Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1303-2016
https://doi.org/10.5194/amt-9-1303-2016
Research article
 | 
30 Mar 2016
Research article |  | 30 Mar 2016

Statistical framework for estimating GNSS bias

Juha Vierinen, Anthea J. Coster, William C. Rideout, Philip J. Erickson, and Johannes Norberg

Related authors

Plasma Density Estimation from Ionograms and Geophysical Parameters with Deep Learning
Kian Sartipzadeh, Andreas Kvammen, Björn Gustavsson, Njål Gulbrandsen, Magnar Gullikstad Johnsen, Devin Huyghebaert, and Juha Vierinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3070,https://doi.org/10.5194/egusphere-2025-3070, 2025
Short summary
Monitoring of Lower Thermospheric Neutral Density Variations Using Meteor Head Echoes
Devin Huyghebaert, Juha Vierinen, Björn Gustavsson, Ralph Latteck, Toralf Renkwitz, Marius Zecha, Claudia C. Stephan, J. Federico Conte, Daniel Kastinen, Johan Kero, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2323,https://doi.org/10.5194/egusphere-2025-2323, 2025
Short summary
Toolkit for incoherent scatter radar experiment design and applications to EISCAT_3D
Spencer Mark Hatch, Ilkka Virtanen, Karl Magnus Laundal, Habtamu Wubie Tesfaw, Juha Vierinen, Devin Ray Huyghebaert, Andres Spicher, and Jens Christian Hessen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1768,https://doi.org/10.5194/egusphere-2025-1768, 2025
Short summary
Simulation of interferometric imaging with EISCAT_3D for fine-scale in-beam incoherent scatter spectra measurements
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer M. Hatch, and Karl M. Laundal
Ann. Geophys., 43, 99–113, https://doi.org/10.5194/angeo-43-99-2025,https://doi.org/10.5194/angeo-43-99-2025, 2025
Short summary
Improving the Magic constant – data-based calibration of phased array radars
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-18,https://doi.org/10.5194/gi-2023-18, 2024
Preprint under review for GI
Short summary

Cited articles

Bust, G. S. and Mitchell, C. N.: History, current state, and future directions of ionospheric imaging, Rev. Geophys., 46, 1–23, 2008.
Carrano, C. S. and Groves, K.: The GPS Segment of the AFRL-SCINDA Global Network and the Challenges of Real-Time TEC Estimation in the Equatorial Ionosphere, Proceedings of the 2006 National Technical Meeting of The Institute of Navigation, Monterey, CA, 2006.
Coster, A., Williams, J., Weatherwax, A., Rideout, W., and Herne, D.: Accuracy of GPS total electron content: GPS receiver bias temperature dependence, Radio Sci., 48, 190–196, https://doi.org/10.1002/rds.20011, 2013.
Coster, A. J., Gaposchkin, E. M., and Thornton, L. E.: Real-time ionospheric monitoring system using the GPS, MIT Lincoln Laboratory, Technical Report, 954, 1992.
Davies, K.: Ionospheric Radio Propagation, National Bureau of Standards, 278–279, 1965.
Download
Short summary
We present a statistical framework for estimating GNSS receiver bias by using a weighted linear least squares of independent differences (WLLSID) model to examine differences of a large number of TEC measurements. This allows a consistent way for treating elevation-dependent model errors and spatiotemporal distance-dependent geophysical differences arising in ionospheric GNSS measurements. The method is also applicable to other GNSS system than GPS, supporting, e.g., GLONASS.
Share