Research article
25 Jan 2018
Research article
| 25 Jan 2018
Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm
Sergio DeSouza-Machado et al.
Related authors
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
L. Larrabee Strow and Sergio DeSouza-Machado
Atmos. Meas. Tech., 13, 4619–4644, https://doi.org/10.5194/amt-13-4619-2020, https://doi.org/10.5194/amt-13-4619-2020, 2020
Short summary
Short summary
The NASA AIRS satellite instrument has measured the infrared emission of the Earth continuously since 2002. If AIRS measurements are stable, these radiances can provide globally consistent multi-decadal trends of important climate variables, including the Earth's surface temperature, and the atmospheric temperature and humidity vs. height. Using the sensitivity of the AIRS radiances to well-known carbon dioxide trends, we show that AIRS is stable to 0.02 K per decade, well below climate trends.
Sergio DeSouza-Machado, L. Larrabee Strow, Howard Motteler, and Scott Hannon
Atmos. Meas. Tech., 13, 323–339, https://doi.org/10.5194/amt-13-323-2020, https://doi.org/10.5194/amt-13-323-2020, 2020
Short summary
Short summary
The current instruments being used for weather forecasting and climate require accurate radiative transfer codes to process the acquired data. In addition the codes are becoming more realistic, as they can now account for the effects of cloud and aerosols, rather than only simulating radiances for a clear sky. We describe a fast, accurate, and general purpose code that we have developed to help model data from these instruments.
Xavier Calbet, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi
Atmos. Meas. Tech., 11, 6409–6417, https://doi.org/10.5194/amt-11-6409-2018, https://doi.org/10.5194/amt-11-6409-2018, 2018
Short summary
Short summary
The hypothesis whether turbulence within the passive microwave sounders field of view can cause significant biases in radiative transfer modelling at the 183 GHz water vapour absorption band is tested. It is shown that this effect can cause significant biases, which can match the observed ones by Brogniez et al. (2016). They can be explained by locating intense turbulence in the high troposphere, such as the one present in clear air turbulence, cumulus clouds or storms.
S. DeSouza-Machado, L. Strow, E. Maddy, O. Torres, G. Thomas, D. Grainger, and A. Robinson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-443-2015, https://doi.org/10.5194/amtd-8-443-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) are instruments on the 1.30 pm polar
orbiting Aqua spacecraft. We describe a daytime estimation of dust and
volcanic ash layer heights, using a retrieval algorithm that uses the
information in the AIRS L1B thermal infrared data, constrained by the
MODIS L2 aerosol optical depths. CALIOP aerosol centroid heights are
used for dust height comparisons, as are AATSR volcanic plume heights.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Andrew Tangborn, Belay Demoz, Brian J. Carroll, Joseph Santanello, and Jeffrey L. Anderson
Atmos. Meas. Tech., 14, 1099–1110, https://doi.org/10.5194/amt-14-1099-2021, https://doi.org/10.5194/amt-14-1099-2021, 2021
Short summary
Short summary
Accurate prediction of the planetary boundary layer is essential to both numerical weather prediction (NWP) and pollution forecasting. This paper presents a methodology to combine these measurements with the models through a statistical data assimilation approach that calculates the correlation between the PBLH and variables like temperature and moisture in the model. The model estimates of these variables can be improved via this method, and this will enable increased forecast accuracy.
L. Larrabee Strow and Sergio DeSouza-Machado
Atmos. Meas. Tech., 13, 4619–4644, https://doi.org/10.5194/amt-13-4619-2020, https://doi.org/10.5194/amt-13-4619-2020, 2020
Short summary
Short summary
The NASA AIRS satellite instrument has measured the infrared emission of the Earth continuously since 2002. If AIRS measurements are stable, these radiances can provide globally consistent multi-decadal trends of important climate variables, including the Earth's surface temperature, and the atmospheric temperature and humidity vs. height. Using the sensitivity of the AIRS radiances to well-known carbon dioxide trends, we show that AIRS is stable to 0.02 K per decade, well below climate trends.
Sergio DeSouza-Machado, L. Larrabee Strow, Howard Motteler, and Scott Hannon
Atmos. Meas. Tech., 13, 323–339, https://doi.org/10.5194/amt-13-323-2020, https://doi.org/10.5194/amt-13-323-2020, 2020
Short summary
Short summary
The current instruments being used for weather forecasting and climate require accurate radiative transfer codes to process the acquired data. In addition the codes are becoming more realistic, as they can now account for the effects of cloud and aerosols, rather than only simulating radiances for a clear sky. We describe a fast, accurate, and general purpose code that we have developed to help model data from these instruments.
Kristina Pistone, Jens Redemann, Sarah Doherty, Paquita Zuidema, Sharon Burton, Brian Cairns, Sabrina Cochrane, Richard Ferrare, Connor Flynn, Steffen Freitag, Steven G. Howell, Meloë Kacenelenbogen, Samuel LeBlanc, Xu Liu, K. Sebastian Schmidt, Arthur J. Sedlacek III, Michal Segal-Rozenhaimer, Yohei Shinozuka, Snorre Stamnes, Bastiaan van Diedenhoven, Gerard Van Harten, and Feng Xu
Atmos. Chem. Phys., 19, 9181–9208, https://doi.org/10.5194/acp-19-9181-2019, https://doi.org/10.5194/acp-19-9181-2019, 2019
Short summary
Short summary
Understanding how smoke particles interact with sunlight is important in calculating their effects on climate, since some smoke is more scattering (cooling) and some is more absorbing (heating). Knowing this proportion is important for both satellite observations and climate models. We measured smoke properties in a recent aircraft-based field campaign off the west coast of Africa and present a comparison of these properties as measured using the six different, independent techniques available.
Xavier Calbet, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi
Atmos. Meas. Tech., 11, 6409–6417, https://doi.org/10.5194/amt-11-6409-2018, https://doi.org/10.5194/amt-11-6409-2018, 2018
Short summary
Short summary
The hypothesis whether turbulence within the passive microwave sounders field of view can cause significant biases in radiative transfer modelling at the 183 GHz water vapour absorption band is tested. It is shown that this effect can cause significant biases, which can match the observed ones by Brogniez et al. (2016). They can be explained by locating intense turbulence in the high troposphere, such as the one present in clear air turbulence, cumulus clouds or storms.
