Articles | Volume 7, issue 11
https://doi.org/10.5194/amt-7-3989-2014
https://doi.org/10.5194/amt-7-3989-2014
Research article
 | 
27 Nov 2014
Research article |  | 27 Nov 2014

MISR research-aerosol-algorithm refinements for dark water retrievals

J. A. Limbacher and R. A. Kahn

Related authors

MISR empirical stray light corrections in high-contrast scenes
J. A. Limbacher and R. A. Kahn
Atmos. Meas. Tech., 8, 2927–2943, https://doi.org/10.5194/amt-8-2927-2015,https://doi.org/10.5194/amt-8-2927-2015, 2015
Short summary
Aerosol airmass type mapping over the Urban Mexico City region from space-based multi-angle imaging
F. Patadia, R. A. Kahn, J. A. Limbacher, S. P. Burton, R. A. Ferrare, C. A. Hostetler, and J. W. Hair
Atmos. Chem. Phys., 13, 9525–9541, https://doi.org/10.5194/acp-13-9525-2013,https://doi.org/10.5194/acp-13-9525-2013, 2013

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
Atmos. Meas. Tech., 18, 2523–2536, https://doi.org/10.5194/amt-18-2523-2025,https://doi.org/10.5194/amt-18-2523-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary
ACDL/DQ-1 calibration algorithms – Part 1: Nighttime 532 nm polarization and the high-spectral-resolution channel
Fanqian Meng, Junwu Tang, Guangyao Dai, Wenrui Long, Kangwen Sun, Zhiyu Zhang, Xiaoquan Song, Jiqiao Liu, Weibiao Chen, and Songhua Wu
Atmos. Meas. Tech., 18, 2021–2039, https://doi.org/10.5194/amt-18-2021-2025,https://doi.org/10.5194/amt-18-2021-2025, 2025
Short summary
Aerosol composition retrieval from a combination of three different spaceborne instruments: information content analysis
Ulrike Stöffelmair, Thomas Popp, Marco Vountas, and Hartmut Bösch
Atmos. Meas. Tech., 18, 2005–2020, https://doi.org/10.5194/amt-18-2005-2025,https://doi.org/10.5194/amt-18-2005-2025, 2025
Short summary

Cited articles

Abdou, W. A., Martonchik, J. V., Kahn, R. A., West, R. A., and Diner, D. J.: A modified linear-mixing method for calculating atmospheric path radiances of aerosol mixtures, J. Geophys. Res., 102, 16883–16888, https://doi.org/10.1029/96JD03434, 1997.
Antoine, D., Morel, A., Leymarie, E., Houyou, A., Gentili, B., Victori, S., Buis, J.-P., Buis, N., Meunier, S., Canini, M., Crozel, D., Fougnie, B., and Henry, P.: Underwater Radiance Distributions Measured with Miniaturized Multispectral Radiance Cameras, J. Atmos. Ocean. Tech., 30, 74–95, 2013.
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157–174, https://doi.org/10.1175/2010BAMS2946.1, 2011.
Barrot, G., Mangin, A., and Pinnock, S.: GlobColour Product User Guide, http://www.globcolour.info (last access: 31 January 2014), 2010.
Baum, B., Yang, P., Heymsfield, A., Platnick, S., King, M., Hu, Y., and Bedka, S.: Bulk scattering properties for the remote sensing of ice clouds: Part II. Narrowband models, J. Appl. Meteorol., 44, 1896–1911, https://doi.org/10.1175/JAM2309.1, 2005.
Short summary
We systematically explore the cumulative effect of MISR research aerosol retrieval algorithm assumptions, quantifying and correcting the main sources of uncertainty over ocean. High median spectral aerosol optical depth biases of ~0.024 at low AOD are reduced to ~0.01 with an improved, physically based ocean surface model, particle properties and mixtures, adaptive reflectance uncertainty estimates and pixel selection, minor radiometric calibration adjustments and more stringent cloud screening.
Share