Articles | Volume 11, issue 10
https://doi.org/10.5194/amt-11-5837-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-5837-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 12-year long global record of optical depth of absorbing aerosols above the clouds derived from the OMI/OMACA algorithm
Hiren Jethva
CORRESPONDING AUTHOR
Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21046, USA
NASA Goddard Space Flight Center, Earth Science Division, Code 614, Greenbelt, MD 20771, USA
Omar Torres
NASA Goddard Space Flight Center, Earth Science Division, Code 614, Greenbelt, MD 20771, USA
Changwoo Ahn
Science Systems and Applications, Inc., 10210 Greenbelt Rd, Lanham, MD 20706, USA
Related authors
Vinay Kayetha, Omar Torres, and Hiren Jethva
Atmos. Meas. Tech., 15, 845–877, https://doi.org/10.5194/amt-15-845-2022, https://doi.org/10.5194/amt-15-845-2022, 2022
Short summary
Short summary
Existing measurements of spectral aerosol absorption are limited, particularly in the UV region. We use the synergy of satellite and ground measurements to derive spectral single scattering albedo of aerosols from the UV–visible spectrum. The resulting spectral SSAs are used to investigate seasonality in absorption for carbonaceous, dust, and urban aerosols. Regional aerosol absorption models that could be used to make reliable assumptions in satellite remote sensing of aerosols are derived.
Nick Schutgens, Oleg Dubovik, Otto Hasekamp, Omar Torres, Hiren Jethva, Peter J. T. Leonard, Pavel Litvinov, Jens Redemann, Yohei Shinozuka, Gerrit de Leeuw, Stefan Kinne, Thomas Popp, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021, https://doi.org/10.5194/acp-21-6895-2021, 2021
Short summary
Short summary
Absorptive aerosol has a potentially large impact on climate change. We evaluate and intercompare four global satellite datasets of absorptive aerosol optical depth (AAOD) and single-scattering albedo (SSA). We show that these datasets show reasonable correlations with the AErosol RObotic NETwork (AERONET) reference, although significant biases remain. In a follow-up paper we show that these observations nevertheless can be used for model evaluation.
Charles K. Gatebe, Hiren Jethva, Ritesh Gautam, Rajesh Poudyal, and Tamás Várnai
Atmos. Meas. Tech., 14, 1405–1423, https://doi.org/10.5194/amt-14-1405-2021, https://doi.org/10.5194/amt-14-1405-2021, 2021
Short summary
Short summary
The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is very challenging, partly because clouds and cloud-related processes significantly modify the aerosol properties and the 3D radiative effects. This study shows simultaneous retrieval of above-cloud aerosol optical depth and aerosol-corrected cloud optical depth from airborne measurements, thereby demonstrating a novel approach for assessing satellite retrievals of aerosols above clouds.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Hiren Jethva and Omar Torres
Atmos. Meas. Tech., 12, 6489–6503, https://doi.org/10.5194/amt-12-6489-2019, https://doi.org/10.5194/amt-12-6489-2019, 2019
Short summary
Short summary
The intercomparison of satellite- and ground-measured aerosol absorption properties, such as presented here using Aura-OMI and SKYNET sensors, constitutes an important exercise to evaluate relative performance, track algorithm changes, and to diagnose retrieval accuracy and issues. The two datasets are found to agree reasonably well under moderate to higher aerosol loading but show disagreement under lower aerosol amounts due to retrieval issues in both techniques.
Hiren Jethva, Omar Torres, and Yasuko Yoshida
Atmos. Meas. Tech., 12, 4291–4307, https://doi.org/10.5194/amt-12-4291-2019, https://doi.org/10.5194/amt-12-4291-2019, 2019
Short summary
Short summary
Accuracy assessment of the satellite-retrieved aerosol properties is an important exercise to validate and track the changes in the retrieval algorithm. Here, for the first time, three standard aerosol products derived from MODIS Aqua are compared against the ground-based AERONET dataset over the North American region. The present validation analysis provides guidance in the development of inversion schemes to derive aerosol properties from existing and future MODIS-like sensors.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Igor B. Konovalov, Daria A. Lvova, Matthias Beekmann, Hiren Jethva, Eugene F. Mikhailov, Jean-Daniel Paris, Boris D. Belan, Valerii S. Kozlov, Philippe Ciais, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 14889–14924, https://doi.org/10.5194/acp-18-14889-2018, https://doi.org/10.5194/acp-18-14889-2018, 2018
Short summary
Short summary
A good knowledge of black carbon (BC) emissions from open biomass burning (BB) is an important prerequisite for reliable climate predictions, especially in the Arctic. This paper introduces a method to constrain a regional budget of BB BC emissions using satellite measurements of the absorption and extinction optical depths and evaluates its potential application in a large Siberian region.
Omar Torres, Pawan K. Bhartia, Hiren Jethva, and Changwoo Ahn
Atmos. Meas. Tech., 11, 2701–2715, https://doi.org/10.5194/amt-11-2701-2018, https://doi.org/10.5194/amt-11-2701-2018, 2018
Short summary
Short summary
Since about three years after the launch the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, the sensor’s viewing capability has been affected by what is believed to be an internal obstruction that has reduced OMI’s spatial coverage. It currently affects about half of the instrument’s 60 viewing positions. In this work we carry out an analysis to assess the effect of the reduced spatial coverage on the monthly average values of retrieved parameters.