Xiuhong Chen and Xianglei Huang
Atmos. Meas. Tech., 9, 6013–6023, https://doi.org/10.5194/amt-9-6013-2016, https://doi.org/10.5194/amt-9-6013-2016, 2016
Short summary
Short summary
We explore algorithms of estimating spectral flux over the entire longwave spectrum solely from hyperspectral radiance observations using AIRS data as an example. This is different from the traditional approach of estimating broadband flux from satellite observations in two ways: (1) no other remote sensing data sets are needed, and (2) the spectral details of the broadband flux can be derived. This study shows that the hyperspectral radiances can be used to directly obtain spectral flux.
Sharon P. Burton, Eduard Chemyakin, Xu Liu, Kirk Knobelspiesse, Snorre Stamnes, Patricia Sawamura, Richard H. Moore, Chris A. Hostetler, and Richard A. Ferrare
Atmos. Meas. Tech., 9, 5555–5574, https://doi.org/10.5194/amt-9-5555-2016, https://doi.org/10.5194/amt-9-5555-2016, 2016
Short summary
Short summary
Retrievals of aerosol microphysics exist for ground-based, airborne, and future space-borne lidar measurements. We investigate the information content of a lidar measurement system, using only a forward model but no explicit inversion. The simplified aerosol used here is applicable as a best case for all retrievals in the absence of additional constraints. We report (1) information content of the measurements; (2) uncertainties on the retrieved parameters; and (3) sources of compensating errors.
Dejian Fu, Kevin W. Bowman, Helen M. Worden, Vijay Natraj, John R. Worden, Shanshan Yu, Pepijn Veefkind, Ilse Aben, Jochen Landgraf, Larrabee Strow, and Yong Han
Atmos. Meas. Tech., 9, 2567–2579, https://doi.org/10.5194/amt-9-2567-2016, https://doi.org/10.5194/amt-9-2567-2016, 2016
Juying X. Warner, Zigang Wei, L. Larrabee Strow, Russell R. Dickerson, and John B. Nowak
Atmos. Chem. Phys., 16, 5467–5479, https://doi.org/10.5194/acp-16-5467-2016, https://doi.org/10.5194/acp-16-5467-2016, 2016
Short summary
Short summary
We present the global distributions of tropospheric ammonia observed by the satellite sensor AIRS from September 2002 through August 2015. The AIRS instrument captures the ammonia concentrations emitted from the anthropogenic (agricultural) source regions where a summer maximum and secondary spring maximum are observable, and the high ammonia concentrations from episodic biomass burning events.
S. DeSouza-Machado, L. Strow, E. Maddy, O. Torres, G. Thomas, D. Grainger, and A. Robinson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-443-2015, https://doi.org/10.5194/amtd-8-443-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) are instruments on the 1.30 pm polar
orbiting Aqua spacecraft. We describe a daytime estimation of dust and
volcanic ash layer heights, using a retrieval algorithm that uses the
information in the AIRS L1B thermal infrared data, constrained by the
MODIS L2 aerosol optical depths. CALIOP aerosol centroid heights are
used for dust height comparisons, as are AATSR volcanic plume heights.
A. Tangborn, L. L. Strow, B. Imbiriba, L. Ott, and S. Pawson
Atmos. Chem. Phys., 13, 4487–4500, https://doi.org/10.5194/acp-13-4487-2013, https://doi.org/10.5194/acp-13-4487-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A CO2-independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications
Retrieval of ice water path from the Microwave Humidity Sounder (MWHS) aboard FengYun-3B (FY-3B) satellite polarimetric measurements based on a deep neural network
Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace gas retrievals
Improved spectral processing for a multi-mode pulse compression Ka–Ku-band cloud radar system
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Ice water path retrievals from Meteosat-9 using quantile regression neural networks
An optimal estimation algorithm for the retrieval of fog and low cloud thermodynamic and micro-physical properties
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Segmentation-based multi-pixel cloud optical thickness retrieval using a convolutional neural network
Top-of-the-atmosphere reflected shortwave radiative fluxes from GOES-R
Optimizing radar scan strategies for tracking isolated deep convection using observing system simulation experiments
Evaluation of the smile effect on the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE)/Multi-Spectral Imager (MSI) cloud product
A kriging-based analysis of cloud liquid water content using CloudSat data
High-resolution satellite-based cloud detection for the analysis of land surface effects on boundary layer clouds
Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events
The surface longwave cloud radiative effect derived from space lidar observations
Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign
Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals
An all-sky camera image classification method using cloud cover features
Determination of atmospheric column condensate using active and passive remote sensing technology
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
Towards the use of conservative thermodynamic variables in data assimilation: a case study using ground-based microwave radiometer measurements
Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds
Analytic characterization of random errors in spectral dual-polarized cloud radar observations
Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms
A Semi-Lagrangian Method for Detecting and Tracking Deep Convective Clouds in Geostationary Satellite Observations
Applying self-supervised learning for semantic cloud segmentation of all-sky images
Coincident in situ and triple-frequency radar airborne observations in the Arctic
Analysis of improvements in MOPITT observational coverage over Canada
Using artificial neural networks to predict riming from Doppler cloud radar observations
Evaluating cloud liquid detection against Cloudnet using cloud radar Doppler spectra in a pre-trained artificial neural network
Cloud optical properties retrieval and associated uncertainties using multi-angular and multi-spectral measurements of the airborne radiometer OSIRIS
PARAFOG v2.0: a near-real-time decision tool to support nowcasting fog formation events at local scales
Inpainting radar missing data regions with deep learning
Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data
Triple-frequency radar retrieval of microphysical properties of snow
Retrieving microphysical properties of concurrent pristine ice and snow using polarimetric radar observations
Comparison of mid-latitude single- and mixed-phase cloud optical depth from co-located infrared spectrometer and backscatter lidar measurements
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Cloud height measurement by a network of all-sky imagers
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Why we need radar, lidar, and solar radiance observations to constrain ice cloud microphysics
Estimating the optical extinction of liquid water clouds in the cloud base region
W-band radar observations for fog forecast improvement: an analysis of model and forward operator errors
Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
Identifying insects, clouds, and precipitation using vertically pointing polarimetric radar Doppler velocity spectra
MICRU: an effective cloud fraction algorithm designed for UV–vis satellite instruments with large viewing angles
A simplified method for the detection of convection using high-resolution imagery from GOES-16
Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022, https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary
Short summary
With more than 15 years of measurements, the IASI radiance dataset is becoming a reference climate data record. Its exploitation for satellite applications requires an accurate and unbiased detection of cloud scenes. Here, we present a new cloud detection algorithm for IASI that is both sensitive and consistent over time. It is based on the use of a neural network, relying on IASI radiance information only and taking as a reference the last version of the operational IASI L2 cloud product.
