Articles | Volume 16, issue 16
https://doi.org/10.5194/amt-16-3835-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-3835-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global 3-D distribution of aerosol composition by synergistic use of CALIOP and MODIS observations
Rei Kudo
CORRESPONDING AUTHOR
Meteorological Research Institute, Japan Meteorological Agency,
Tsukuba, 305-0052, Japan
Akiko Higurashi
Earth System Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
Eiji Oikawa
Meteorological Research Institute, Japan Meteorological Agency,
Tsukuba, 305-0052, Japan
Masahiro Fujikawa
Research Institute for Applied Mechanics, Kyusyu University, Kasuga, 816-8580, Japan
Hiroshi Ishimoto
Meteorological Research Institute, Japan Meteorological Agency,
Tsukuba, 305-0052, Japan
Tomoaki Nishizawa
Earth System Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
Related authors
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Kentaroh Suzuki, Woosub Roh, Akira Yamauchi, Hiroaki Horie, Yuichi Ohno, Yuichiro Hagihara, Hiroshi Ishimoto, Rei Kudo, Takuji Kubota, and Toshiyuki Tanaka
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-101, https://doi.org/10.5194/amt-2024-101, 2024
Publication in AMT not foreseen
Short summary
Short summary
This article gives overviews of the JAXA L2 algorithms and products by Japanese science teams for EarthCARE. The algorithms provide corrected Doppler velocity, cloud particle shape and orientations, microphysics of clouds and aerosols, and radiative fluxes and heating rate. The retrievals by the algorithms are demonstrated and evaluated using NICAM/J-simulator outputs. The JAXA EarthCARE L2 products will bring new scientific knowledge about the clouds, aerosols, radiation and convections.
Tomoaki Nishizawa, Rei Kudo, Eiji Oikawa, Akiko Higurashi, Yoshitaka Jin, Nobuo Sugimoto, Kaori Sato, and Hajime Okamoto
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-100, https://doi.org/10.5194/amt-2024-100, 2024
Revised manuscript under review for AMT
Short summary
Short summary
We developed algorithms to produce JAXA ATLID L2 aerosol products using ATLID L1 data. The algorithms estimate layer identifiers such as aerosol or cloud layers, (2) particle optical properties at 355 nm, (3) particle type identifiers, and (4) planetary boundary layer height. We demonstrated the algorithm performance using the simulated ATLID L1 data and found the algorithm’s capability to provide valuable insights into the global distribution of aerosols and clouds.
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022, https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary
Short summary
The aerosol optical depth (AOD) characteristics in an urban area of Rome were retrieved over a period of 11 years (2010–2020) to determine, for the first time, their effect on the incoming ultraviolet (UV) solar radiation. The surface forcing efficiency shows that the AOD is the primary parameter affecting the surface irradiance in Rome, and it is found to be greater for smaller zenith angles and for larger and more absorbing particles in the UV range (such as, e.g., mineral dust).
Rei Kudo, Henri Diémoz, Victor Estellés, Monica Campanelli, Masahiro Momoi, Franco Marenco, Claire L. Ryder, Osamu Ijima, Akihiro Uchiyama, Kouichi Nakashima, Akihiro Yamazaki, Ryoji Nagasawa, Nozomu Ohkawara, and Haruma Ishida
Atmos. Meas. Tech., 14, 3395–3426, https://doi.org/10.5194/amt-14-3395-2021, https://doi.org/10.5194/amt-14-3395-2021, 2021
Short summary
Short summary
A new method, Skyrad pack MRI version 2, was developed to retrieve aerosol physical and optical properties, water vapor, and ozone column concentrations from the sky radiometer, a filter radiometer deployed in the SKYNET international network. Our method showed good performance in a radiative closure study using surface solar irradiances from the Baseline Surface Radiation Network and a comparison using aircraft in situ measurements of Saharan dust events during the SAVEX-D 2015 campaign.
Daisuke Goto, Yousuke Sato, Hisashi Yashiro, Kentaroh Suzuki, Eiji Oikawa, Rei Kudo, Takashi M. Nagao, and Teruyuki Nakajima
Geosci. Model Dev., 13, 3731–3768, https://doi.org/10.5194/gmd-13-3731-2020, https://doi.org/10.5194/gmd-13-3731-2020, 2020
Short summary
Short summary
We executed a global aerosol model over 3 years with the finest grid size in the world. The results elucidated that global annual averages of parameters associated with the aerosols were generally comparable to those obtained from a low-resolution model (LRM), but spatiotemporal variabilities of the aerosol components and their associated parameters provided better results closer to the observations than those from the LRM. This study clarified the advantages of the high-resolution model.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Akira Yamauchi, Kentaroh Suzuki, Eiji Oikawa, Miho Sekiguchi, Takashi M. Nagao, and Haruma Ishida
Atmos. Meas. Tech., 17, 6751–6767, https://doi.org/10.5194/amt-17-6751-2024, https://doi.org/10.5194/amt-17-6751-2024, 2024
Short summary
Short summary
A Japanese team developed the Level 2 atmospheric radiation flux and heating rate product for EarthCARE, which offers vertical profiles of longwave and shortwave radiative fluxes and heating rates. This study outlines the algorithm for the radiative product and its comparative validation against satellite and ground-based observations. It also analyzes errors in radiative fluxes at various scales and their dependence on cloud type, with ice-containing clouds identified as a primary error source.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-103, https://doi.org/10.5194/amt-2024-103, 2024
Publication in AMT not foreseen
Short summary
Short summary
The article gives the descriptions of the Japan Aerospace Exploration Agency (JAXA) level 2 (L2) cloud mask and cloud particle type algorithms for CPR and ATLID onboard Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. The 355nm-multiple scattering polarization lidar was used to develop ATLID algorithm. Evaluations show the agreements for CPR-only, ATLID-only and CPR-ATLID synergy algorithms to be about 80%, 85% and 80%, respectively on average for about two EarthCARE orbits.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Kentaroh Suzuki, Woosub Roh, Akira Yamauchi, Hiroaki Horie, Yuichi Ohno, Yuichiro Hagihara, Hiroshi Ishimoto, Rei Kudo, Takuji Kubota, and Toshiyuki Tanaka
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-101, https://doi.org/10.5194/amt-2024-101, 2024
Publication in AMT not foreseen
Short summary
Short summary
This article gives overviews of the JAXA L2 algorithms and products by Japanese science teams for EarthCARE. The algorithms provide corrected Doppler velocity, cloud particle shape and orientations, microphysics of clouds and aerosols, and radiative fluxes and heating rate. The retrievals by the algorithms are demonstrated and evaluated using NICAM/J-simulator outputs. The JAXA EarthCARE L2 products will bring new scientific knowledge about the clouds, aerosols, radiation and convections.
