, https://doi.org/10.1021/ac071150w, 2007.
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation
interactions. Part 1. The nature and sources of cloud-active aerosols,
Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Arabadzhieva, D., Tchoukov, P., and Mileva, E.: Impact of Adsorption Layer
Properties on Drainage Behavior of Microscopic Foam Films: The Case of
Cationic/Nonionic Surfactant Mixtures, Colloids Interfaces, 4, 53,
https://doi.org/10.3390/colloids4040053, 2020.
Badger, C. L., George, I., Griffiths, P. T., Braban, C. F., Cox, R. A., and Abbatt, J. P. D.: Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate, Atmos. Chem. Phys., 6, 755–768, https://doi.org/10.5194/acp-6-755-2006, 2006.
Brooks, S. D., DeMott, P. J., and Kreidenweis, S. M.: Water uptake by
particles containing humic materials and mixtures of humic materials with
ammonium sulfate, Atmos. Environ., 38, 1859–1868,
https://doi.org/10.1016/j.atmosenv.2004.01.009, 2004.
Brüggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H.
Y., Otto, T., Schaefer, T., Poulain, L., Chan, M. N., and Herrmann, H.:
Organosulfates in Ambient Aerosol: State of Knowledge and Future Research
Directions on Formation, Abundance, Fate, and Importance, Environ. Sci.
Technol., 54, 3767–3782, https://doi.org/10.1021/acs.est.9b06751, 2020.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Charlson, R. J., Schwartz, S., Hales, J., Cess, R. D., Coakley, J. J.,
Hansen, J., and Hofmann, D.: Climate forcing by anthropogenic aerosols,
Science, 255, 423–430, 1992.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of
the System H+-NH -Na+-SO -NO -Cl−-H2O at 298.15 K, J. Phys. Chem. A, 102, 2155–2171, https://doi.org/10.1021/jp973043j, 1998.
Darer, A. I., Cole-Filipiak, N. C., O'Connor, A. E., and Elrod, M. J.:
Formation and stability of atmospherically relevant isoprene-derived
organosulfates and organonitrates, Environ. Sci. Technol., 45, 1895–1902,
2011.
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez,
J. L.: Particle Morphology and Density Characterization by Combined Mobility
and Aerodynamic Diameter Measurements. Part 1: Theory, Aerosol Sci.
Technol., 38, 1185–1205, https://doi.org/10.1080/027868290903907, 2004.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight
Aerosol Mass Spectrometer, Anal. Chem., 78, 8281–8289,
https://doi.org/10.1021/ac061249n, 2006.
De Haan, D. O., Hawkins, L. N., Welsh, H. G., Pednekar, R., Casar, J. R.,
Pennington, E. A., de Loera, A., Jimenez, N. G., Symons, M. A., Zauscher,
M., Pajunoja, A., Caponi, L., Cazaunau, M., Formenti, P., Gratien, A.,
Pangui, E., and Doussin, J.-F.: Brown Carbon Production in Ammonium- or
Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and
Photolytic Cloud Cycling, Environ. Sci. Technol., 51, 7458–7466,
https://doi.org/10.1021/acs.est.7b00159, 2017.
Ekström, S., Nozière, B., Hultberg, M., Alsberg, T., Magnér, J., Nilsson, E. D., and Artaxo, P.: A possible role of ground-based microorganisms on cloud formation in the atmosphere, Biogeosciences, 7, 387–394, https://doi.org/10.5194/bg-7-387-2010, 2010.
Engelhart, G. J., Asa-Awuku, A., Nenes, A., and Pandis, S. N.: CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 3937–3949, https://doi.org/10.5194/acp-8-3937-2008, 2008.
Frossard, A. A., Gérard, V., Duplessis, P., Kinsey, J. D., Lu, X., Zhu,
Y., Bisgrove, J., Maben, J. R., Long, M. S., Chang, R. Y.-W., Beaupré,
S. R., Kieber, D. J., Keene, W. C., Nozière, B., and Cohen, R. C.:
Properties of Seawater Surfactants Associated with Primary Marine Aerosol
Particles Produced by Bursting Bubbles at a Model Air–Sea Interface,
Environ. Sci. Technol., 53, 9407–9417,
https://doi.org/10.1021/acs.est.9b02637, 2019.