Wenyu Wang, Zhenzhan Wang, Qiurui He, and Lanjie Zhang
Atmos. Meas. Tech., 15, 6489–6506, https://doi.org/10.5194/amt-15-6489-2022, https://doi.org/10.5194/amt-15-6489-2022, 2022
Short summary
Short summary
This paper uses a neural network approach to retrieve the ice water path from FY-3B/MWHS polarimetric measurements, focusing on its unique 150 GHz quasi-polarized channels. The Level 2 product of CloudSat is used as the reference value for the neural network. The results show that the polarization information is helpful for the retrieval in scenes with thicker cloud ice, and the 150 GHz channels give a significant improvement compared to using only 183 GHz channels.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Han Ding, Haoran Li, and Liping Liu
Atmos. Meas. Tech., 15, 6181–6200, https://doi.org/10.5194/amt-15-6181-2022, https://doi.org/10.5194/amt-15-6181-2022, 2022
Short summary
Short summary
In this study, a framework for processing the Doppler spectra observations of a multi-mode pulse compression Ka–Ku cloud radar system is presented. We first proposed an approach to identify and remove the clutter signals in the Doppler spectrum. Then, we developed a new algorithm to remove the range sidelobe at the modes implementing the pulse compression technique. The radar observations from different modes were then merged using the shift-then-average method.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Adrià Amell, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 15, 5701–5717, https://doi.org/10.5194/amt-15-5701-2022, https://doi.org/10.5194/amt-15-5701-2022, 2022
Short summary
Short summary
Geostationary satellites continuously image a given location on Earth, a feature that satellites designed to characterize atmospheric ice lack. However, the relationship between geostationary images and atmospheric ice is complex. Machine learning is used here to leverage such images to characterize atmospheric ice throughout the day in a probabilistic manner. Using structural information from the image improves the characterization, and this approach compares favourably to traditional methods.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Vikas Nataraja, Sebastian Schmidt, Hong Chen, Takanobu Yamaguchi, Jan Kazil, Graham Feingold, Kevin Wolf, and Hironobu Iwabuchi
Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022, https://doi.org/10.5194/amt-15-5181-2022, 2022
Short summary
Short summary
A convolutional neural network (CNN) is introduced to retrieve cloud optical thickness (COT) from passive cloud imagery. The CNN, trained on large eddy simulations from the Sulu Sea, learns from spatial information at multiple scales to reduce cloud inhomogeneity effects. By considering the spatial context of a pixel, the CNN outperforms the traditional independent pixel approximation (IPA) across several cloud morphology metrics.
Rachel T. Pinker, Yingtao Ma, Wen Chen, Istvan Laszlo, Hongqing Liu, Hye-Yun Kim, and Jaime Daniels
Atmos. Meas. Tech., 15, 5077–5094, https://doi.org/10.5194/amt-15-5077-2022, https://doi.org/10.5194/amt-15-5077-2022, 2022
Short summary
Short summary
Scene-dependent narrow-to-broadband transformations are developed to facilitate the use of observations from the Advanced Baseline Imager (ABI), the primary instrument on GOES-R, to derive surface shortwave radiative fluxes. This is a first NOAA product at the high resolution of about 5 k over the contiguous United States (CONUS) region. The product is archived and can be downloaded from the NOAA Comprehensive Large Array-data Stewardship System (CLASS).
Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever
Atmos. Meas. Tech., 15, 4931–4950, https://doi.org/10.5194/amt-15-4931-2022, https://doi.org/10.5194/amt-15-4931-2022, 2022
Short summary
Short summary
This study provides an optimization of radar observation strategies to better capture convective cell evolution in clean and polluted environments as well as a technique for the optimization. The suggested optimized radar observation strategy is to better capture updrafts at middle and upper altitudes and precipitation particle evolution of isolated deep convective clouds. This study sheds light on the challenge of designing remote sensing observation strategies in pre-field campaign periods.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2022-736, https://doi.org/10.5194/egusphere-2022-736, 2022
Short summary
Short summary
Smile effect (an effect in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval product, we did a simulation of MSI forward radiation, then evaluated the error in simulated scenes from a global cloud system resolving model and a satellite simulator. Our results indicated that the error from the smile effect was generally small and could be seen as negligible for oceanic scenes.
Jean-Marie Lalande, Guillaume Bourmaud, Pierre Minvielle, and Jean-François Giovannelli
Atmos. Meas. Tech., 15, 4411–4429, https://doi.org/10.5194/amt-15-4411-2022, https://doi.org/10.5194/amt-15-4411-2022, 2022
Short summary
Short summary
In this paper we describe the implementation of an interpolation–prediction estimator applied to cloud properties derived from CloudSat observations. The objective is to evaluate the uncertainty associated with the estimated quantity. The model developed in this study can be valuable for satellite applications (GPS, telecommunication) as well as for cloud product comparisons. This paper is didactic and beneficial for anyone interested in kriging estimators.
Julia Fuchs, Hendrik Andersen, Jan Cermak, Eva Pauli, and Rob Roebeling
Atmos. Meas. Tech., 15, 4257–4270, https://doi.org/10.5194/amt-15-4257-2022, https://doi.org/10.5194/amt-15-4257-2022, 2022
Short summary
Short summary
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite data are developed and validated for the region of Paris to improve applicability for analyses of urban effects on low clouds. We found that cloud masks obtained from the regional approach are more appropriate for the high-resolution analysis of locally induced cloud processes. Its applicability is tested for the analysis of typical fog conditions over different surface types.