Tomoaki Nishizawa, Rei Kudo, Eiji Oikawa, Akiko Higurashi, Yoshitaka Jin, Nobuo Sugimoto, Kaori Sato, and Hajime Okamoto
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-100, https://doi.org/10.5194/amt-2024-100, 2024
Revised manuscript under review for AMT
Short summary
Short summary
We developed algorithms to produce JAXA ATLID L2 aerosol products using ATLID L1 data. The algorithms estimate layer identifiers such as aerosol or cloud layers, (2) particle optical properties at 355 nm, (3) particle type identifiers, and (4) planetary boundary layer height. We demonstrated the algorithm performance using the simulated ATLID L1 data and found the algorithm’s capability to provide valuable insights into the global distribution of aerosols and clouds.
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023, https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Short summary
Influenced by the representativeness of ice crystal scattering models, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. We developed an ice cloud remote sensing retrieval algorithm of the ice water path and particle size from aircraft-based terahertz radiation measurements based on the Voronoi model. Validation revealed that the Voronoi model performs better than the sphere and hexagonal column models.
Ming Li, Husi Letu, Yiran Peng, Hiroshi Ishimoto, Yanluan Lin, Takashi Y. Nakajima, Anthony J. Baran, Zengyuan Guo, Yonghui Lei, and Jiancheng Shi
Atmos. Chem. Phys., 22, 4809–4825, https://doi.org/10.5194/acp-22-4809-2022, https://doi.org/10.5194/acp-22-4809-2022, 2022
Short summary
Short summary
To build on the previous investigations of the Voronoi model in the remote sensing retrievals of ice cloud products, this paper developed an ice cloud parameterization scheme based on the single-scattering properties of the Voronoi model and evaluate it through simulations with the Community Integrated Earth System Model (CIESM). Compared with four representative ice cloud schemes, results show that the Voronoi model has good capabilities of ice cloud modeling in the climate model.
Pradeep Khatri, Tadahiro Hayasaka, Hitoshi Irie, Husi Letu, Takashi Y. Nakajima, Hiroshi Ishimoto, and Tamio Takamura
Atmos. Meas. Tech., 15, 1967–1982, https://doi.org/10.5194/amt-15-1967-2022, https://doi.org/10.5194/amt-15-1967-2022, 2022
Short summary
Short summary
Cloud properties observed by the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission – Climate (GCOM-C) satellite are evaluated using surface observation data. The study finds that SGLI-observed cloud properties are qualitative enough, although water cloud properties are suggested to be more qualitative, and both water and ice cloud properties can reproduce surface irradiance quite satisfactorily. Thus, SGLI cloud products are very useful for different studies.
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022, https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary
Short summary
The aerosol optical depth (AOD) characteristics in an urban area of Rome were retrieved over a period of 11 years (2010–2020) to determine, for the first time, their effect on the incoming ultraviolet (UV) solar radiation. The surface forcing efficiency shows that the AOD is the primary parameter affecting the surface irradiance in Rome, and it is found to be greater for smaller zenith angles and for larger and more absorbing particles in the UV range (such as, e.g., mineral dust).
Hiroshi Ishimoto, Masahiro Hayashi, and Yuzo Mano
Atmos. Meas. Tech., 15, 435–458, https://doi.org/10.5194/amt-15-435-2022, https://doi.org/10.5194/amt-15-435-2022, 2022
Short summary
Short summary
Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds (VACs) and radiative transfer calculations, we attempt to simulate the measured brightness temperature spectra (BTS) of volcanic ash aerosols in the infrared region. In particular, the dependence on the ash refractive index (RI) model is investigated.
Rei Kudo, Henri Diémoz, Victor Estellés, Monica Campanelli, Masahiro Momoi, Franco Marenco, Claire L. Ryder, Osamu Ijima, Akihiro Uchiyama, Kouichi Nakashima, Akihiro Yamazaki, Ryoji Nagasawa, Nozomu Ohkawara, and Haruma Ishida
Atmos. Meas. Tech., 14, 3395–3426, https://doi.org/10.5194/amt-14-3395-2021, https://doi.org/10.5194/amt-14-3395-2021, 2021
Short summary
Short summary
A new method, Skyrad pack MRI version 2, was developed to retrieve aerosol physical and optical properties, water vapor, and ozone column concentrations from the sky radiometer, a filter radiometer deployed in the SKYNET international network. Our method showed good performance in a radiative closure study using surface solar irradiances from the Baseline Surface Radiation Network and a comparison using aircraft in situ measurements of Saharan dust events during the SAVEX-D 2015 campaign.