Gérard, V., Noziere, B., Fine, L., Ferronato, C., Singh, D. K.,
Frossard, A. A., Cohen, R. C., Asmi, E., Lihavainen, H., Kivekäs, N.,
Aurela, M., Brus, D., Frka, S., and Cvitešiæ Kušan, A.:
Concentrations and Adsorption Isotherms for Amphiphilic Surfactants in PM1
Aerosols from Different Regions of Europe, Environ. Sci. Technol., 53,
12379–12388, https://doi.org/10.1021/acs.est.9b03386, 2019.
Grace, D. N., Lugos, E. N., Ma, S., Griffith, D. R., Hendrickson, H. P.,
Woo, J. L., and Galloway, M. M.: Brown Carbon Formation Potential of the
Biacetyl–Ammonium Sulfate Reaction System, ACS Earth Space Chem., 4,
1104–1113, https://doi.org/10.1021/acsearthspacechem.0c00096, 2020.
Hämeri, K., Charlson, R., and Hansson, H.-C.: Hygroscopic properties of
mixed ammonium sulfate and carboxylic acids particles, AIChE J., 48,
1309–1316, https://doi.org/10.1002/aic.690480617, 2002.
Hawkins, L. N., Welsh, H. G., and Alexander, M. V.: Evidence for pyrazine-based chromophores in cloud water mimics containing methylglyoxal and ammonium sulfate, Atmos. Chem. Phys., 18, 12413–12431, https://doi.org/10.5194/acp-18-12413-2018, 2018.
Hensley, J. C., Birdsall, A. W., Valtierra, G., Cox, J. L., and Keutsch, F. N.: Revisiting the reaction of dicarbonyls in aerosol proxy solutions containing ammonia: the case of butenedial, Atmos. Chem. Phys., 21, 8809–8821, https://doi.org/10.5194/acp-21-8809-2021, 2021.
Herrmann, H.: Kinetics of Aqueous Phase Reactions Relevant for Atmospheric
Chemistry, Chem. Rev., 103, 4691–4716, https://doi.org/10.1021/cr020658q, 2003.
Hu, K. S., Darer, A. I., and Elrod, M. J.: Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates, Atmos. Chem. Phys., 11, 8307–8320, https://doi.org/10.5194/acp-11-8307-2011, 2011.
Iinuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M., and
Herrmann, H.: Evidence for the Existence of Organosulfates from â-Pinene
Ozonolysis in Ambient Secondary Organic Aerosol, Environ. Sci. Technol., 41,
6678–6683, https://doi.org/10.1021/es070938t, 2007.
IPCC: Climate Change 2013 – The Physical Science Basis: Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781107415324, 2013.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
E, Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.
Jimenez, N. G., Sharp, K. D., Gramyk, T., Ugland, D. Z., Tran, M.-K., Rojas,
A., Rafla, M. A., Stewart, D., Galloway, M. M., Lin, P., Laskin, A.,
Cazaunau, M., Pangui, E., Doussin, J.-F., and De Haan, D. O.:
Radical-Initiated Brown Carbon Formation in Sunlit Carbonyl–Amine–Ammonium
Sulfate Mixtures and Aqueous Aerosol Particles, ACS Earth Space Chem., 6,
228–238, https://doi.org/10.1021/acsearthspacechem.1c00395, 2022.
Johnson, T. J., Irwin, M., Symonds, J. P. R., Olfert, J. S., and Boies, A.
M.: Measuring aerosol size distributions with the aerodynamic aerosol
classifier, Aerosol Sci. Technol., 52, 655–665,
https://doi.org/10.1080/02786826.2018.1440063, 2018.