Eleni Tetoni, Florian Ewald, Martin Hagen, Gregor Köcher, Tobias Zinner, and Silke Groß
Atmos. Meas. Tech., 15, 3969–3999, https://doi.org/10.5194/amt-15-3969-2022, https://doi.org/10.5194/amt-15-3969-2022, 2022
Short summary
Short summary
We use the C-band POLDIRAD and the Ka-band MIRA-35 to perform snowfall dual-wavelength polarimetric radar measurements. We develop an ice microphysics retrieval for mass, apparent shape, and median size of the particle size distribution by comparing observations to T-matrix ice spheroid simulations while varying the mass–size relationship. We furthermore show how the polarimetric measurements from POLDIRAD help to narrow down ambiguities between ice particle shape and size.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu
Atmos. Meas. Tech., 15, 3761–3777, https://doi.org/10.5194/amt-15-3761-2022, https://doi.org/10.5194/amt-15-3761-2022, 2022
Short summary
Short summary
This study develops an innovative method to determine the cloud phases over the Southern Ocean (SO) using the combination of radar and lidar measurements during the ship-based field campaign of MARCUS. Results from our study show that the low-level, deep, and shallow cumuli are dominant, and the mixed-phase clouds occur more than single phases over the SO. The mixed-phase cloud properties are similar to liquid-phase (ice-phase) clouds in the midlatitudes (polar) region of the SO.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Xiaotong Li, Baozhu Wang, Bo Qiu, and Chao Wu
Atmos. Meas. Tech., 15, 3629–3639, https://doi.org/10.5194/amt-15-3629-2022, https://doi.org/10.5194/amt-15-3629-2022, 2022
Short summary
Short summary
The all-sky camera images can reflect the local cloud cover, which is considerable for astronomical observatory site selection. Therefore, the realization of automatic classification of the images is very important. In this paper, three cloud cover features are proposed to classify the images. The proposed method is evaluated on a large dataset, and the method achieves an accuracy of 96.58 % and F1_score of 96.24 %, which greatly improves the efficiency of automatic processing of the images.
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022, https://doi.org/10.5194/amt-15-3555-2022, 2022
Short summary
Short summary
It is necessary to correctly evaluate the amount of cloud water resources in an area. Currently, there is a lack of effective observation methods for atmospheric column condensate evaluation. We propose a method for atmospheric column condensate by combining millimetre cloud radar, lidar and microwave radiometers. The method can realise determination of atmospheric column condensate. The variation of cloud before precipitation is considered, and the atmospheric column is deduced and obtained.
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022, https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-49, https://doi.org/10.5194/amt-2022-49, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Vertical profiles of latent heating are derived from Geostationary Operational Environmental Satellite-16 (GOES-16) to be used in convective initialization. They are compared with other radar products such as NEXRAD and GPM satellite, and the results show that their values are are very similar to radar derived products. Finally, using latent heating derived from GOES-16 in the forecast model shows significant improvements in precipitation forecast comparable to using heating from NEXRAD.
Pascal Marquet, Pauline Martinet, Jean-François Mahfouf, Alina Lavinia Barbu, and Benjamin Ménétrier
Atmos. Meas. Tech., 15, 2021–2035, https://doi.org/10.5194/amt-15-2021-2022, https://doi.org/10.5194/amt-15-2021-2022, 2022
Short summary
Short summary
Two conservative thermodynamic variables (moist-air entropy potential temperature and total water content) are introduced into a one-dimensional EnVar data assimilation system to demonstrate their benefit for future operational assimilation schemes, with the use of microwave brightness temperatures from a ground-based radiometer installed during the field campaign SOFGO3D. Results show that the brightness temperatures analysed with the new variables are improved, including the liquid water.
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754, https://doi.org/10.5194/amt-15-1729-2022, https://doi.org/10.5194/amt-15-1729-2022, 2022
Short summary
Short summary
We performed extensive Monte Carlo (MC) simulations of lidar signals and developed an empirical model to account for the multiple scattering in the lidar signals. The simulations have taken into consideration four types of lidar configurations (the ground based, the airborne, the CALIOP, and the ATLID) and four types of particles (coarse aerosol, water cloud, jet-stream cirrus, and cirrus).
The empirical model has very good quality of MC data fitting for all considered cases.
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022, https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Short summary
This study provides equations to characterize random errors of spectral polarimetric observations from cloud radars. The results can be used for a broad spectrum of applications. For instance, accurate error characterization is essential for advanced retrievals of microphysical properties of clouds and precipitation. Moreover, error characterization allows for the use of measurements from polarimetric cloud radars to potentially improve weather forecasts.
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944, https://doi.org/10.5194/amt-15-927-2022, https://doi.org/10.5194/amt-15-927-2022, 2022
Short summary
Short summary
We propose a suite of Bayesian algorithms for synergistic radar and radiometer retrievals to evaluate the next-generation NASA Cloud, Convection and Precipitation (CCP) observing system. The algorithms address pixel-level retrievals using active-only, passive-only, and synergistic active–passive observations. Novel techniques in developing synergistic algorithms are presented. Quantitative assessments of the CCP observing system's capability in retrieving ice cloud microphysics are provided.
William K. Jones, Matthew W. Christensen, and Philip Stier
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-31, https://doi.org/10.5194/amt-2022-31, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Geostationary weather satellites have been used to detect storm clouds since their earliest applications. However, this task remains difficult as imaging satellites cannot observe the strong vertical winds that are characteristic of storm clouds. Here we introduce a new method that allows us to detect the early development of storms and continue to track them throughout their lifetime, allowing us to study how their early behaviour affects subsequent weather.
Yann Fabel, Bijan Nouri, Stefan Wilbert, Niklas Blum, Rudolph Triebel, Marcel Hasenbalg, Pascal Kuhn, Luis F. Zarzalejo, and Robert Pitz-Paal
Atmos. Meas. Tech., 15, 797–809, https://doi.org/10.5194/amt-15-797-2022, https://doi.org/10.5194/amt-15-797-2022, 2022
Short summary
Short summary
This work presents a new approach to exploit unlabeled image data from ground-based sky observations to train neural networks. We show that our model can detect cloud classes within images more accurately than models trained with conventional methods using small, labeled datasets only. Novel machine learning techniques as applied in this work enable training with much larger datasets, leading to improved accuracy in cloud detection and less need for manual image labeling.
Cuong M. Nguyen, Mengistu Wolde, Alessandro Battaglia, Leonid Nichman, Natalia Bliankinshtein, Samuel Haimov, Kenny Bala, and Dirk Schuettemeyer
Atmos. Meas. Tech., 15, 775–795, https://doi.org/10.5194/amt-15-775-2022, https://doi.org/10.5194/amt-15-775-2022, 2022
Short summary
Short summary
An analysis of airborne triple-frequency radar and almost perfectly co-located coincident in situ data from an Arctic storm confirms the main findings of modeling work with radar dual-frequency ratios (DFRs) at different zones of the DFR plane associated with different ice habits. High-resolution CPI images provide accurate identification of rimed particles within the DFR plane. The relationships between the triple-frequency signals and cloud microphysical properties are also presented.