Daisuke Goto, Yousuke Sato, Hisashi Yashiro, Kentaroh Suzuki, Eiji Oikawa, Rei Kudo, Takashi M. Nagao, and Teruyuki Nakajima
Geosci. Model Dev., 13, 3731–3768, https://doi.org/10.5194/gmd-13-3731-2020, https://doi.org/10.5194/gmd-13-3731-2020, 2020
Short summary
Short summary
We executed a global aerosol model over 3 years with the finest grid size in the world. The results elucidated that global annual averages of parameters associated with the aerosols were generally comparable to those obtained from a low-resolution model (LRM), but spatiotemporal variabilities of the aerosol components and their associated parameters provided better results closer to the observations than those from the LRM. This study clarified the advantages of the high-resolution model.
Cited articles
Aboobacker, V. M., Shanas, P. R., Al-Ansari, E. M. A. S., Kumar, V. S., and Vethamony, P.: The maxima in northerly wind speeds and wave heights over the Arabian Sea, the Arabian/Persian Gulf and the Red Sea derived from 40 years of ERA5 data, Clim. Dynam., 56, 1037–1052, https://doi.org/10.1007/s00382-020-05518-6, 2021.
Ackerman, S. A., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and
Menzel, P.: MODIS Atmosphere L2 Cloud Mask Product, NASA MODIS Adaptive
Processing System, Goddard Space Flight Center [data set], USA,
https://doi.org/10.5067/MODIS/MOD35_L2.006, 2015.
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015.
Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and
Holmén, K.: Mesoscale variations of tropospheric aerosols, J. Atmos.
Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2, 2003.
Aoki, T., Tanaka, T. Y., Uchiyama, A., Chiba, M., Mikami, M, Yabuki, S., and
Key, J. R.: Sensitivity experiments of direct radiative forcing caused by
mineral dust simulated with a chemical transport model, J. Meteorol. Soc.
Jpn., 83A, 315–331, https://doi.org/10.2151/jmsj.83A.315, 2005.
Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke,
J., Naik, V., Palmer, M. D., Plattner, G.-K., Rogelj, J., Rojas, M.,
Sillmann, J., Storelvmo, T., Thorne, P. W., Trewin, B., Achuta Rao, K.,
Adhikary, B., Allan, R. P., Armour, K., Bala, G., Barimalala, R., Berger, S.,
Canadell, J. G., Cassou, C., Cherchi, A., Collins, W., Collins, W.D.,
Connors, S. L., Corti, S., Cruz, F., Dentener, F. J., Dereczynski, C., Di
Luca, A., Diongue Niang, A., Doblas-Reyes, F. J., Dosio, A., Douville, H.,
Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B.,
Fuglestvedt, J. S., Fyfe, J. C., Gillett, N. P., Goldfarb, L., Gorodetskaya,
I., Gutierrez, J. M., Hamdi, R., Hawkins, E., Hewitt, H. T., Hope, P., Islam,
A. S., Jones, C., Kaufman, D. S., Kopp, R. E., Kosaka, Y., Kossin, J.,
Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T. K.,
Meinshausen, M., Min, S.-K., Monteiro, P. M. S., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A.C., Ruiz, L.,
Sallée, J.-B., Samset, B. H., Sathyendranath, S., Seneviratne, S. I.,
Sörensson, A. A., Szopa, S., Takayabu, I., Tréguier, A.-M., van den
Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and
Zickfeld, K.: Technical Summary, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 33–144,
https://doi.org/10.1017/9781009157896.002, 2021.
Asano, S. and Shiobara, M.: Aircraft measurements of the radiative effects
of tropospheric aerosols: I. Observational results of the radiation budget,
J. Meteorol. Soc. Jpn., 67, 847–861,
https://doi.org/10.2151/jmsj1965.67.5_847, 1989.
Bösenberg, J., Matthias, V., Amodeo, A., Amoiridis, V., Ansmann, A.,
Baldasano, J. M., Balin, I., Balis, D., Böckmann, C., Boselli, A.,
Carlsson, G., Chaikovsky, A., Chourdakis, G., Comerón, A., De Tomasi,
F., Eixmann, R., Freudenthaler, V., Giehl, H., Grigorov, I., Hågård,
A., Iarlori, M., Kirsche, A., Kolarov, G., Komguem, L., Kreipl, S., Kumpf,
W., Larchevêque, G., Linné, H., Matthey, R., Mattis, I., Mekler, A.,
Mironova, I., Mitev, V., Mona, L., Müller, D., Music, S., Nickovic, S.,
Pandolfi, M., Papayannis, A., Pappalardo, G., Pelon, J., Pérez, C.,
Perrone, R. M., Persson, R., Resendes, D. P., Rizi, V., Rocadenbosch, F.,
Rodrigues, A., Sauvage, L., Schneidenbach, L., Schumacher, R., Shcherbakov,
V., Simeonov, V., Sobolewski, P., Spinelli, N., Stachlewska, I., Stoyanov,
D., Trickl, T., Tsaknakis, G., Vaughan, G., Wandinger, U., Wang, X.,
Wiegner, M., Zavrtanik, M., and Zerefos, C.: EARLINET: A European Aerosol
Research Lidar Network to Establish an Aerosol Climatology,
Max-Planck-Institut Report, No. 348, ISSN 0937 1060, 2003.
Chaichitehrani, N. and Allahdadi, M. N.: Overview of wind climatology for the Gulf of Oman and the northern Arabian Sea, American Journal of Fluid Dynamics, 8, 1–9, 2018.
