Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-529-2018
https://doi.org/10.5194/amt-11-529-2018
Research article
 | 
25 Jan 2018
Research article |  | 25 Jan 2018

Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

Sergio DeSouza-Machado, L. Larrabee Strow, Andrew Tangborn, Xianglei Huang, Xiuhong Chen, Xu Liu, Wan Wu, and Qiguang Yang

Related authors

Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022,https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Establishment of AIRS climate-level radiometric stability using radiance anomaly retrievals of minor gases and sea surface temperature
L. Larrabee Strow and Sergio DeSouza-Machado
Atmos. Meas. Tech., 13, 4619–4644, https://doi.org/10.5194/amt-13-4619-2020,https://doi.org/10.5194/amt-13-4619-2020, 2020
Short summary
kCARTA: a fast pseudo line-by-line radiative transfer algorithm with analytic Jacobians, fluxes, nonlocal thermodynamic equilibrium, and scattering for the infrared
Sergio DeSouza-Machado, L. Larrabee Strow, Howard Motteler, and Scott Hannon
Atmos. Meas. Tech., 13, 323–339, https://doi.org/10.5194/amt-13-323-2020,https://doi.org/10.5194/amt-13-323-2020, 2020
Short summary
Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band?
Xavier Calbet, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi
Atmos. Meas. Tech., 11, 6409–6417, https://doi.org/10.5194/amt-11-6409-2018,https://doi.org/10.5194/amt-11-6409-2018, 2018
Short summary
A novel retrieval of daytime atmospheric dust and volcanic ash heights through a synergy of AIRS infrared radiances and MODIS L2 optical depths
S. DeSouza-Machado, L. Strow, E. Maddy, O. Torres, G. Thomas, D. Grainger, and A. Robinson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-443-2015,https://doi.org/10.5194/amtd-8-443-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Across-track extension of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-3D product
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech., 16, 2319–2331, https://doi.org/10.5194/amt-16-2319-2023,https://doi.org/10.5194/amt-16-2319-2023, 2023
Short summary
Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023,https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023,https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023,https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023,https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary

Cited articles

Allan, R., Slingo, A., Milton, S., and Culverwell, I.: Exploitation of Geostationary Earth Radiation Budget data using simulations from a numerical weather prediction model: Methodology and data validation, J. Geophys. Res., 110, D14111, https://doi.org/10.1029/2004JD005698, 2005.
August, T., Klaes, D., Schlussel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, X.: IASI on Metop-A : Operational Level 2 retrievals after 5 years in orbit, J. Quant. Spectrosc. Ra., 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028, 2012.
Aumann, H. and Pagano, T.: First light results from AIRS on EOS AQUA, in: Proceedings of the SPIE Conference 5548-42, Optical Science and Technology, Crete, 2002.
Aumann, H., Broberg, S., Elliot, D., Gaiser, S., and Gregorich, D.: Three years of AIRS radiometric calibration validation using sea surface temperatures, J. Geophys. Res., 111, 2156–2202, https://doi.org/10.1029/2005JD006822, 2006.
Bauer, P., Auligne, T., Bell, W., Geer, A., Guidard, V., Heilliette, S., Kazumori, M., Kim, M.-J., Liu, E., McNally, A., MacPherson, B., Okamato, K., Renshaw, R., and Riishojgaard, L.-P.: Satellite cloud and precipitation assimilation at operational NWP centres, Q. J. Roy. Meteorol. Soc., 137, 1934–1951, https://doi.org/10.1002/QJ.905, 2011.
Download
Short summary
Thermodynamic fields retrieved from orbiting infrared sounders use a derived set of measurements as their starting point, rather than the actual observations. This leads to problems with noise and sampling. We have developed a fast accurate model with a simple vertical representation of clouds in the atmosphere for use in retrievals, which allows us to use all the actual low-noise measurements at full resolution. These should eventually help produce more accurate weather forecasts.