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022, https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary
Short summary
In this study, an analysis has been performed to understand the improvements in observational coverage over Canada in the new MOPITT V9 product. Temporal and spatial analysis of V9 indicates a general coverage gain of 15–20 % relative to V8, which varies regionally and seasonally; e.g., the number of successful MOPITT retrievals in V9 was doubled over Canada in winter. Also, comparison with the corresponding IASI instrument indicated generally good agreement, with about a 5–10 % positive bias.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Heike Kalesse-Los, Willi Schimmel, Edward Luke, and Patric Seifert
Atmos. Meas. Tech., 15, 279–295, https://doi.org/10.5194/amt-15-279-2022, https://doi.org/10.5194/amt-15-279-2022, 2022
Short summary
Short summary
It is important to detect the vertical distribution of cloud droplets and ice in mixed-phase clouds. Here, an artificial neural network (ANN) previously developed for Arctic clouds is applied to a mid-latitudinal cloud radar data set. The performance of this technique is contrasted to the Cloudnet target classification. For thick/multi-layer clouds, the machine learning technique is better at detecting liquid than Cloudnet, but if lidar data are available Cloudnet is at least as good as the ANN.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Jean-Marc Nicolas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-414, https://doi.org/10.5194/amt-2021-414, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
The uncertainties in cloud remote sensing can propagate to the retrieved cloud properties and they need to be quantified. We present the formalism of error extraction and we apply it on the cloud properties retrieved from the measurements of the airborne radiometer OSIRIS. We show that errors related to measurement uncertainties reach 10 %. Errors related to the simplified model assuming that the clouds are plane-parallel and homogeneous lead to uncertainties exceeding 10 %.
Jean-François Ribaud, Martial Haeffelin, Jean-Charles Dupont, Marc-Antoine Drouin, Felipe Toledo, and Simone Kotthaus
Atmos. Meas. Tech., 14, 7893–7907, https://doi.org/10.5194/amt-14-7893-2021, https://doi.org/10.5194/amt-14-7893-2021, 2021
Short summary
Short summary
PARAFOG is a near-real-time decision tool that aims to retrieve pre-fog alert levels minutes to hours prior to fog onset. The second version of PARAFOG allows us to discriminate between radiation and stratus lowering fog situations. It is based upon the combination of visibility observations and automatic lidar and ceilometer measurements. The overall performance of the second version of PARAFOG over more than 300 fog cases at five different locations presents a good perfomance.
Andrew Geiss and Joseph C. Hardin
Atmos. Meas. Tech., 14, 7729–7747, https://doi.org/10.5194/amt-14-7729-2021, https://doi.org/10.5194/amt-14-7729-2021, 2021
Short summary
Short summary
Radars can suffer from missing or poor-quality data regions for several reasons: beam blockage, instrument failure, and near-ground blind zones, etc. Here, we demonstrate how deep convolutional neural networks can be used for filling in radar-missing data regions and that they can significantly outperform conventional approaches in terms of realism and accuracy.
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021, https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
Short summary
In this study we present an improved cloud detection scheme for the Microwave Limb Sounder, which is based on a feedforward artificial neural network. This new algorithm is shown not only to reliably detect high and mid-level convection containing even small amounts of cloud water but also to distinguish between high-reaching and mid-level to low convection.
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Short summary
A method for estimating microphysical properties of ice clouds based on radar measurements is presented. The algorithm exploits the information provided by differences in the radar response at different frequency bands in relation to changes in the snow morphology. The inversion scheme is based on a statistical relation between the radar simulations and the properties of snow calculated from in-cloud sampling.
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021, https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021, https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Short summary
Satellite observations sensitive to cloud and precipitation help improve the quality of weather forecasts. However, they are sensitive to things that models do not forecast, such as the shapes and sizes of snow and ice particles. These details can be estimated from the observations themselves and then incorporated in the satellite simulators used in weather forecasting. This approach, known as parameter estimation, will be increasingly useful to build models of poorly known physical processes.
Niklas Benedikt Blum, Bijan Nouri, Stefan Wilbert, Thomas Schmidt, Ontje Lünsdorf, Jonas Stührenberg, Detlev Heinemann, Andreas Kazantzidis, and Robert Pitz-Paal
Atmos. Meas. Tech., 14, 5199–5224, https://doi.org/10.5194/amt-14-5199-2021, https://doi.org/10.5194/amt-14-5199-2021, 2021
Short summary
Short summary
Cloud base height (CBH) is important, e.g., to forecast solar irradiance and, with it, photovoltaic production. All-sky imagers (ASIs), cameras monitoring the sky above their point of installation, can provide such forecasts and also measure CBH. We present a network of ASIs to measure CBH. The network provides numerous readings of CBH simultaneously. We combine these with a statistical procedure. Validation attests to significantly higher accuracy of the combination compared to two ASIs alone.
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021, https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Short summary
The SEVIRI instrument flown on the European geostationary Meteosat satellites acquires multi-spectral images at a relatively coarse pixel resolution of 3 × 3 km2, but it also has a broadband high-resolution visible channel with 1 × 1 km2 spatial resolution. In this study, the modification of an existing cloud property and solar irradiance retrieval to use this channel to improve the spatial resolution of its output products as well as the resulting benefits for applications are described.
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021, https://doi.org/10.5194/amt-14-5029-2021, 2021
Short summary
Short summary
In this study, we show how solar radiance observations can be used to validate and further constrain ice cloud microphysics retrieved from the synergy of radar–lidar measurements. Since most radar–lidar retrievals rely on a global assumption about the ice particle shape, ice water content and particle size biases are to be expected in individual cloud regimes. In this work, we identify and correct these biases by reconciling simulated and measured solar radiation reflected from these clouds.
Karolina Sarna, David P. Donovan, and Herman W. J. Russchenberg
Atmos. Meas. Tech., 14, 4959–4970, https://doi.org/10.5194/amt-14-4959-2021, https://doi.org/10.5194/amt-14-4959-2021, 2021
Short summary
Short summary
We show a method for obtaining cloud optical extinction with a lidar system. We use a scheme in which a lidar signal is inverted based on the estimated value of cloud extinction at the far end of the cloud and apply a correction for multiple scattering within the cloud and a range resolution correction. By applying our technique, we show that it is possible to obtain the cloud optical extinction with an error better than 5 % up to 90 m within the cloud.