Chaikovsky, A., Dubovik, O., Holben, B., Bril, A., Goloub, P., Tanré, D., Pappalardo, G., Wandinger, U., Chaikovskaya, L., Denisov, S., Grudo, J., Lopatin, A., Karol, Y., Lapyonok, T., Amiridis, V., Ansmann, A., Apituley, A., Allados-Arboledas, L., Binietoglou, I., Boselli, A., D'Amico, G., Freudenthaler, V., Giles, D., Granados-Muñoz, M. J., Kokkalis, P., Nicolae, D., Oshchepkov, S., Papayannis, A., Perrone, M. R., Pietruczuk, A., Rocadenbosch, F., Sicard, M., Slutsker, I., Talianu, C., De Tomasi, F., Tsekeri, A., Wagner, J., and Wang, X.: Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET, Atmos. Meas. Tech., 9, 1181–1205, https://doi.org/10.5194/amt-9-1181-2016, 2016.
Chang, H. and Charalampopoulos, T. T.: Determination of the wavelength
dependence of refractive indices of flame soot, Proc. R. Soc. Lond. A, 430,
577–591, https://doi.org/10.1098/rspa.1990.0107, 1990.
Dey, S., Tripathi, S. N., Singh, R. P., and Holben, B. N.: Retrieval of
black carbon and specific absorption over Kanpur city, northern India during
2001–2003 using AERONET data, Atmos. Environ., 40, 445–456,
https://doi.org/10.1016/j.atmosenv.2005.09.053, 2006.
Draine, B. T. and Flatau, P. J.: Discrete-Dipole Approximation For
Scattering Calculations, J. Opt. Soc. Am. A, 11, 1491–1499,
https://doi.org/10.1364/JOSAA.11.001491, 1994
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval
of aerosol optical properties from sun and sky radiance measurements, J.
Geophys. Res., 105, 20673–20696, https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M.
D., Tanré, D., and Slutsker, I.: Variability of absorption and optical
properties of key aerosol types observed in worldwide locations, J. Atmos.
Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:voaaop>2.0.co;2, 2002.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang,
P., Eck, T. F., Volten, H., Muñoz, O., Veilhelmann, B., van der Zande, W. J., Leon, J. F., Sorokin, M., and Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
Eibedingil, I. G., Gill, T. E., Van Pelt, R. S., and Tong, D. Q.: Comparison
of aerosol optical depth from MODIS product collection 6.1 and AERONET in
the western united states, Remote. Sens., 13, 2316,
https://doi.org/10.3390/rs13122316, 2021.
Erickson III, D. J. and Duce, R. A.: On the global flux of atmosphere sea
salt, J. Geophys. Res., 93, 14079–14088, https://doi.org/10.1029/JC093iC11p14079, 1988.
Fujikawa, M., Kudo, R., Nishizawa, T., Oikawa, E., Higrashi, A., and
Okamoto, H.: Long-term analyses of aerosol optical thickness using CALIOP,
EPJ Web Conf., 237, 02023, https://doi.org/10.1051/epjconf/202023702023, 2020.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective analysis
for Research and Applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, 2017.
Getzewich, B. J., Vaughan, M. A., Hunt, W. H., Avery, M. A., Powell, K. A., Tackett, J. L., Winker, D. M., Kar, J., Lee, K.-P., and Toth, T. D.: CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm, Atmos. Meas. Tech., 11, 6309–6326, https://doi.org/10.5194/amt-11-6309-2018, 2018.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Gkikas, A., Proestakis, E., Amiridis, V., Kazadzis, S., Di Tomaso, E., Tsekeri, A., Marinou, E., Hatzianastassiou, N., and Pérez García-Pando, C.: ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set, Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021, 2021.
Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and
clouds: the software package OPAC, B. Am. Meteorol. Soc., 79, 831–844,
https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.
Higurashi, A. and Nakajima, T.: Detection of aerosol types over the East
China sea near Japan from four-channel satellite data, Geophys. Res. Lett.,
29, 1836, https://doi.org/10.1029/2002GL015357, 2002.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network
and data archive for aerosol characterization, Remote Sens. Environ., 66,
1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hsu, N. C., Jeong, M.-J., Betternhausen, C., Sayer, A. M., Hansell, R.,
Seftor, C. S., Huang, J., and Tsay, S.-C.: Enhanced deep blue aerosol
retrieval algorithm: the second generation, J. Geophys. Res., 118,
9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
Huang, G., Chen, Y., Li, Z., Liu, Q., Wang, Y., He, Q., Liu, T., Liu, X.,
Zhnag, Y., Gao, J., and Yao, Y.: Validation and accuracy analysis of the
collection 6.1 MODIS aerosol optical depth over the westernmost city in
China based on the Sun-sky radiometer observations from SONET, Earth and
Space Science, 7, e2019EA001041, https://doi.org/10.1029/2019EA001041, 2020.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over East Asian arid and semiarid regions, J.
Geophys. Res. Atmos., 119, 11398-11416, doi:10.1002/2014JD021796, 2014.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J. Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., J. Hogan, R., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H.,
Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez,
A., Wandinger, U., Wehr, T., and Van Zadelhoff, G. J.: The EarthCARE satellite:
The next step forward in global measurements of clouds, aerosols,
precipitation, and radiation, B. Am. Meteorol. Soc., 96, 1311–1332,
https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
Ishimoto, H., Zaizen, Y., Uchiyama, A., Masuda, K., and Mano, Y.: Shape
modeling of mineral dust particles for light-scattering calculations using
the spatial Poisson–Voronoi tessellation, J. Quant. Spectrosoc. Ra., 111, 2434–2443, https://doi.org/10.1016/j.jqsrt.2010.06.018, 2010.
