Articles | Volume 8, issue 12
Atmos. Meas. Tech., 8, 5089–5097, 2015
https://doi.org/10.5194/amt-8-5089-2015
Atmos. Meas. Tech., 8, 5089–5097, 2015
https://doi.org/10.5194/amt-8-5089-2015

Research article 08 Dec 2015

Research article | 08 Dec 2015

Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

T. M. Gray and R. Bennartz

Related authors

Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021,https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Spatial and temporal variability of snowfall over Greenland from CloudSat observations
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019,https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Evaluating the diurnal cycle of South Atlantic stratocumulus clouds as observed by MSG SEVIRI
Chellappan Seethala, Jan Fokke Meirink, Ákos Horváth, Ralf Bennartz, and Rob Roebeling
Atmos. Chem. Phys., 18, 13283–13304, https://doi.org/10.5194/acp-18-13283-2018,https://doi.org/10.5194/acp-18-13283-2018, 2018
Short summary
Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations
Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden
Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018,https://doi.org/10.5194/acp-18-4715-2018, 2018
Short summary
Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations
Ralf Bennartz and John Rausch
Atmos. Chem. Phys., 17, 9815–9836, https://doi.org/10.5194/acp-17-9815-2017,https://doi.org/10.5194/acp-17-9815-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Mass concentration estimates of long-range-transported Canadian biomass burning aerosols from a multi-wavelength Raman polarization lidar and a ceilometer in Finland
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021,https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021,https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Introducing the MISR level 2 near real-time aerosol product
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021,https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Estimation of PM2.5 concentration in China using linear hybrid machine learning model
Zhihao Song, Bin Chen, Yue Huang, Li Dong, and Tingting Yang
Atmos. Meas. Tech., 14, 5333–5347, https://doi.org/10.5194/amt-14-5333-2021,https://doi.org/10.5194/amt-14-5333-2021, 2021
Short summary
Species correlation measurements in turbulent flare plumes: considerations for field measurements
Scott P. Seymour and Matthew R. Johnson
Atmos. Meas. Tech., 14, 5179–5197, https://doi.org/10.5194/amt-14-5179-2021,https://doi.org/10.5194/amt-14-5179-2021, 2021
Short summary

Cited articles

Ackerman, S. A.: Remote sensing aerosols using satellite infrared observations, J. Geophys. Res.-Atmos., 102, 17069–17079, 1997.
Ackerman, S. A., Schreiner, A. J., Schmit, T. J., Woolf, H. M., Li, J., and Pavolonis, M.: Using the GOES Sounder to monitor upper level SO2 from volcanic eruptions, J. Geophys. Res., 113, D14s11, https://doi.org/10.1029/2007jd009622, 2008.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Caldeira, K. G. and Rampino, M. R.: Deccan volcanism, greenhouse warming, and the Cretaceous/Tertiary boundary, Geol. S. Am. S., 247, 117–124, 1990.
Download
Short summary
Volcanic ash poses a serious threat to aircraft traffic. A simple neural-network based technique was developed to detect volcanic ash from space using satellite infrared observations. A validation study shows promising results for several individual case studies. Issues remain near the edge of the satellite's field of view as well as in situations where ash is mixed with meteorological clouds.