Alistair Bell, Pauline Martinet, Olivier Caumont, Benoît Vié, Julien Delanoë, Jean-Charles Dupont, and Mary Borderies
Atmos. Meas. Tech., 14, 4929–4946, https://doi.org/10.5194/amt-14-4929-2021, https://doi.org/10.5194/amt-14-4929-2021, 2021
Short summary
Short summary
This paper presents work towards making retrievals on the liquid water content in fog and low clouds. Future retrievals will rely on a radar simulator and high-resolution forecast. In this work, real observations are used to assess the errors associated with the simulator and forecast. A selection method to reduce errors associated with the forecast is proposed. It is concluded that the distribution of errors matches the requirements for future retrievals.
Noémie Planat, Josué Gehring, Étienne Vignon, and Alexis Berne
Atmos. Meas. Tech., 14, 4543–4564, https://doi.org/10.5194/amt-14-4543-2021, https://doi.org/10.5194/amt-14-4543-2021, 2021
Short summary
Short summary
We implement a new method to identify microphysical processes during cold precipitation events based on the sign of the vertical gradient of polarimetric radar variables. We analytically asses the meteorological conditions for this vertical analysis to hold, apply it on two study cases and successfully compare it with other methods informing about the microphysics. Finally, we are able to obtain the main vertical structure and characteristics of the different processes during these study cases.
Christopher R. Williams, Karen L. Johnson, Scott E. Giangrande, Joseph C. Hardin, Ruşen Öktem, and David M. Romps
Atmos. Meas. Tech., 14, 4425–4444, https://doi.org/10.5194/amt-14-4425-2021, https://doi.org/10.5194/amt-14-4425-2021, 2021
Short summary
Short summary
In addition to detecting clouds, vertically pointing cloud radars detect individual insects passing over head. If these insects are not identified and removed from raw observations, then radar-derived cloud properties will be contaminated. This work identifies clouds in radar observations due to their continuous and smooth structure in time, height, and velocity. Cloud masks are produced that identify cloud vertical structure that are free of insect contamination.
Holger Sihler, Steffen Beirle, Steffen Dörner, Marloes Gutenstein-Penning de Vries, Christoph Hörmann, Christian Borger, Simon Warnach, and Thomas Wagner
Atmos. Meas. Tech., 14, 3989–4031, https://doi.org/10.5194/amt-14-3989-2021, https://doi.org/10.5194/amt-14-3989-2021, 2021
Short summary
Short summary
MICRU is an algorithm for the retrieval of effective cloud fractions (CFs) from satellite measurements. CFs describe the amount of clouds, which have a significant impact on the vertical sensitivity profile of trace gases like NO2 and HCHO. MICRU retrieves small CFs with an accuracy of 0.04 over the entire satellite swath. It features an empirical surface reflectivity model accounting for physical anisotropy (BRDF, sun glitter) and instrumental effects. MICRU is also applicable to imager data.
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 14, 3755–3771, https://doi.org/10.5194/amt-14-3755-2021, https://doi.org/10.5194/amt-14-3755-2021, 2021
Short summary
Short summary
This study suggests two methods to detect convection using 1 min data from GOES-16: one method detects early convective clouds using their vertical growth rate and the other method detects mature convective clouds using their lumpy cloud top surfaces. Applying the two methods to 1-month data showed that the accuracy of the combined methods was 85.8 % and showed their potential to be used in regions where radar data are not available.
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021, https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
Short summary
Oriented nonspherical ice particles induce polarization that is ignored when cloud-sensitive satellite observations are used in numerical weather prediction systems. We present a simple approach for approximating particle orientation, requiring minor adaption of software and no additional calculation burden. With this approach, the system realistically simulates the observed polarization patterns, increasing the physical consistency between instruments with different polarizations.
Cited articles
Allan, R., Slingo, A., Milton, S., and Culverwell, I.: Exploitation of Geostationary Earth Radiation Budget data using simulations from a numerical weather prediction model: Methodology and data validation, J. Geophys. Res., 110, D14111, https://doi.org/10.1029/2004JD005698, 2005.
August, T., Klaes, D., Schlussel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, X.: IASI on Metop-A : Operational Level 2 retrievals after 5 years in orbit, J. Quant. Spectrosc. Ra., 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028, 2012.
Aumann, H. and Pagano, T.: First light results from AIRS on EOS AQUA, in: Proceedings of the SPIE Conference 5548-42, Optical Science and Technology, Crete, 2002.
Aumann, H., Broberg, S., Elliot, D., Gaiser, S., and Gregorich, D.: Three years of AIRS radiometric calibration validation using sea surface temperatures, J. Geophys. Res., 111, 2156–2202, https://doi.org/10.1029/2005JD006822, 2006.
Bauer, P., Auligne, T., Bell, W., Geer, A., Guidard, V., Heilliette, S., Kazumori, M., Kim, M.-J., Liu, E., McNally, A., MacPherson, B., Okamato, K., Renshaw, R., and Riishojgaard, L.-P.: Satellite cloud and precipitation assimilation at operational NWP centres, Q. J. Roy. Meteorol. Soc., 137, 1934–1951, https://doi.org/10.1002/QJ.905, 2011.
Baum, B., Yang, P., Heidinger, A., Heymsfield, A., Li, J., and Nasiri, S.: Bulk scattering properties for ice clouds. Part 3. High resolution spectral models from 100 to 3250 cm−1, J. Appl. Meteor. Clim., 46, 423–434, 2007.
Baum, B., Yang, P., Heymsfield, A., Schmitt, C., Xie, Y., Bansemer, A., Hu, Y.-X., and Zhang, Z.: Improvements to shortwave bulk scattering and absorption models for the remote sensing of ice clouds, J. Appl. Meteor. Clim, 50, 1037–1056, 2011.
Chen, X., Huang, X., and Liu, X.: Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies, J. Geophys. Res., 118, 7309–7320, https://doi.org/10.1002/jgrd.50562, 2013.
Chou, M.-D., Lee, K.-T., Tsay, S.-C., and Fu, Q.: Parameterization for Cloud Longwave Scattering for use in Atmospheric Models, J. Climate, 12, 159–169, 1999.
Clarisse, L., Hurtmans, D., Prata, A., Karagulian, F., Clerbaux, C., De Maziere, M., and Coheur, P.-F.: Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra, Appl. Opt, 49, 3712–3722, https://doi.org/10.1364/A0.49.003713, 2010.
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.qsrt2004.05.058, 2005.
De Souza-Machado, S., Strow, L. L., Motteler, H., and Hannon, S.: kCARTA: An Atmospheric Radiative Transfer Algorithm using Compressed Lookup Tables, Tech. rep., University of Maryland Baltimore County, Department of Physics, available at: http://asl.umbc.edu/pub/packages/kcarta.html (last access: January 2018), 2002.
