Articles | Volume 8, issue 12
Atmos. Meas. Tech., 8, 5089–5097, 2015
https://doi.org/10.5194/amt-8-5089-2015
Atmos. Meas. Tech., 8, 5089–5097, 2015
https://doi.org/10.5194/amt-8-5089-2015

Research article 08 Dec 2015

Research article | 08 Dec 2015

Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

T. M. Gray and R. Bennartz

Related authors

Spatial and temporal variability of snowfall over Greenland from CloudSat observations
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019,https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Evaluating the diurnal cycle of South Atlantic stratocumulus clouds as observed by MSG SEVIRI
Chellappan Seethala, Jan Fokke Meirink, Ákos Horváth, Ralf Bennartz, and Rob Roebeling
Atmos. Chem. Phys., 18, 13283–13304, https://doi.org/10.5194/acp-18-13283-2018,https://doi.org/10.5194/acp-18-13283-2018, 2018
Short summary
Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations
Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden
Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018,https://doi.org/10.5194/acp-18-4715-2018, 2018
Short summary
Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations
Ralf Bennartz and John Rausch
Atmos. Chem. Phys., 17, 9815–9836, https://doi.org/10.5194/acp-17-9815-2017,https://doi.org/10.5194/acp-17-9815-2017, 2017
Short summary
Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans
John Rausch, Kerry Meyer, Ralf Bennartz, and Steven Platnick
Atmos. Meas. Tech., 10, 2105–2116, https://doi.org/10.5194/amt-10-2105-2017,https://doi.org/10.5194/amt-10-2105-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Simulated reflectance above snow constrained by airborne measurements of solar radiation: implications for the snow grain morphology in the Arctic
Soheila Jafariserajehlou, Vladimir V. Rozanov, Marco Vountas, Charles K. Gatebe, and John P. Burrows
Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021,https://doi.org/10.5194/amt-14-369-2021, 2021
Short summary
ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez García-Pando
Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021,https://doi.org/10.5194/amt-14-309-2021, 2021
Short summary
Integrated System for Atmospheric Boundary Layer Height Estimation (ISABLE) using a ceilometer and microwave radiometer
Jae-Sik Min, Moon-Soo Park, Jung-Hoon Chae, and Minsoo Kang
Atmos. Meas. Tech., 13, 6965–6987, https://doi.org/10.5194/amt-13-6965-2020,https://doi.org/10.5194/amt-13-6965-2020, 2020
Short summary
Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020,https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary
Correction of a lunar-irradiance model for aerosol optical depth retrieval and comparison with a star photometer
Roberto Román, Ramiro González, Carlos Toledano, África Barreto, Daniel Pérez-Ramírez, Jose A. Benavent-Oltra, Francisco J. Olmo, Victoria E. Cachorro, Lucas Alados-Arboledas, and Ángel M. de Frutos
Atmos. Meas. Tech., 13, 6293–6310, https://doi.org/10.5194/amt-13-6293-2020,https://doi.org/10.5194/amt-13-6293-2020, 2020
Short summary

Cited articles

Ackerman, S. A.: Remote sensing aerosols using satellite infrared observations, J. Geophys. Res.-Atmos., 102, 17069–17079, 1997.
Ackerman, S. A., Schreiner, A. J., Schmit, T. J., Woolf, H. M., Li, J., and Pavolonis, M.: Using the GOES Sounder to monitor upper level SO2 from volcanic eruptions, J. Geophys. Res., 113, D14s11, https://doi.org/10.1029/2007jd009622, 2008.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Caldeira, K. G. and Rampino, M. R.: Deccan volcanism, greenhouse warming, and the Cretaceous/Tertiary boundary, Geol. S. Am. S., 247, 117–124, 1990.
Download
Short summary
Volcanic ash poses a serious threat to aircraft traffic. A simple neural-network based technique was developed to detect volcanic ash from space using satellite infrared observations. A validation study shows promising results for several individual case studies. Issues remain near the edge of the satellite's field of view as well as in situations where ash is mixed with meteorological clouds.