Kampf, C. J., Jakob, R., and Hoffmann, T.: Identification and characterization of aging products in the glyoxal/ammonium sulfate system – implications for light-absorbing material in atmospheric aerosols, Atmos. Chem. Phys., 12, 6323–6333, https://doi.org/10.5194/acp-12-6323-2012, 2012.
Keller, B. O., Sui, J., Young, A. B., and Whittal, R. M.: Interferences and
contaminants encountered in modern mass spectrometry, Anal. Chim. Acta, 627,
71–81, https://doi.org/10.1016/j.aca.2008.04.043, 2008.
Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E.,
Prevot, A. S. H., Äijälä, M., Allan, J., Canonaco, F.,
Canagaratna, M., Carbone, S., Crippa, M., Dall Osto, M., Day, D. A., De
Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao, L.,
Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A.,
McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S.
N., Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P.,
Vermeulen, A., Wahner, A., Worsnop, D., and Wu, H.-C.: Ubiquity of organic
nitrates from nighttime chemistry in the European submicron aerosol,
Geophys. Res. Lett., 43, 7735–7744, https://doi.org/10.1002/2016GL069239,
2016.
Kim, J. H., Mulholland, G. W., Kukuck, S. R., and Pui, D. Y. H.: Slip
Correction Measurements of Certified PSL Nanoparticles Using a Nanometer
Differential Mobility Analyzer (Nano-DMA) for Knudsen Number From 0.5 to 83,
J. Res. Natl. Inst. Stand. Technol., 110, 31–54,
https://doi.org/10.6028/jres.110.005, 2005.
Kind, T. and Fiehn, O.: Seven Golden Rules for heuristic filtering of
molecular formulas obtained by accurate mass spectrometry, BMC
Bioinformatics, 8, 105, https://doi.org/10.1186/1471-2105-8-105, 2007.
King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T.: Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959–2971, https://doi.org/10.5194/acp-9-2959-2009, 2009.
Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Prenni, A. J., Carrico, C. M., Ervens, B., and Feingold, G.: Water activity and activation diameters from hygroscopicity data - Part II: Application to organic species, Atmos. Chem. Phys., 6, 795–809, https://doi.org/10.5194/acp-6-795-2006, 2006.
Laskin, J., Laskin, A., Nizkorodov, S. A., Roach, P., Eckert, P., Gilles, M.
K., Wang, B., Lee, H. J., and Hu, Q.: Molecular Selectivity of Brown
Carbon Chromophores, Environ. Sci. Technol., 48, 12047–12055,
https://doi.org/10.1021/es503432r, 2014.
Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M. R., Prevot, A. S. H., Fletcher, C., Good, N., McFiggans, G., Jonsson, Å. M., Hallquist, M., Baltensperger, U., and Ristovski, Z. D.: Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles, Atmos. Chem. Phys., 9, 721–732, https://doi.org/10.5194/acp-9-721-2009, 2009.
Moore, R. H., Ingall, E. D., Sorooshian, A., and Nenes, A.: Molar mass,
surface tension, and droplet growth kinetics of marine organics from
measurements of CCN activity, Geophys. Res. Lett., 35, L07801,
https://doi.org/10.1029/2008GL033350, 2008.
Nandy, L. and Dutcher, C. S.: Phase Behavior of Ammonium Sulfate with
Organic Acid Solutions in Aqueous Aerosol Mimics Using Microfluidic Traps,
J. Phys. Chem. B, 122, 3480–3490, https://doi.org/10.1021/acs.jpcb.7b10655,
2018.
Nozière, B., Dziedzic, P., and Córdova, A.: Inorganic ammonium salts
and carbonate salts are efficient catalysts for aldol condensation in
atmospheric aerosols, Phys. Chem. Chem. Phys., 12, 3864–3872,
https://doi.org/10.1039/B924443C, 2010.
Nozière, B., Baduel, C., and Jaffrezo, J.-L.: The dynamic surface
tension of atmospheric aerosol surfactants reveals new aspects of cloud
activation, Nat. Commun., 5, 3335, https://doi.org/10.1038/ncomms4335, 2014.