Ishimoto, H., Masuda, K., Mano, Y., Orikasa, N., and Uchiyama, A.:
Irregularly shaped ice aggregates in optical modeling of convectively
generated ice clouds, J. Quant. Spectrosc. Ra., 113, 632–643,
https://doi.org/10.1016/j.jqsrt.2012.01.017, 2012.
Ishimoto, H., Kudo, R., and Adachi, K.: A shape model of internally mixed soot particles derived from artificial surface tension, Atmos. Meas. Tech., 12, 107–118, https://doi.org/10.5194/amt-12-107-2019, 2019.
Jin, Y., Nishizawa, T., Sugimoto, N., Takakura, S., Aoki, M., Ishii, S.,
Yamazaki, A., Kudo, R., Yumimoto, K., Sato, K., and Okamoto, H.:
Demonstration of aerosol profile measurement with a dual-wavelength
high-spectral-resolution lidar using a scanning interferometer, Appl. Optics,
61, 3523–3532, https://doi.org/10.1364/AO.451707, 2022.
Kahnert, M., Nousiainen, T., Lindqvist, H., and Ebert, M.: Optical
properties of light absorbing carbon aggregates mixed with sulfate:
assessment of different model geometries for climate forcing calculations,
Opt. Express, 20, 10042–10058, https://doi.org/10.1364/OE.20.010042, 2012.
Kahnert, M., Nousiainen, T., and Lindqvist, H.: Models for integrated and
differential scattering optical properties of encapsulated light absorbing
carbon aggregates, Opt. Express, 21, 7974–7933, https://doi.org/10.1364/OE.21.007974, 2013.
Kar, J., Vaughan, M. A., Lee, K.-P., Tackett, J. L., Avery, M. A., Garnier, A., Getzewich, B. J., Hunt, W. H., Josset, D., Liu, Z., Lucker, P. L., Magill, B., Omar, A. H., Pelon, J., Rogers, R. R., Toth, T. D., Trepte, C. R., Vernier, J.-P., Winker, D. M., and Young, S. A.: CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm, Atmos. Meas. Tech., 11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, 2018.
Kaufman, Y. J., Tanré, D., Léon, J.-F., and Pelon, J.: Retrievals of
profiles of fine and coarse aerosols using lidar and radiometric space
measurements, IEEE T. Geoscience Remote, 41, 1743–1754, https://doi.org/10.1109/TGRS.2003.814138, 2003.
Kim, J., Lee, J., Lee, H. C., Higurashi, A., Takemura, T., and Song, C. H.:
Consistency of the aerosol type classification from satellite remote sensing
during the atmospheric brown cloud-East Asia regional experiment campaign,
J. Geophys. Res., 112, D22S33, https://doi.org/10.1029/2006JD008201, 2007.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Kinne, S.: Aerosol radiative effects with MACv2, Atmos. Chem. Phys., 19, 10919–10959, https://doi.org/10.5194/acp-19-10919-2019, 2019.
Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., Berntsen, T., Berglen, T. F., Boucher, O., Chin, M., Collins, W., Dentener, F., Diehl, T., Easter, R., Feichter, J., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Herzog, M., Horowitz, L., Isaksen, I., Iversen, T., Kirkevåg, A., Kloster, S., Koch, D., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Lesins, G., Liu, X., Lohmann, U., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, O., Stier, P., Takemura, T., and Tie, X.: An AeroCom initial assessment – optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 1815–1834, https://doi.org/10.5194/acp-6-1815-2006, 2006.
Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins,
J. V., and Rosenfeld, D.: The Bodélé depression: a single spot in
the Sahara that provides most of the mineral dust to the Amazon forest,
Environ. Res. Lett., 1, 014005, https://doi.org/10.1088/1748-9326/1/1/014005, 2006.
Korras-Carraca, M. B., Pappas, V., Hatzianastassiou, N., Vardavas, I., and
Matsoukas, C.: Global vertically resolved aerosol direct radiation effect
from three years of CALIOP data using the FORTH radiation transfer model,
Atmos. Res., 224, 138–156, https://doi.org/10.1016/j.atmosres.2019.03.024, 2019.
Korras-Carraca, M. B., Gkikas, A., Matsoukas, C., and Hatzianastassiou, N.: Global clear-sky aerosol speciated direct radiative effects over 40 years (1980–2019), Atmosphere, 12, 1254, https://doi.org/10.3390/atmos12101254, 2021.
Kudo, R., Uchiyama, A., Yamazaki, A., Sakami, T., and Kobayashi, E.: From
solar radiation measurements to optical properties: 1998–2008 trends in
Japan, Geophys. Res. Lett., 37, L04805, https://doi.org/10.1029/2009GL041794, 2010a.
Kudo, R., Uchiyama, A., Yamazaki, A., and Kobayashi, E.: Seasonal
characteristics of aerosol radiative effect estimated from ground-based
solar radiation measurements in Tsukuba, Japan, J. Geophys. Res., 115,
D01204, https://doi.org/10.1029/2009JD012487, 2010b.
Kudo, R., Uchiyama, A., Yamazaki, A., Sakami, T., and Ijima, O.: Decadal
changes in aerosol optical thickness and single scattering albedo estimated
from ground-based broadband radiometers: A case study in Japan, J. Geophys.
Res., 116, D03207, https://doi.org/10.1029/2010JD014911, 2011.
Kudo, R., Nishizawa, T., and Aoyagi, T.: Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements, Atmos. Meas. Tech., 9, 3223–3243, https://doi.org/10.5194/amt-9-3223-2016, 2016.
Kudo, R., Aoyagi, T., and Nishizawa, T.: Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer, Atmos. Meas. Tech., 11, 3031–3046, https://doi.org/10.5194/amt-11-3031-2018, 2018.
