Articles | Volume 10, issue 2
https://doi.org/10.5194/amt-10-491-2017
https://doi.org/10.5194/amt-10-491-2017
Research article
 | 
13 Feb 2017
Research article |  | 13 Feb 2017

Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer

Larisa Sogacheva, Pekka Kolmonen, Timo H. Virtanen, Edith Rodriguez, Giulia Saponaro, and Gerrit de Leeuw

Related authors

Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests
Meri Räty, Larisa Sogacheva, Helmi-Marja Keskinen, Veli-Matti Kerminen, Tuomo Nieminen, Tuukka Petäjä, Ekaterina Ezhova, and Markku Kulmala
Atmos. Chem. Phys., 23, 3779–3798, https://doi.org/10.5194/acp-23-3779-2023,https://doi.org/10.5194/acp-23-3779-2023, 2023
Short summary
Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3
Larisa Sogacheva, Matthieu Denisselle, Pekka Kolmonen, Timo H. Virtanen, Peter North, Claire Henocq, Silvia Scifoni, and Steffen Dransfeld
Atmos. Meas. Tech., 15, 5289–5322, https://doi.org/10.5194/amt-15-5289-2022,https://doi.org/10.5194/amt-15-5289-2022, 2022
Short summary
Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022,https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Model-enforced post-process correction of satellite aerosol retrievals
Antti Lipponen, Ville Kolehmainen, Pekka Kolmonen, Antti Kukkurainen, Tero Mielonen, Neus Sabater, Larisa Sogacheva, Timo H. Virtanen, and Antti Arola
Atmos. Meas. Tech., 14, 2981–2992, https://doi.org/10.5194/amt-14-2981-2021,https://doi.org/10.5194/amt-14-2981-2021, 2021
Short summary
AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021,https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
Atmos. Meas. Tech., 18, 2523–2536, https://doi.org/10.5194/amt-18-2523-2025,https://doi.org/10.5194/amt-18-2523-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary
ACDL/DQ-1 calibration algorithms – Part 1: Nighttime 532 nm polarization and the high-spectral-resolution channel
Fanqian Meng, Junwu Tang, Guangyao Dai, Wenrui Long, Kangwen Sun, Zhiyu Zhang, Xiaoquan Song, Jiqiao Liu, Weibiao Chen, and Songhua Wu
Atmos. Meas. Tech., 18, 2021–2039, https://doi.org/10.5194/amt-18-2021-2025,https://doi.org/10.5194/amt-18-2021-2025, 2025
Short summary
Aerosol composition retrieval from a combination of three different spaceborne instruments: information content analysis
Ulrike Stöffelmair, Thomas Popp, Marco Vountas, and Hartmut Bösch
Atmos. Meas. Tech., 18, 2005–2020, https://doi.org/10.5194/amt-18-2005-2025,https://doi.org/10.5194/amt-18-2005-2025, 2025
Short summary

Cited articles

Baker, N.: VCM ATBD: VIIRS cloud mask algorithm theoretical basis document: 474-00033, available at: https://jointmission.gsfc.nasa.gov/sciencedocs/2015-06/474-00044_Rev-Baseline.pdf (last access: 6 February 2017), 2013.
Birks, A.: ESA, VEGA Group PLC, and University of Leicester, AATSR Product Handbook, ESA, 2.2 Edn., available at: http://envisat.esa.int/handbooks/aatsr/CNTR.html (last access: 6 February 2017), 2007a.
Birks, A. R.: AATSR Technical Note: Improvements to the AATSR IPF relating to Land Surface Temperature Retrieval and Cloud Clearing over Land, Science and Technology Facilities Council, Rutherford Appleton Laboratory, 2007b.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104, 31333–31349, 1999.
Flowerdew R. J. and Haigh J. D.: An approximation to improve accuracy in the derivation of surface reflectance from multi-look satellite radiometers, Geophys. Res. Lett., 23, 1693–1696, 1995.
Download
Short summary
Clouds reflect solar light much more strongly than aerosol particles. Therefore, the retrieval of aerosol optical depth is usually only attempted over cloud-free areas. A very strict cloud detection scheme has to be applied to remove all cloudy pixels. However, often not all clouds are detected. To remove possibly cloud-contaminated pixels, a cloud post-processing algorithm has been designed, which effectively solves the problem and results in smoother AOD maps and improved validation results.
Share