Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-529-2018
https://doi.org/10.5194/amt-11-529-2018
Research article
 | 
25 Jan 2018
Research article |  | 25 Jan 2018

Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

Sergio DeSouza-Machado, L. Larrabee Strow, Andrew Tangborn, Xianglei Huang, Xiuhong Chen, Xu Liu, Wan Wu, and Qiguang Yang

Related authors

Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022,https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Establishment of AIRS climate-level radiometric stability using radiance anomaly retrievals of minor gases and sea surface temperature
L. Larrabee Strow and Sergio DeSouza-Machado
Atmos. Meas. Tech., 13, 4619–4644, https://doi.org/10.5194/amt-13-4619-2020,https://doi.org/10.5194/amt-13-4619-2020, 2020
Short summary
kCARTA: a fast pseudo line-by-line radiative transfer algorithm with analytic Jacobians, fluxes, nonlocal thermodynamic equilibrium, and scattering for the infrared
Sergio DeSouza-Machado, L. Larrabee Strow, Howard Motteler, and Scott Hannon
Atmos. Meas. Tech., 13, 323–339, https://doi.org/10.5194/amt-13-323-2020,https://doi.org/10.5194/amt-13-323-2020, 2020
Short summary
Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band?
Xavier Calbet, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi
Atmos. Meas. Tech., 11, 6409–6417, https://doi.org/10.5194/amt-11-6409-2018,https://doi.org/10.5194/amt-11-6409-2018, 2018
Short summary
A novel retrieval of daytime atmospheric dust and volcanic ash heights through a synergy of AIRS infrared radiances and MODIS L2 optical depths
S. DeSouza-Machado, L. Strow, E. Maddy, O. Torres, G. Thomas, D. Grainger, and A. Robinson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-443-2015,https://doi.org/10.5194/amtd-8-443-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary

Cited articles

Allan, R., Slingo, A., Milton, S., and Culverwell, I.: Exploitation of Geostationary Earth Radiation Budget data using simulations from a numerical weather prediction model: Methodology and data validation, J. Geophys. Res., 110, D14111, https://doi.org/10.1029/2004JD005698, 2005.
August, T., Klaes, D., Schlussel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, X.: IASI on Metop-A : Operational Level 2 retrievals after 5 years in orbit, J. Quant. Spectrosc. Ra., 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028, 2012.
Aumann, H. and Pagano, T.: First light results from AIRS on EOS AQUA, in: Proceedings of the SPIE Conference 5548-42, Optical Science and Technology, Crete, 2002.
Aumann, H., Broberg, S., Elliot, D., Gaiser, S., and Gregorich, D.: Three years of AIRS radiometric calibration validation using sea surface temperatures, J. Geophys. Res., 111, 2156–2202, https://doi.org/10.1029/2005JD006822, 2006.
Bauer, P., Auligne, T., Bell, W., Geer, A., Guidard, V., Heilliette, S., Kazumori, M., Kim, M.-J., Liu, E., McNally, A., MacPherson, B., Okamato, K., Renshaw, R., and Riishojgaard, L.-P.: Satellite cloud and precipitation assimilation at operational NWP centres, Q. J. Roy. Meteorol. Soc., 137, 1934–1951, https://doi.org/10.1002/QJ.905, 2011.
Download
Short summary
Thermodynamic fields retrieved from orbiting infrared sounders use a derived set of measurements as their starting point, rather than the actual observations. This leads to problems with noise and sampling. We have developed a fast accurate model with a simple vertical representation of clouds in the atmosphere for use in retrievals, which allows us to use all the actual low-noise measurements at full resolution. These should eventually help produce more accurate weather forecasts.