Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1303-2016
https://doi.org/10.5194/amt-9-1303-2016
Research article
 | 
30 Mar 2016
Research article |  | 30 Mar 2016

Statistical framework for estimating GNSS bias

Juha Vierinen, Anthea J. Coster, William C. Rideout, Philip J. Erickson, and Johannes Norberg

Related authors

Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements
Johannes Norberg, Ilkka I. Virtanen, Lassi Roininen, Juha Vierinen, Mikko Orispää, Kirsti Kauristie, and Markku S. Lehtinen
Atmos. Meas. Tech., 9, 1859–1869, https://doi.org/10.5194/amt-9-1859-2016,https://doi.org/10.5194/amt-9-1859-2016, 2016
Short summary
Coded continuous wave meteor radar
Juha Vierinen, Jorge L. Chau, Nico Pfeffer, Matthias Clahsen, and Gunter Stober
Atmos. Meas. Tech., 9, 829–839, https://doi.org/10.5194/amt-9-829-2016,https://doi.org/10.5194/amt-9-829-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary

Cited articles

Bust, G. S. and Mitchell, C. N.: History, current state, and future directions of ionospheric imaging, Rev. Geophys., 46, 1–23, 2008.
Carrano, C. S. and Groves, K.: The GPS Segment of the AFRL-SCINDA Global Network and the Challenges of Real-Time TEC Estimation in the Equatorial Ionosphere, Proceedings of the 2006 National Technical Meeting of The Institute of Navigation, Monterey, CA, 2006.
Coster, A., Williams, J., Weatherwax, A., Rideout, W., and Herne, D.: Accuracy of GPS total electron content: GPS receiver bias temperature dependence, Radio Sci., 48, 190–196, https://doi.org/10.1002/rds.20011, 2013.
Coster, A. J., Gaposchkin, E. M., and Thornton, L. E.: Real-time ionospheric monitoring system using the GPS, MIT Lincoln Laboratory, Technical Report, 954, 1992.
Davies, K.: Ionospheric Radio Propagation, National Bureau of Standards, 278–279, 1965.
Download
Short summary
We present a statistical framework for estimating GNSS receiver bias by using a weighted linear least squares of independent differences (WLLSID) model to examine differences of a large number of TEC measurements. This allows a consistent way for treating elevation-dependent model errors and spatiotemporal distance-dependent geophysical differences arising in ionospheric GNSS measurements. The method is also applicable to other GNSS system than GPS, supporting, e.g., GLONASS.