Articles | Volume 8, issue 12
https://doi.org/10.5194/amt-8-5089-2015
https://doi.org/10.5194/amt-8-5089-2015
Research article
 | 
08 Dec 2015
Research article |  | 08 Dec 2015

Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

T. M. Gray and R. Bennartz

Related authors

Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021,https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Spatial and temporal variability of snowfall over Greenland from CloudSat observations
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019,https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Evaluating the diurnal cycle of South Atlantic stratocumulus clouds as observed by MSG SEVIRI
Chellappan Seethala, Jan Fokke Meirink, Ákos Horváth, Ralf Bennartz, and Rob Roebeling
Atmos. Chem. Phys., 18, 13283–13304, https://doi.org/10.5194/acp-18-13283-2018,https://doi.org/10.5194/acp-18-13283-2018, 2018
Short summary
Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations
Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden
Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018,https://doi.org/10.5194/acp-18-4715-2018, 2018
Short summary
Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations
Ralf Bennartz and John Rausch
Atmos. Chem. Phys., 17, 9815–9836, https://doi.org/10.5194/acp-17-9815-2017,https://doi.org/10.5194/acp-17-9815-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023,https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Volcanic cloud detection using Sentinel-3 satellite data by means of neural networks: the Raikoke 2019 eruption test case
Ilaria Petracca, Davide De Santis, Matteo Picchiani, Stefano Corradini, Lorenzo Guerrieri, Fred Prata, Luca Merucci, Dario Stelitano, Fabio Del Frate, Giorgia Salvucci, and Giovanni Schiavon
Atmos. Meas. Tech., 15, 7195–7210, https://doi.org/10.5194/amt-15-7195-2022,https://doi.org/10.5194/amt-15-7195-2022, 2022
Short summary
The new MISR research aerosol retrieval algorithm: a multi-angle, multi-spectral, bounded-variable least squares retrieval of aerosol particle properties over both land and water
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022,https://doi.org/10.5194/amt-15-6865-2022, 2022
Short summary
Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, Xi Chen, Yele Sun, Jianjun Li, Guigang Tang, and Wenxuan Chai
Atmos. Meas. Tech., 15, 6127–6144, https://doi.org/10.5194/amt-15-6127-2022,https://doi.org/10.5194/amt-15-6127-2022, 2022
Short summary
Atmospheric visibility inferred from continuous-wave Doppler wind lidar
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022,https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary

Cited articles

Ackerman, S. A.: Remote sensing aerosols using satellite infrared observations, J. Geophys. Res.-Atmos., 102, 17069–17079, 1997.
Ackerman, S. A., Schreiner, A. J., Schmit, T. J., Woolf, H. M., Li, J., and Pavolonis, M.: Using the GOES Sounder to monitor upper level SO2 from volcanic eruptions, J. Geophys. Res., 113, D14s11, https://doi.org/10.1029/2007jd009622, 2008.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Caldeira, K. G. and Rampino, M. R.: Deccan volcanism, greenhouse warming, and the Cretaceous/Tertiary boundary, Geol. S. Am. S., 247, 117–124, 1990.
Download
Short summary
Volcanic ash poses a serious threat to aircraft traffic. A simple neural-network based technique was developed to detect volcanic ash from space using satellite infrared observations. A validation study shows promising results for several individual case studies. Issues remain near the edge of the satellite's field of view as well as in situations where ash is mixed with meteorological clouds.