De Souza-Machado, S., Strow, L. L., Motteler, H., Hannon, S., Lopez-Puertas, M., Funke, B., and Edwards, D.: Fast Forward Radiative Transfer Modeling of 4.3 um Non-Local Thermodynamic Equilibrium effects for the Aqua/AIRS Infrared Temperature Sounder, Geophys. Res. Lett., 34, L01802, https://doi.org/10.1029/2006GL026684, 2007.
De Souza-Machado, S., Strow, L. L., Imbiriba, B., McCann, K., Hoff, R., Hannon, S., Martins, J., Tanré, D., Deuzé, J., Ducos, F., and Torres, O.: Infrared retrievals of dust using AIRS: comparisons of optical depths and heights derived for a North African dust storm to other collocated EOS A-Train and surface observations, J. Geophys. Res., 115, D15201, https://doi.org/10.1029/2009JD012842, 2010.
DeSouza-Machado, S., L. L. Strow, A. Tangborn, X. Huang, X. Chen, X. Liu, W. Wu, and Q. Yang: Dataset for AMT-2017-261 by DeSouza-Machado et al., available at: https://doi.org/10.5281/zenodo.1157936, 2018.
Deblonde, G. and English, S.: 1D Variational Retrievals from SSMIS Simulated Observations, J. App. Met., 42, 1406–1420, 2003.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
EUMETSAT: IAI Level 2: Product Generation Specification, Tech. rep., EUMETSAT, available at: http://www.eumetsat.int/website/home/Data/TechnicalDocuments/index.html Reference EPS.SYS.SPE.990013 8E, 2016.
Gambacorta, A.: The NOAA Unique CrIS/ATMS Processing System (NUCAPS): Algorithm Theoretical Basis Documentation, Tech. rep., NCWCP, available at: http://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/docs/NUCAPS_ATBD_20130821.pdf (last access: January 2018), 2013.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: MERRA-2 Overview: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim., 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Griessbach, S., Hoffman, L., Hopfner, M., Riese, M., and Spang, R.: Scattering in infrared radiative transfer: A comparison between the spectrally averaging model JURASSIC and the line-by-line model KOPRA, J. Quant. Spectrosc. Ra., 127, 102–118, 2013.
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79, 831–844, 1998.
Huang, H.-L., Yang, P., Wei, H., Baum, B., Hu, Y., Antonelli, P., and Ackerman, S.: Inference of ice cloud properties from high-spectral resolution infrared observation, IEEE T. Geosci. Remote, 42, 842–852, 2004.
Ingleby, B.: An assessement of different radiosonde types 2015/2016, ECMWF Technical Memorandum, 807, 1–71, 2017.
Irion, F. W., Kahn, B. H., Schreier, M. M., Fetzer, E. J., Fishbein, E., Fu, D., Kalmus, P., Wilson, R. C., Wong, S., and Yue, Q.: Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-197, in review, 2017.
Kahn, B., Eldering, A., Clough, S., Fetzer, E., Fishbein, E., Gunson, M., Lee, S.-Y., Lester, P., and Realmuto, V.: Near micron sized cirrus cloud particles in high-resolution infrared spectra : an orographic case study, Geophys. Res. Lett., 30, 1441, https://doi.org/10.1029/2003GL016909, 2003.
Kahn, B., Eldering, A., Fetzer, E., Fishbein, E., Lee, S.-Y., Liou, K., DeSouza-Machado, S., Strow, L., and Hannon, S.: Nighttime cirrus detection using the Atmospheric Infrared Sounder window channels and total column water vapor, J. Geophys. Res., 110, D07203, https://doi.org/10.1029/2004JD005430, 2005.
Kahn, B. H., Irion, F. W., Dang, V. T., Manning, E. M., Nasiri, S. L., Naud, C. M., Blaisdell, J. M., Schreier, M. M., Yue, Q., Bowman, K. W., Fetzer, E. J., Hulley, G. C., Liou, K. N., Lubin, D., Ou, S. C., Susskind, J., Takano, Y., Tian, B., and Worden, J. R.: The Atmospheric Infrared Sounder version 6 cloud products, Atmos. Chem. Phys., 14, 399–426, https://doi.org/10.5194/acp-14-399-2014, 2014.
King, M., Platnick, S., Menzel, P., Ackerman, S., and Hubanks, P.: Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellite, IEEE, 51, 3826–3852, https://doi.org/10.1109/TGRS.2012.2227333, 2013.
Klein, S. and Jakob, C.: Validation and sensitivities of frontal clouds simulated by the ECMWF model, Mon. Weather Rev., 127, 2514–2531, 1999.
Liu, X., Smith, W., Zhou, D., and Larar, A.: Principal component based radiative transfer model for hyperspectral sensors: theoretical concepts, Appl. Opt., 45, 201–209, 2006.
Liu, X., Zhou, D. K., Larar, A. M., Smith, W. L., Schluessel, P., Newman, S. M., Taylor, J. P., and Wu, W.: Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels, Atmos. Chem. Phys., 9, 9121–9142, https://doi.org/10.5194/acp-9-9121-2009, 2009.
Liuzzi, G., Masiello, G., Serio, C., Meloni, D., Di Biagio, C., and Formenti, P.: Consistency of dimensional distributions and refractive indices of desert dust measured over Lampedusa with IASI radiances, Atmos. Meas. Tech., 10, 599–615, https://doi.org/10.5194/amt-10-599-2017, 2017.
Masuda, K., Takashima, T., and Takayama, Y.: Emissivity of pure and sea waters for the model sea surface in the infrared window regions, Remote Sens. Environ., 24, 313–329, 1988.
Matricardi, M.: The inclusion of aerosols and clouds in RTIASI, the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer, ECMWF Technical Memorandum, 474, 1–55, 2005.
McClatchey, R., Fenn, R., Selby, J., Volz, F., and Garing, J.: Optical properties of the atmosphere, Tech. Rep. AFCRL–72–0497, AFGL(OPI), Hanscom AFB, MA 01731, 1972.
Niu, J., Yang, P., Huang, H.-L., Davies, J., Li, J., Baum, B. A., and Hu, Y.: A fast infrared radiatbe transfer model for overlapping clouds, J. Quant. Spectrosc. Ra., 103, 447–459, 2007.
Ou, S.-C. and Liou, K.: Ice microphysics and climatic temperature feedback, Atmos. Res., 35, 127–138, 1995.