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and O' Dowd, C.: Surface tension prevails over solute
effect in organic-influenced cloud droplet activation, Nature, 546,
637–641, https://doi.org/10.1038/nature22806, 2017.
Petters, M. D.: A language to simplify computation of differential mobility
analyzer response functions, Aerosol Sci. Technol., 52, 1437–1451,
https://doi.org/10.1080/02786826.2018.1530724, 2018.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning, Atmos. Chem. Phys., 13, 1081–1091, https://doi.org/10.5194/acp-13-1081-2013, 2013.
Pieber, S. M., El Haddad, I., Slowik, J. G., Canagaratna, M. R., Jayne, J.
T., Platt, S. M., Bozzetti, C., Daellenbach, K. R., Fröhlich, R.,
Vlachou, A., Klein, F., Dommen, J., Miljevic, B., Jiménez, J. L.,
Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Inorganic
Salt Interference on CO in Aerodyne AMS and ACSM Organic Aerosol
Composition Studies, Environ. Sci. Technol., 50, 10494–10503,
https://doi.org/10.1021/acs.est.6b01035, 2016.
Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the
Atmosphere–Biosphere Interface Influencing Climate and Public Health in the
Anthropocene, Chem. Rev., 115, 4440–4475,
https://doi.org/10.1021/cr500487s, 2015.
Powelson, M. H., Espelien, B. M., Hawkins, L. N., Galloway, M. M., and De
Haan, D. O.: Brown Carbon Formation by Aqueous-Phase Carbonyl Compound
Reactions with Amines and Ammonium Sulfate, Environ. Sci. Technol., 48,
985–993, https://doi.org/10.1021/es4038325, 2014.
Prenni, A. J., DeMott, P. J., and Kreidenweis, S. M.: Water uptake of
internally mixed particles containing ammonium sulfate and dicarboxylic
acids, Atmos. Environ., 37, 4243–4251,
https://doi.org/10.1016/S1352-2310(03)00559-4, 2003.
Prisle, N. L.: A predictive thermodynamic framework of cloud droplet activation for chemically unresolved aerosol mixtures, including surface tension, non-ideality, and bulk–surface partitioning, Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021, 2021.
Saukko, E., Zorn, S., Kuwata, M., Keskinen, J., and Virtanen, A.: Phase
State and Deliquescence Hysteresis of Ammonium-Sulfate-Seeded Secondary
Organic Aerosol, Aerosol Sci. Technol., 49, 531–537,
https://doi.org/10.1080/02786826.2015.1050085, 2015.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016.
Shakya, K. M. and Peltier, R. E.: Non-sulfate sulfur in fine aerosols across
the United States: Insight for organosulfate prevalence, Atmos. Environ.,
100, 159–166, https://doi.org/10.1016/j.atmosenv.2014.10.058, 2015.
Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M. J.,
Coe, H., Zardini, A. A., Marcolli, C., Krieger, U. K., and Peter, T.:
Hygroscopic growth and water uptake kinetics of two-phase aerosol particles
consisting of ammonium sulfate, adipic and humic acid mixtures, J. Aerosol
Sci., 38, 157–171, https://doi.org/10.1016/j.jaerosci.2006.11.005, 2007.
Smith, M. L., You, Y., Kuwata, M., Bertram, A. K., and Martin, S. T.: Phase
Transitions and Phase Miscibility of Mixed Particles of Ammonium Sulfate,
Toluene-Derived Secondary Organic Material, and Water, J. Phys. Chem. A,
117, 8895–8906, https://doi.org/10.1021/jp405095e, 2013.
Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M., and Laaksonen, A.: The role of surfactants in Köhler theory reconsidered, Atmos. Chem. Phys., 4, 2107–2117, https://doi.org/10.5194/acp-4-2107-2004, 2004.
Stokes, R. H. and Robinson, R. A.: Interactions in Aqueous Nonelectrolyte
Solutions. I. Solute-Solvent Equilibria, J. Phys. Chem., 70, 2126–2131,
https://doi.org/10.1021/j100879a010, 1966.
Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R.,
Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H.,
Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and
Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic
Aerosol, J. Phys. Chem. A, 112, 8345–8378, https://doi.org/10.1021/jp802310p, 2008.
Szmigielski, R.: Evidence for C5 organosulfur secondary organic aerosol
components from in-cloud processing of isoprene: Role of reactive SO4 and SO3 radicals, Atmos. Environ., 130, 14–22,
https://doi.org/10.1016/j.atmosenv.2015.10.072, 2016.
Tavakoli, F. and Olfert, J. S.: An Instrument for the Classification of
Aerosols by Particle Relaxation Time: Theoretical Models of the Aerodynamic
Aerosol Classifier, Aerosol Sci. Technol., 47, 916–926,
https://doi.org/10.1080/02786826.2013.802761, 2013.
Tervahattu, H., Hartonen, K., Kerminen, V.-M., Kupiainen, K., Aarnio, P.,
Koskentalo, T., Tuck, A. F., and Vaida, V.: New evidence of an organic layer
on marine aerosols, J. Geophys. Res.-Atmos., 107, AAC 1-1–AAC 1-8,
https://doi.org/10.1029/2000JD000282, 2002.
Trainic, M., Abo Riziq, A., Lavi, A., Flores, J. M., and Rudich, Y.: The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols, Atmos. Chem. Phys., 11, 9697–9707, https://doi.org/10.5194/acp-11-9697-2011, 2011.
Tran, J. C. and Doucette, A. A.: Cyclic polyamide oligomers extracted from
nylon 66 membrane filter disks as a source of contamination in liquid
chromatography/mass spectrometry, J. Am. Soc. Mass Spectrom., 17, 652–656,
https://doi.org/10.1016/j.jasms.2006.01.008, 2006.
Treuel, L., Pederzani, S., and Zellner, R.: Deliquescence behaviour and
crystallisation of ternary ammonium sulfate/dicarboxylic acid/water
aerosols, Phys. Chem. Chem. Phys., 11, 7976–7984,
https://doi.org/10.1039/B905007H, 2009.
Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 2367–2388, https://doi.org/10.5194/acp-6-2367-2006, 2006.
Vepsäläinen, S., Calderón, S. M., Malila, J., and Prisle, N. L.: Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 1: moderately surface active organics, Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, 2022.
Wach, P., Spólnik, G., Rudziñski, K. J., Skotak, K., Claeys, M.,
Danikiewicz, W., and Szmigielski, R.: Radical oxidation of methyl vinyl
ketone and methacrolein in aqueous droplets: Characterization of
organosulfates and atmospheric implications, Chemosphere, 214, 1–9,
https://doi.org/10.1016/j.chemosphere.2018.09.026, 2019.
Wex, H., Petters, M. D., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 – Evidence from measurements, Atmos. Chem. Phys., 9, 3987–3997, https://doi.org/10.5194/acp-9-3987-2009, 2009.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Wu, J., Brun, N., González-Sánchez, J. M., R'Mili, B., Temime Roussel, B., Ravier, S., Clément, J.-L., and Monod, A.: Raw data of article “Substantial organic impurities at the surface of synthetic ammonium sulfate particles”, Zenodo [data set], https://doi.org/10.5281/zenodo.6559283, 2022.
Zelenyuk, A., Cai, Y., and Imre, D.: From Agglomerates of Spheres to
Irregularly Shaped Particles: Determination of Dynamic Shape Factors from
Measurements of Mobility and Vacuum Aerodynamic Diameters, Aerosol Sci.
Technol., 40, 197–217, https://doi.org/10.1080/02786820500529406, 2006.
Short summary
This work quantified and tentatively identified the organic impurities on ammonium sulfate aerosols generated in the laboratory. They are likely low volatile and high mass molecules containing oxygen, nitrogen, and/or sulfur. Our results show that these organic impurities likely originate from the commercial AS crystals. It is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
This work quantified and tentatively identified the organic impurities on ammonium sulfate...