Articles | Volume 11, issue 5
https://doi.org/10.5194/amt-11-2863-2018
https://doi.org/10.5194/amt-11-2863-2018
Research article
 | 
17 May 2018
Research article |  | 17 May 2018

Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2

Yu Oishi, Haruma Ishida, Takashi Y. Nakajima, Ryosuke Nakamura, and Tsuneo Matsunaga

Related authors

Description and validation of the Japanese algorithm for radiative flux and heating rate products with all four EarthCARE instruments: pre-launch test with A-Train
Akira Yamauchi, Kentaroh Suzuki, Eiji Oikawa, Miho Sekiguchi, Takashi M. Nagao, and Haruma Ishida
Atmos. Meas. Tech., 17, 6751–6767, https://doi.org/10.5194/amt-17-6751-2024,https://doi.org/10.5194/amt-17-6751-2024, 2024
Short summary
Process-based Modeling of Solar-induced Chlorophyll Fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
EGUsphere, https://doi.org/10.5194/egusphere-2024-1542,https://doi.org/10.5194/egusphere-2024-1542, 2024
Short summary
COMPARISON AND EVALUATION OF TLSS AND MOBILE LIDAR SCANNERS FOR MULTI-SCALE 3D DOCUMENTATION OF CULTURAL HERITAGE
A. Noguchi, R. Nakamura, Y. Takata, Y. Matsuo, Y. Oya, and S. Uchida
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 1135–1139, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1135-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1135-2023, 2023
Update on the GOSAT TANSO–FTS SWIR Level 2 retrieval algorithm
Yu Someya, Yukio Yoshida, Hirofumi Ohyama, Shohei Nomura, Akihide Kamei, Isamu Morino, Hitoshi Mukai, Tsuneo Matsunaga, Joshua L. Laughner, Voltaire A. Velazco, Benedikt Herkommer, Yao Té, Mahesh Kumar Sha, Rigel Kivi, Minqiang Zhou, Young Suk Oh, Nicholas M. Deutscher, and David W. T. Griffith
Atmos. Meas. Tech., 16, 1477–1501, https://doi.org/10.5194/amt-16-1477-2023,https://doi.org/10.5194/amt-16-1477-2023, 2023
Short summary
Sensitivity of biomass burning emissions estimates to land surface information
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022,https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Consideration of the cloud motion for aircraft-based stereographically derived cloud geometry and cloud top heights
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024,https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024,https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2198,https://doi.org/10.5194/egusphere-2024-2198, 2024
Short summary
Evaluating spectral cloud effective radius retrievals from the Enhanced MODIS Airborne Simulator (eMAS) during ORACLES
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2024-2021,https://doi.org/10.5194/egusphere-2024-2021, 2024
Short summary

Cited articles

Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35), available at: http://modis-atmos.gsfc.nasa.gov/_docs/MOD35_ ATBD_Collection6.pdf (last access: 8 December 2017), 2010.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menache, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nat. Clim. Change, 2, 182–185, https://doi.org/10.1038/nclimate1354, 2012.
Boser, B., Guyon, I., and Vapnik, V.: A training algorithm for optimal margin classifiers, COLT '92 Proc. 5th Worksh. on Computat. Learning Theory, 144–152, https://doi.org/10.1145/130385.130401, 1992.
Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn, 20, 273–297, https://doi.org/10.1023/A:1022627411411, 1995.
FAO: Global Forest Resources Assessment 2005, available at: http://www.fao.org/docrep/008/a0400e/a0400e00.htm (last access: 8 December 2017), 2005.
Download
Short summary
Preparations are continuing for the launch of the Greenhouse Gases Observing Satellite 2 (GOSAT-2) in the fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing cloud discrimination algorithm. In this paper we showed a new cloud discrimination algorithm of pre-launch version for GOSAT-2, and compared the existing algorithm with the new algorithm.