Ou, S.-C., Kahn, B., Liou, K., Takano, Y., Schreier, M., and Yue, Q.: Retrieval of Cirrus Cloud Properties From the Atmospheric Infrared Sounder: The k-Coefficient Approach Using Cloud-Cleared Radiances as Input, IEEE, 51, 1010–1024, 2013.
Phalippou, L.: Variational Retrieval of humidity profile, windspeed and cloud liquid water path with the SSM/I : Potential for Numerical Weather Prediction, Q. J. Roy. Meteorol. Soc., 122, 327–355, 1996.
Reale, O., Lau, K., Susskind, J., and Rosenberg, R.: AIRS impact on analysis of an extreme rainfall event (Indus River, Valley, Pakistan 2010) with a global data assimilation and forecast system, J. Geophys. Res., 117, D08103, https://doi.org/10.1029/2011JD017093, 2012.
Rodgers, C.: Inverse Methods for Atmospheric Sounding, World Scientific, Singapore, 2000.
Rossow, W. and Schiffer, R.: The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme, B. Am. Meteorol. Soc., 64, 779–784, 1983.
Rossow, W. and Schiffer, R.: ISCCP Cloud Data Products, B. Am. Meteorol. Soc., 72, 2–20, 1991.
Saunders, R., Rayer, P., Brunel, P., von Engeln, A., Borman, N., Strow, L., Hannon, S., Helilliette, S., Liu, X., Miskolczi, F., Han, Y., Masiello, G., Moncet, J.-L., Uymin, G., SHerlock, V., and Turner, D.: A intercomparison of radiative transfer models for simulating Atmospheric Infrared Sounder radiances, J. Geophys. Res., 112, D01S90, https://doi.org/10.1029/2006JD007088, 2007.
Segelstein, D.: The complex refractive index of water, Master's thesis, University of Missouri, Kansas City, 1981.
Shahabadi, M., Huang, Y., Garand, L., Heillette, S., and Yang, P.: Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases, J. Adv. Model. Earth Syst., 8, 1453–1467, https://doi.org/10.1002/2016MS000751, 2016.
Smith, N., Smith, W., Weisz, E., and Revercomb, H.: AIRS, IASI, and CrIS retrieval records at climate scales: An investigation into the propagation of systematic uncertainty, J. Appl. Met. Climl., 54, 1465–1481, 2015.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically Stable Algorithm for discrete ordinate method Radiative Transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502–2509, 1988.
Steck, T.: Methods for determining regularization for Atmospheric Retrieval Problems, Appl. Opt., 41, 1788–1797, 2001.
Strow, L., Hannon, S., DeSouza-Machado, S., Tobin, D., and Motteler, H.: An Overview of the AIRS Radiative Transfer Model, IEEE T. Geosci. Remote Sens., 41, 303–313, 2003.
Strow, L., Hannon, S., DeSouza-Machado, S., Tobin, D., and Motteler, H.: Validation of the Version 4 AIRS Radiative Transfer Algorithm, J. Geophys. Res., 111, https://doi.org/10.1029/2005JD006008, 2006.
Susskind, J., Barnet, C., and Blaisdell, J.: Atmospheric and Surface Parameters from Simulated AIRS/AMSU/HSB Sounding Data: Retrieval and Cloud Clearing Methodology, Adv. Space. Sci, 21, 369–384 https://doi.org/10.1016/S0273-1177(97)00916-2, 1998.
Susskind, J., Barnet, C., and Blaisdell, J.: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data under cloudy conditions, IEEE T. Geosci. Remote Sens., 41, 390–409, 2003.
Uppala, S., Kallberg, P., and Simmons, A.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961–3011, 2005.
Vidot, J., Baran, A., and Brunel, P.: A new ice cloud parameterization for infrared radiative transfer simulation of cloudy radiances: Evaluation and optimization with IIR observations and ice cloud profile retrieval products, J. Geophys. Res., 120, 6937–6951, https://doi.org/10.1002/2015JD023462, 2015.
Wei, H., Yang, P., Li, J., Baum, B., Huang, H., Platnick, S., Hu, Y., and Strow, L.: Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements, IEEE T. Geosci. Remote Sens., 42, 2254–2267, 2004.
Weisz, E., Smith, W., and Smith, N.: Advances in simultaneous atmospheric profile and cloud parameter regression based retrieval from high-spectral resolution radiance measurements, J. Geophys. Res., 118, 6433–6443, https://doi.org/10.1002/jgrd.50521, 2013.
Wu, D., Ackerman, S., Davies, R., Diner, D., Garay, M., Kahn, B., Maddux, B., Moroney, C., Stephens, G., Veefkind, J., and Vaughan, M.: Vertical distributions and relationships of cloud occurence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO and CloudSat, Geophys. Res. Lett., 36, L09821, https://doi.org/10.1029/2009GL037464, 2009.
Wu, W., Liu, X., Zhou, D., Larar, A., Yang, Q., Kizer, S., and Liu, Q.: The Application of PCRTM Physical Retrieval Methodology for IASI Cloudy Scene Analysis, IEE, 99, 1–15, https://doi.org/10.1109/TGRS.2017.2702006, 2017.
Yang, P., Gao, B., Baum, B., Hu, Y., Wiscombe, W., Tsay, S.-C., and Winker, D. M., and Nasiri, S.: Radiative properties of cirrus clouds in the infrared (8–13 microns), J. Quant. Spectrosc. Ra., 70, 473–504, 2002.
Zhou, D., W.L., S. S., Liu, X., Larar, A., Huang, H.-L., Li, J., McGill, M., and Mango, S.: Thermodynamic and cloud parameter retrieval using inrared spectral data, Geophys. Res. Lett., 32, L15805, https://doi.org/10.1029/2005GL023211, 2005.
Zhou, D., Larar, A., Liu, X., Smith, W., Strow, L., Yang, P., Schlüssel, P., and Calbet, X.: Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements, IEEE Trans. Geosci. Remote Sens., 49, 1277–1290, 2011.
Short summary
Thermodynamic fields retrieved from orbiting infrared sounders use a
derived set of measurements as their starting point, rather than the
actual observations. This leads to problems with noise and
sampling. We have developed a fast accurate model with a simple
vertical representation of clouds in the atmosphere for use in
retrievals, which allows us to use all the actual low-noise
measurements at full resolution. These should eventually help produce
more accurate weather forecasts.
Thermodynamic fields retrieved from orbiting infrared sounders use a
derived set of...