Articles | Volume 9, issue 11
Atmos. Meas. Tech., 9, 5535–5554, 2016
https://doi.org/10.5194/amt-9-5535-2016

Special issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx)...

Atmos. Meas. Tech., 9, 5535–5554, 2016
https://doi.org/10.5194/amt-9-5535-2016

Research article 22 Nov 2016

Research article | 22 Nov 2016

Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

Bojan Sič et al.

Related authors

Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-97,https://doi.org/10.5194/nhess-2021-97, 2021
Preprint under review for NHESS
Short summary
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020,https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Monitoring aerosols over Europe: an assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019,https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations
B. Sič, L. El Amraoui, V. Marécal, B. Josse, J. Arteta, J. Guth, M. Joly, and P. D. Hamer
Geosci. Model Dev., 8, 381–408, https://doi.org/10.5194/gmd-8-381-2015,https://doi.org/10.5194/gmd-8-381-2015, 2015

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Mass concentration estimates of long-range-transported Canadian biomass burning aerosols from a multi-wavelength Raman polarization lidar and a ceilometer in Finland
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021,https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021,https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Introducing the MISR level 2 near real-time aerosol product
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021,https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Estimation of PM2.5 concentration in China using linear hybrid machine learning model
Zhihao Song, Bin Chen, Yue Huang, Li Dong, and Tingting Yang
Atmos. Meas. Tech., 14, 5333–5347, https://doi.org/10.5194/amt-14-5333-2021,https://doi.org/10.5194/amt-14-5333-2021, 2021
Short summary
Species correlation measurements in turbulent flare plumes: considerations for field measurements
Scott P. Seymour and Matthew R. Johnson
Atmos. Meas. Tech., 14, 5179–5197, https://doi.org/10.5194/amt-14-5179-2021,https://doi.org/10.5194/amt-14-5179-2021, 2021
Short summary

Cited articles

Andersson, E., Haseler, J., Undén, P., Courtier, P., Kelly, G., Vasiljevic, D., Brankovic, C., Gaffard, C., Hollingsworth, A., Jakob, C., Janssen, P., Klinker, E., Lanzinger, A., Miller, M., Rabier, F., Simmons, A., Strauss, B., Viterbo, P., Cardinali, C., and Thépaut, J.-N.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). III: Experimental results, Q. J. Roy. Meteor. Soc., 124, 1831–1860, https://doi.org/10.1002/qj.49712455004, 1998.
Attié, J.-L. et al.: Transport of Pollution and Air Quality experiment over the Mediterranean basin (TRAQA/ChArMEx campaign), in preparation, 2016.
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–886, 2001.
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate change 2013: The physical science basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, 571–657, 2013.