Kudo, R., Diémoz, H., Estellés, V., Campanelli, M., Momoi, M., Marenco, F., Ryder, C. L., Ijima, O., Uchiyama, A., Nakashima, K., Yamazaki, A., Nagasawa, R., Ohkawara, N., and Ishida, H.: Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals, Atmos. Meas. Tech., 14, 3395–3426, https://doi.org/10.5194/amt-14-3395-2021, 2021.
Lewis, E. R. and Schwartz, S. E.: Fundamentals in “Sea salt aerosol
production: mechanisms, methods, measurements and models”, Geophysical
Monograph Series, American Geophysical Union, 152, 9–99, ISBN: 9781118666050, 2004.
Li, M., Liu, J., Wang, Z., Wang, H., Zhang, Z., Zhang, L., and Yang, Q.:
Assessment of sea surface wind from NWP reanalysis and satellites in the
southern ocean, 1842–1853, https://doi.org/10.1175/JTECH-D-12-00240.1, 2013.
Liu, Z., Vaughan, M. A., Winker, D. M., Kittaka, C., Getzewich, B. J.,
Kuehn, R. E., Omar, A., Powell, K., Trepte, C. R., and Hostetler, C. A.: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance, J. Atmos. Ocean. Tech., 26, 1198–1213, 2009.
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J., Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and Winker, D.: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products, Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, 2019.
Lopatin, A., Dubovik, O., Chaikovsky, A., Goloub, P., Lapyonok, T., Tanré, D., and Litvinov, P.: Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: the GARRLiC algorithm, Atmos. Meas. Tech., 6, 2065–2088, https://doi.org/10.5194/amt-6-2065-2013, 2013.
Matsui, H., Koike, M., Kondo, Y., Moteki, N., Fast, J. D., and Zaveri, R. A.: Development and validation of a black carbon missing state resolved
three-dimensional model: Aging process and radiative impact, J. Geophys.
Res., 118, 2304–2326, https://doi.org/10.1029/2012JD018446, 2013.
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative
effects highly sensitive to emitted particle size when resolving
mixing-state diversity, Nat. Commun., 9, 3446,
https://doi.org/10.1038/s41467-018-05635-1, 2018.
Maxwell Garnet, J. C.: Colours in metal glasses and in metallic films,
Philos. Trans. R. Soc. A, 203, 283–420, 1904.
Moteki, N., Kondo, Y., Miyazaki, Y., Takegawa, N., Komazaki, Y., Kurata, G.,
Shirai, T., Blake, D. R., Miyakawa, T., and Koike, M.: Evolution of mixing
state of black carbon particles: Aircraft measurements over the western
Pacific in March 2004, Geophys. Res. Lett., 34, L11803,
https://doi.org/10.1029/2006GL028943, 2007.
Nakajima, T. and Tanaka, M.: Effect of wind-generated waves on the transfer
of solar radiation in the atmosphere-ocean system, J. Quant. Spectrosoc.
Ra., 29, 521–537, https://doi.org/10.1016/0022-4073(83)90129-2, 1983.
Nakajima, T., Campanelli, M., Che, H., Estellés, V., Irie, H., Kim, S.-W., Kim, J., Liu, D., Nishizawa, T., Pandithurai, G., Soni, V. K., Thana, B., Tugjsurn, N.-U., Aoki, K., Go, S., Hashimoto, M., Higurashi, A., Kazadzis, S., Khatri, P., Kouremeti, N., Kudo, R., Marenco, F., Momoi, M., Ningombam, S. S., Ryder, C. L., Uchiyama, A., and Yamazaki, A.: An overview of and issues with sky radiometer technology and SKYNET, Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, 2020.
Nishizawa, T., Asano, S., Uchiyama, A., and Yamazaki, A.: Seasonal variation
of aerosol direct radiative forcing and optical properties estimated from
ground-based solar radiation measurements, J. Atmos. Sci., 61, 57–72,
https://doi.org/10.1175/1520-0469(2004)061<0057:SVOADR>2.0.CO;2, 2004.
Nishizawa, T., Okamoto, H., Sugimoto, N., Matsui, I., Shimizu, A, and Aoki,
K.: An algorithm that retrieves aerosol properties from dual-wavelength
polarized lidar measurements, J. Geophys. Res., 112, D06212,
https://doi.org/10.1029/2006JD007435, 2007.
Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., Tatarov, B., and Okamoto, H.: Algorithm to retrieve aerosol optical properties from
High-Spectral-Resolution-Lidar and polarization Mie-Scattering Lidar
measurements, IEEE T. Geosci. Remote, 46, 4094–4103, https://doi.org/10.1109/TGRS.2008.2000797, 2008.
Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., and Okamoto, H.:
Algorithms to retrieve optical properties of three component aerosols from
two-wavelength backscatter and one-wavelength polarization lidar
measurements considering nonsphericity of dust, J. Quant. Spectrosoc.
Ra., 112, 254–267, https://doi.org/10.1016/j.jqsrt.2010.06.002, 2011.
Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., Hara, Y., Uno, I.,
Yasunaga, K., Kudo, R., and Kim, S.-W.: Ground-based network observation
using Mie–Raman lidars and multi-wavelength Raman lidars and algorithm to
retrieve distributions of aerosol components, J. Quant. Spectrosoc. Ra., 188, 79–93, https://doi.org/10.1016/j.jqsrt.2016.06.031, 2017.
Oikawa, E., Nakajima, T., and Winker, D.: An evaluation of the shortwave
direct aerosol radiatve forcing using CALIOP and MODIS observations, J.
Geophys. Res., 123, 1211–1233, https://doi.org/10.1002/2017JD027247, 2018.
Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z., Hu, Y.,
Trepte, C. R., Rogers, R. R., Ferrare, R. A., Lee, K.-P., Kuehn, R. E., and
Hostetler, C. A.: The CALIPSO automated aerosol classification and lidar
ratio selection algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Omar, A. H., Winker, D. M., Tackett, J. L., Giles, D. M., Kar, J., Liu, Z.,
Vaughan, M. A., Powell, K. A., and Trepte, C. R.: CALIOP and AERONET aerosol
optical depth comparisons: one size fits none, J. Geophys. Res., 118,
4748–4766, https://doi.org/10.1002/jgrd.50330, 2013.
Oshima, N., Koike, M., Zhang, Y., Kondo, Y., Moteki, N., Takegawa, N., and
Miyazaki, Y.: Aging of black carbon in outflow from anthropogenic sources
using a mixing state resolved model: Model development and evaluation, J.
Geophys. Res., 114, D06210, https://doi.org/10.1029/2008JD010680, 2009.
Ota, Y., Higurashi, A., Nakajima, T., and Yokota, T.: Matrix formulations of
radiative transfer including the polarization effect in a coupled
atmosphere-ocean system, J. Quant. Spectrosoc. Ra., 111, 878–894, https://doi.org/10.1016/j.jqsrt.2009.11.021, 2010.
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014.
Platnick, S., King, M., and Hubanks, P.: MODIS Atmosphere L3 Monthly
Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center
[data set], USA, https://doi.org/10.5067/MODIS/MYD08_M3.061, 2015.
Quaas, J., Jia, H., Smith, C., Albright, A. L., Aas, W., Bellouin, N., Boucher, O., Doutriaux-Boucher, M., Forster, P. M., Grosvenor, D., Jenkins, S., Klimont, Z., Loeb, N. G., Ma, X., Naik, V., Paulot, F., Stier, P., Wild, M., Myhre, G., and Schulz, M.: Robust evidence for reversal of the trend in aerosol effective climate forcing, Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, 2022.
Redemann, J., Wood, R., Zuidema, P., Doherty, S. J., Luna, B., LeBlanc, S. E., Diamond, M. S., Shinozuka, Y., Chang, I. Y., Ueyama, R., Pfister, L., Ryoo, J.-M., Dobracki, A. N., da Silva, A. M., Longo, K. M., Kacenelenbogen, M. S., Flynn, C. J., Pistone, K., Knox, N. M., Piketh, S. J., Haywood, J. M., Formenti, P., Mallet, M., Stier, P., Ackerman, A. S., Bauer, S. E., Fridlind, A. M., Carmichael, G. R., Saide, P. E., Ferrada, G. A., Howell, S. G., Freitag, S., Cairns, B., Holben, B. N., Knobelspiesse, K. D., Tanelli, S., L'Ecuyer, T. S., Dzambo, A. M., Sy, O. O., McFarquhar, G. M., Poellot, M. R., Gupta, S., O'Brien, J. R., Nenes, A., Kacarab, M., Wong, J. P. S., Small-Griswold, J. D., Thornhill, K. L., Noone, D., Podolske, J. R., Schmidt, K. S., Pilewskie, P., Chen, H., Cochrane, S. P., Sedlacek, A. J., Lang, T. J., Stith, E., Segal-Rozenhaimer, M., Ferrare, R. A., Burton, S. P., Hostetler, C. A., Diner, D. J., Seidel, F. C., Platnick, S. E., Myers, J. S., Meyer, K. G., Spangenberg, D. A., Maring, H., and Gao, L.: An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, 2021.
Rogers, R. R., Hostetler, C. A., Hair, J. W., Ferrare, R. A., Liu, Z., Obland, M. D., Harper, D. B., Cook, A. L., Powell, K. A., Vaughan, M. A., and Winker, D. M.: Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 11, 1295–1311, https://doi.org/10.5194/acp-11-1295-2011, 2011.
Sayer, A. M., Hsu, N. C., Lee, J., Kim, W. V., and Dutcher, S. T.: Validation, stability, and consistency of MODIS collection 6.1 and VIIRS
version 1 deep blue aerosol data over land, J. Geophys. Res., 124,
4658–4688, https://doi.org/10.1029/2018JD029598, 2019.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley,
M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First
operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens.
Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Inferring black carbon
content and specific absorption from Aerosol Robotic Network (AERONET)
aerosol retrievals, J. Geophys. Res., 110, D10S17, https://doi.org/10.1029/2004JD004548, 2005.
Schuster, G. L., Vaughan, M., MacDonnell, D., Su, W., Winker, D., Dubovik, O., Lapyonok, T., and Trepte, C.: Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust, Atmos. Chem. Phys., 12, 7431–7452, https://doi.org/10.5194/acp-12-7431-2012, 2012.
Sekiguchi, M. and Nakajima, T.: A k-distribution-based radiation code and
its computational optimization for an atmospheric general circulation model,
J. Quant. Spectrosc. Ra., 109, 2779–2793, https://doi.org/10.1016/j.jqsrt.2008.07.013, 2008.
Sharma, V., Ghosh, S., Bilal, M., Dey, S., and Singh, S.:
Performance of MODIS C6.1 dark target and deep blue aerosol products in Delhi national capital region, India: Application for aerosol studies, Atmos. Poll. Res., 12, 65-74, https://doi.org/10.1016/j.apr.2021.01.023,
2021.
Shi, H., Xiao, Z., Zhan, X., Ma, H., and Tian, X.: Evaluation of MODIS and
two reanalysis aerosol optical depth products over AERONET sites, Atmos.
Res., 220, 75–80, https://doi.org/10.1016/j.atmosres.2019.01.009, 2019.
