Articles | Volume 11, issue 10
https://doi.org/10.5194/amt-11-5813-2018
https://doi.org/10.5194/amt-11-5813-2018
Research article
 | 
23 Oct 2018
Research article |  | 23 Oct 2018

Screening for snow/snowmelt in SNPP VIIRS aerosol optical depth algorithm

Jingfeng Huang, Istvan Laszlo, Lorraine A. Remer, Hongqing Liu, Hai Zhang, Pubu Ciren, and Shobha Kondragunta

Related authors

Opinion: Aerosol remote sensing over the next 20 years
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024,https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
MAGARA: a Multi-Angle Geostationary Aerosol Retrieval Algorithm
James A. Limbacher, Ralph A. Kahn, Mariel D. Friberg, Jaehwa Lee, Tyler Summers, and Hai Zhang
Atmos. Meas. Tech., 17, 471–498, https://doi.org/10.5194/amt-17-471-2024,https://doi.org/10.5194/amt-17-471-2024, 2024
Short summary
Increasing Aerosol Optical Depth Spatial And Temporal Availability By Merging Datasets from Geostationary And Sun-Synchronous Satellites
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-259,https://doi.org/10.5194/amt-2023-259, 2024
Preprint under review for AMT
Short summary
Analysis of the GEFS-Aerosols annual budget to better understand aerosol predictions simulated in the model
Li Pan, Partha S. Bhattacharjee, Li Zhang, Raffaele Montuoro, Barry Baker, Jeff McQueen, Georg A. Grell, Stuart A. McKeen, Shobha Kondragunta, Xiaoyang Zhang, Gregory J. Frost, Fanglin Yang, and Ivanka Stajner
Geosci. Model Dev., 17, 431–447, https://doi.org/10.5194/gmd-17-431-2024,https://doi.org/10.5194/gmd-17-431-2024, 2024
Short summary
Impact of assimilating NOAA VIIRS aerosol optical depth (AOD) observations on global AOD analysis from the Copernicus Atmosphere Monitoring Service (CAMS)
Sebastien Garrigues, Melanie Ades, Samuel Remy, Johannes Flemming, Zak Kipling, Istvan Laszlo, Mark Parrington, Antje Inness, Roberto Ribas, Luke Jones, Richard Engelen, and Vincent-Henri Peuch
Atmos. Chem. Phys., 23, 10473–10487, https://doi.org/10.5194/acp-23-10473-2023,https://doi.org/10.5194/acp-23-10473-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Derivation of depolarization ratios of aerosol fluorescence and water vapor Raman backscatters from lidar measurements
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, William Boissiere, Mikhail Korenskiy, Nikita Kasianik, Sergey Khaykyn, and Robin Miri
Atmos. Meas. Tech., 17, 1023–1036, https://doi.org/10.5194/amt-17-1023-2024,https://doi.org/10.5194/amt-17-1023-2024, 2024
Short summary
Long-term aerosol particle depolarization ratio measurements with HALO Photonics Doppler lidar
Viet Le, Hannah Lobo, Ewan J. O'Connor, and Ville Vakkari
Atmos. Meas. Tech., 17, 921–941, https://doi.org/10.5194/amt-17-921-2024,https://doi.org/10.5194/amt-17-921-2024, 2024
Short summary
HETEAC-Flex: an optimal estimation method for aerosol typing based on lidar-derived intensive optical properties
Athena Augusta Floutsi, Holger Baars, and Ulla Wandinger
Atmos. Meas. Tech., 17, 693–714, https://doi.org/10.5194/amt-17-693-2024,https://doi.org/10.5194/amt-17-693-2024, 2024
Short summary
MAGARA: a Multi-Angle Geostationary Aerosol Retrieval Algorithm
James A. Limbacher, Ralph A. Kahn, Mariel D. Friberg, Jaehwa Lee, Tyler Summers, and Hai Zhang
Atmos. Meas. Tech., 17, 471–498, https://doi.org/10.5194/amt-17-471-2024,https://doi.org/10.5194/amt-17-471-2024, 2024
Short summary
Multi-section reference value for the analysis of horizontally scanning aerosol lidar observations
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024,https://doi.org/10.5194/amt-17-397-2024, 2024
Short summary

Cited articles

Aerosol ATBD: VIIRS Aerosol optical depth and Particle Size Parameter Algorithm Theoretical Basis Document (Revision B), available at: https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-020_JPSS_ATBD_VIIRS-AOT-APSP_B.pdf, last access: 1 October 2018. 
Aerosol OAD: VIIRS Aerosol Products (AOD, APSP & SM) Intermediate Product (IP)/Environmental Data Records (EDR) Software – OAD (Revision F), available at: http://npp.gsfc.nasa.gov/sciencedocs/2015-09/474-00073_OAD-VIIRS-Aerosols-IP-EDR_H.pdf, last access: 1 October 2018. 
Al-Saadi, J., Szykman, J., Pierce, R. B., Kittaka, C., Neil, D., Chu, D. A.,Remer, L. A., Gumley, L., Prins, E., Weinstock, L., MacDonald, C., Wayland, R., Dimmick, F., and Fishman, J.: Improving national air quality forecasts with satellite aerosol observations, B. Am. Meteorol. Soc., 86, 1249–1261, https://doi.org/10.1175/BAMS-86-9-1249, 2005. 
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010. 
Gao, B. C.: NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-4257(96)00067-3, 1996. 
Download
Short summary
A new snow/snowmelt screening approach – combining a normalized difference snow index (NDSI)- and brightness temperature (BT)-based snow test, snow adjacency test and spatial filter – is proposed to significantly reduce the snow/snowmelt contamination in the NOAA’s operational Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol optical depth (AOD) product, particularly over Northern Hemisphere high-latitude regions during spring thaw.