Articles | Volume 9, issue 12
https://doi.org/10.5194/amt-9-6081-2016
https://doi.org/10.5194/amt-9-6081-2016
Research article
 | 
20 Dec 2016
Research article |  | 20 Dec 2016

Global distributions of CO2 volume mixing ratio in the middle and upper atmosphere from daytime MIPAS high-resolution spectra

Á. Aythami Jurado-Navarro, Manuel López-Puertas, Bernd Funke, Maya García-Comas, Angela Gardini, Francisco González-Galindo, Gabriele P. Stiller, Thomas von Clarmann, Udo Grabowski, and Andrea Linden

Related authors

MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes
Maya García-Comas, Francisco González-Galindo, Bernd Funke, Angela Gardini, Aythami Jurado-Navarro, Manuel López-Puertas, and William E. Ward
Atmos. Chem. Phys., 16, 11019–11041, https://doi.org/10.5194/acp-16-11019-2016,https://doi.org/10.5194/acp-16-11019-2016, 2016
Short summary
Measurements of global distributions of polar mesospheric clouds during 2005–2012 by MIPAS/Envisat
Maya García-Comas, Manuel López-Puertas, Bernd Funke, Á. Aythami Jurado-Navarro, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, and Michael Höpfner
Atmos. Chem. Phys., 16, 6701–6719, https://doi.org/10.5194/acp-16-6701-2016,https://doi.org/10.5194/acp-16-6701-2016, 2016
Short summary
MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements
M. García-Comas, B. Funke, A. Gardini, M. López-Puertas, A. Jurado-Navarro, T. von Clarmann, G. Stiller, M. Kiefer, C. D. Boone, T. Leblanc, B. T. Marshall, M. J. Schwartz, and P. E. Sheese
Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014,https://doi.org/10.5194/amt-7-3633-2014, 2014
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025,https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Quantitative estimate of several sources of uncertainty in drone-based methane emission measurements
Tannaz H. Mohammadloo, Matthew Jones, Bas van de Kerkhof, Kyle Dawson, Brendan J. Smith, Stephen Conley, Abigail Corbett, and Rutger IJzermans
Atmos. Meas. Tech., 18, 1301–1324, https://doi.org/10.5194/amt-18-1301-2025,https://doi.org/10.5194/amt-18-1301-2025, 2025
Short summary
Implementation and application of an improved phase spectrum determination scheme for Fourier transform spectrometry
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech., 18, 1257–1267, https://doi.org/10.5194/amt-18-1257-2025,https://doi.org/10.5194/amt-18-1257-2025, 2025
Short summary
Remote sensing of lower-middle-thermosphere temperatures using the N2 Lyman–Birge–Hopfield (LBH) bands
Richard Eastes, J. Scott Evans, Quan Gan, William McClintock, and Jerry Lumpe
Atmos. Meas. Tech., 18, 921–928, https://doi.org/10.5194/amt-18-921-2025,https://doi.org/10.5194/amt-18-921-2025, 2025
Short summary

Cited articles

Beagley, S. R., Boone, C. D., Fomichev, V. I., Jin, J. J., Semeniuk, K., McConnell, J. C., and Bernath, P. F.: First multi-year occultation observations of CO2 in the MLT by ACE satellite: observations and analysis using the extended CMAM, Atmos. Chem. Phys., 10, 1133–1153, https://doi.org/10.5194/acp-10-1133-2010, 2010.
Bermejo-Pantaleón, D., Funke, B., Lopez-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Linden, A., Grabowski, U., Höpfner, M., Kiefer, M., Glatthor, N., Kellmann, S., and Lu, G.: Global Observations of Thermospheric Temperature and Nitric Oxide from MIPAS spectra at 5.3 µm, J. Geophys. Res., 116, A10313, https://doi.org/10.1029/2011JA016752, 2011.
De Laurentis, M.: Planning of MIPAS new special modes January 2005 Campaign, Tech. rep., ESA Technical Note, ENVI-SPPA-EOPG-TN-05-0002, 2005.
Feofilov, A. G., Kutepov, A. A., She, C.-Y., Smith, A. K., Pesnell, W. D., and Goldberg, R. A.: CO2(v2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere, Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012, 2012.
Download
Short summary
We present global distributions of CO2 concentrations in the upper atmosphere (70–140 km) derived from high-resolution 4.3 µm MIPAS spectra from 2005 to 2012. CO2 relative abundances have been measured at 120–140 km for the first time. The data have an unprecedented accuracy. CO2 shows a strong seasonal behaviour. CO2 largely controls the temperature of the upper atmosphere and its measurement is very important for understanding the impact of climate change in this region.
Share