Articles | Volume 11, issue 5
https://doi.org/10.5194/amt-11-2863-2018
https://doi.org/10.5194/amt-11-2863-2018
Research article
 | 
17 May 2018
Research article |  | 17 May 2018

Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2

Yu Oishi, Haruma Ishida, Takashi Y. Nakajima, Ryosuke Nakamura, and Tsuneo Matsunaga

Related authors

Process-based Modeling of Solar-induced Chlorophyll Fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
EGUsphere, https://doi.org/10.5194/egusphere-2024-1542,https://doi.org/10.5194/egusphere-2024-1542, 2024
Short summary
Description and validation of the Japanese algorithm for radiative flux and heating rate products with all four EarthCARE instruments: Pre-launch test with A-Train
Akira Yamauchi, Kentaroh Suzuki, Eiji Oikawa, Miho Sekiguchi, Takashi Nagao, and Haruma Ishida
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-78,https://doi.org/10.5194/amt-2024-78, 2024
Revised manuscript accepted for AMT
Short summary
COMPARISON AND EVALUATION OF TLSS AND MOBILE LIDAR SCANNERS FOR MULTI-SCALE 3D DOCUMENTATION OF CULTURAL HERITAGE
A. Noguchi, R. Nakamura, Y. Takata, Y. Matsuo, Y. Oya, and S. Uchida
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 1135–1139, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1135-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1135-2023, 2023
Update on the GOSAT TANSO–FTS SWIR Level 2 retrieval algorithm
Yu Someya, Yukio Yoshida, Hirofumi Ohyama, Shohei Nomura, Akihide Kamei, Isamu Morino, Hitoshi Mukai, Tsuneo Matsunaga, Joshua L. Laughner, Voltaire A. Velazco, Benedikt Herkommer, Yao Té, Mahesh Kumar Sha, Rigel Kivi, Minqiang Zhou, Young Suk Oh, Nicholas M. Deutscher, and David W. T. Griffith
Atmos. Meas. Tech., 16, 1477–1501, https://doi.org/10.5194/amt-16-1477-2023,https://doi.org/10.5194/amt-16-1477-2023, 2023
Short summary
Sensitivity of biomass burning emissions estimates to land surface information
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022,https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Synergistic approach of frozen hydrometeor retrievals: considerations on radiative transfer and model uncertainties in a simulated framework
Ethel Villeneuve, Philippe Chambon, and Nadia Fourrié
Atmos. Meas. Tech., 17, 3567–3582, https://doi.org/10.5194/amt-17-3567-2024,https://doi.org/10.5194/amt-17-3567-2024, 2024
Short summary
An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024,https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Job Ischa Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel Constantijn van Heerwaarden, and Jan Fokke Meirink
EGUsphere, https://doi.org/10.5194/egusphere-2024-1248,https://doi.org/10.5194/egusphere-2024-1248, 2024
Short summary
Investigation of cirrus cloud properties in the tropical tropopause layer using high-altitude limb-scanning near-IR spectroscopy during NASA-ATTREX
Santo Fedele Colosimo, Nathaniel Brockway, Vijay Natraj, Robert Spurr, Klaus Pfeilsticker, Lisa Scalone, Max Spolaor, Sarah Woods, and Jochen Stutz
Atmos. Meas. Tech., 17, 2367–2385, https://doi.org/10.5194/amt-17-2367-2024,https://doi.org/10.5194/amt-17-2367-2024, 2024
Short summary
Comparing FY-2F/CTA products to ground-based manual total cloud cover observations in Xinjiang under complex underlying surfaces and different weather conditions
Shuai Li, Hua Zhang, Yonghang Chen, Zhili Wang, Xiangyu Li, Yuan Li, and Yuanyuan Xue
Atmos. Meas. Tech., 17, 2011–2024, https://doi.org/10.5194/amt-17-2011-2024,https://doi.org/10.5194/amt-17-2011-2024, 2024
Short summary

Cited articles

Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35), available at: http://modis-atmos.gsfc.nasa.gov/_docs/MOD35_ ATBD_Collection6.pdf (last access: 8 December 2017), 2010.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menache, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nat. Clim. Change, 2, 182–185, https://doi.org/10.1038/nclimate1354, 2012.
Boser, B., Guyon, I., and Vapnik, V.: A training algorithm for optimal margin classifiers, COLT '92 Proc. 5th Worksh. on Computat. Learning Theory, 144–152, https://doi.org/10.1145/130385.130401, 1992.
Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn, 20, 273–297, https://doi.org/10.1023/A:1022627411411, 1995.
FAO: Global Forest Resources Assessment 2005, available at: http://www.fao.org/docrep/008/a0400e/a0400e00.htm (last access: 8 December 2017), 2005.
Download
Short summary
Preparations are continuing for the launch of the Greenhouse Gases Observing Satellite 2 (GOSAT-2) in the fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing cloud discrimination algorithm. In this paper we showed a new cloud discrimination algorithm of pre-launch version for GOSAT-2, and compared the existing algorithm with the new algorithm.