Shimizu, A., Nishizawa, T., Jin, Y., Kim, S.-W., Wang, Z., Batdorj, D., and
Sugimoto, N.: Evolution of a lidar network for tropospheric aerosol
detection in East Asia, Opt. Eng., 56, 031219,
https://doi.org/10.1117/1.OE.56.3.031219, 2016.
Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020, 2020.
Smirnov, A., Holben, B. N., Slutsker, I., Giles, D. M., McClain, C. R., Eck,
T. F., Sakerin, S. M., Macke, A., Croot, P., Zibordi, G., Quinn, P. K.,
Sciare, J., Kinne, S., Harvey, M., Smyth, T. J., Piketh, S., Zielinski, T.,
Proshutinsky, A., Goes, J. I., Nelson, N. B., Larouche, P., Radionov, V. F.,
Goloub, P., Krishna Moorthy, K., Matarrese, R., Robertson, E. J., and
Jourdin, F.: Maritime Aerosol Network as a component of Aerosol Robotic
Network, J. Geophys. Res., 114, D06204, https://doi.org/10.1029/2008JD011257, 2009.
Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A., and Schaaf, C.:
Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons
with Greenland in situ measurements, Remote Sens. Environ., 94, 46–60,
https://doi.org/10.1016/j.rse.2004.09.001, 2005.
Stroeve, J., Box, J. E., Wang, Z., Schaaf, C., and Barrett, A.: Re-evaluation of
MODIS MCD43 Greenland albedo accuracy and trends, Remote Sens. Environ.,
138, 199–214, https://doi.org/10.1016/j.rse.2013.07.023, 2013.
Sugimoto, N., Nishizawa, T., Shimizu, A., Matsui, I., Higurashi, A., Uno,
I., Hara, Y., Yumimoto, K., and Kudo, R.: Continuous observations of
atmospheric aerosols across East Asia, SPIE Newsroom,
https://doi.org/10.1117/2.1201510.006178, 21 October 2015.
Tackett, J. L., Winker, D. M., Getzewich, B. J., Vaughan, M. A., Young, S. A., and Kar, J.: CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design, Atmos. Meas. Tech., 11, 4129–4152, https://doi.org/10.5194/amt-11-4129-2018, 2018.
Vaughan, M., Garnier, A., Josset, D., Avery, M., Lee, K.-P., Liu, Z., Hunt, W., Pelon, J., Hu, Y., Burton, S., Hair, J., Tackett, J. L., Getzewich, B., Kar, J., and Rodier, S.: CALIPSO lidar calibration at 1064 nm: version 4 algorithm, Atmos. Meas. Tech., 12, 51–82, https://doi.org/10.5194/amt-12-51-2019, 2019.
Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O.,
Shuai, Y., Woodcock, C. E., Hollinger, D. Y., and Fitzjarrald, D. R.: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods, Remote Sens.
Environ., 140, 60–77, https://doi.org/10.1016/j.rse.2013.08.025, 2014.
Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y., and Román, M. O.: Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products, Remote Sens. Environ., 50–64,
https://doi.org/10.1016/j.rse.2018.02.001, 2018.
Wei, J., Li, Z., Sun, L., Peng, Y., Liu, L., He, L., Qin, W., and Gribb, M.:
MODIS collection 6.1 3 km resolution aerosol optical depth product: global
evaluation and uncertainty analysis, Atmos. Environ., 240, 117768,
https://doi.org/10.1016/j.atmosenv.2020.117768, 2020.
Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic
properties of carbon and diesel soot particles, Atmos. Environ., 31,
2311–2327, https://doi.org/10.1016/S1352-2310(97)00023-X, 1997.
Williamson, S. N., Copland, L., and Hik, D. S.: The accuracy of
satellite-derived albedo for northern alpine and glaciated land covers,
Polar Science, 10, 262–269, https://doi.org/10.1016/j.polar.2016.06.006,
2016.
Winker, D. M., Pelon, J., Coakley Jr., J. A., Ackerman, S. A., Charlson, R.
J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T.
L., Le Treut, H., McCormick, M. P., Megie, G., Poole, L., Powell, K.,
Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO mission: A
Global 3D view of aerosols and clouds, B. Am. Meteorol. Soc., 91,
1211–1229, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Xu, F., Gao, L., Redemann, J., Flynn, C. J., Espinosa, W. R., da Silva, A.
M., Stamnes, S., Burton, S. P., Liu, X., Ferrare, R., Cairns, B., and
Dubovik, O.: A combined lidar-polarimeter inversion approach for aerosol
remote sensing over ocean, Front. Remote. Sens., 21, 620871,
https://doi.org/10.3389/frsen.2021.620871, 2021.
Yu, H., Liu, S. C., and Dickinson, R. E.: Radiative effects of aerosols on
the evolution of the atmospheric boundary layer, J. Geophys. Res., 107,
4142, https://doi.org/10.1029/2001JD000754, 2002.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Yumimoto, K., Tanaka, T. Y., Oshima, N., and Maki, T.: JRAero: the Japanese Reanalysis for Aerosol v1.0, Geosci. Model Dev., 10, 3225–3253, https://doi.org/10.5194/gmd-10-3225-2017, 2017.
Short summary
A synergistic retrieval method of aerosol components (water-soluble, light-absorbing, dust, and sea salt particles) from CALIOP and MODIS observations was developed. The total global 3-D distributions and those for each component showed good consistency with the CALIOP and MODIS official products and previous studies. The shortwave direct radiative effects of each component at the top and bottom of the atmosphere and for the heating rate were also consistent with previous studies.
A synergistic retrieval method of aerosol components (water-soluble, light-absorbing, dust, and...