Jungbin Mok, Nickolay A. Krotkov, Omar Torres, Hiren Jethva, Zhanqing Li, Jhoon Kim, Ja-Ho Koo, Sujung Go, Hitoshi Irie, Gordon Labow, Thomas F. Eck, Brent N. Holben, Jay Herman, Robert P. Loughman, Elena Spinei, Seoung Soo Lee, Pradeep Khatri, and Monica Campanelli
Atmos. Meas. Tech., 11, 2295–2311, https://doi.org/10.5194/amt-11-2295-2018, https://doi.org/10.5194/amt-11-2295-2018, 2018
Short summary
Short summary
Measuring aerosol absorption from the shortest ultraviolet (UV) to the near-infrared (NIR) wavelengths is important for studies of climate, tropospheric photochemistry, human health, and agricultural productivity. We estimate the accuracy and demonstrate consistency of aerosol absorption retrievals from different instruments, after accounting for spectrally varying surface albedo and gaseous absorption.
Hiren Jethva, Omar Torres, Lorraine Remer, Jens Redemann, John Livingston, Stephen Dunagan, Yohei Shinozuka, Meloe Kacenelenbogen, Michal Segal Rosenheimer, and Rob Spurr
Atmos. Meas. Tech., 9, 5053–5062, https://doi.org/10.5194/amt-9-5053-2016, https://doi.org/10.5194/amt-9-5053-2016, 2016
Short summary
Short summary
Validation of the above-cloud aerosol optical depth retrieved using the "color ratio" method applied to MODIS cloudy-sky
measurements against airborne direct measurements made by NASA’s AATS and 4STAR sun photometers during SAFARI-2000,
ACE-ASIA 2001, and SEAC4RS 2013 reveals a good level of agreement (difference < 0.1), in which most matchups are found
be constrained within the estimated uncertainties associated with the MODIS retrievals (-10 % to +50 %).
Vinay Kayetha, Omar Torres, and Hiren Jethva
Atmos. Meas. Tech., 15, 845–877, https://doi.org/10.5194/amt-15-845-2022, https://doi.org/10.5194/amt-15-845-2022, 2022
Short summary
Short summary
Existing measurements of spectral aerosol absorption are limited, particularly in the UV region. We use the synergy of satellite and ground measurements to derive spectral single scattering albedo of aerosols from the UV–visible spectrum. The resulting spectral SSAs are used to investigate seasonality in absorption for carbonaceous, dust, and urban aerosols. Regional aerosol absorption models that could be used to make reliable assumptions in satellite remote sensing of aerosols are derived.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Sampa Das, Peter R. Colarco, Luke D. Oman, Ghassan Taha, and Omar Torres
Atmos. Chem. Phys., 21, 12069–12090, https://doi.org/10.5194/acp-21-12069-2021, https://doi.org/10.5194/acp-21-12069-2021, 2021
Short summary
Short summary
Interactions of extreme fires with weather systems can produce towering smoke plumes that inject aerosols at very high altitudes (> 10 km). Three such major injections, largest at the time in terms of emitted aerosol mass, took place over British Columbia, Canada, in August 2017. We model the transport and impacts of injected aerosols on the radiation balance of the atmosphere. Our model results match the satellite-observed plume transport and residence time at these high altitudes very closely.
Nick Schutgens, Oleg Dubovik, Otto Hasekamp, Omar Torres, Hiren Jethva, Peter J. T. Leonard, Pavel Litvinov, Jens Redemann, Yohei Shinozuka, Gerrit de Leeuw, Stefan Kinne, Thomas Popp, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021, https://doi.org/10.5194/acp-21-6895-2021, 2021
Short summary
Short summary
Absorptive aerosol has a potentially large impact on climate change. We evaluate and intercompare four global satellite datasets of absorptive aerosol optical depth (AAOD) and single-scattering albedo (SSA). We show that these datasets show reasonable correlations with the AErosol RObotic NETwork (AERONET) reference, although significant biases remain. In a follow-up paper we show that these observations nevertheless can be used for model evaluation.
Charles K. Gatebe, Hiren Jethva, Ritesh Gautam, Rajesh Poudyal, and Tamás Várnai
Atmos. Meas. Tech., 14, 1405–1423, https://doi.org/10.5194/amt-14-1405-2021, https://doi.org/10.5194/amt-14-1405-2021, 2021
Short summary
Short summary
The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is very challenging, partly because clouds and cloud-related processes significantly modify the aerosol properties and the 3D radiative effects. This study shows simultaneous retrieval of above-cloud aerosol optical depth and aerosol-corrected cloud optical depth from airborne measurements, thereby demonstrating a novel approach for assessing satellite retrievals of aerosols above clouds.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380, https://doi.org/10.5194/acp-20-8351-2020, https://doi.org/10.5194/acp-20-8351-2020, 2020
Short summary
Short summary
The amount of erythemal irradiance reaching the Earth's surface has been calculated from ozone, aerosol, and reflectivity data obtained from OMI and DSCOVR/EPIC satellite instruments showing areas with high levels of solar UV radiation. Changes in erythemal irradiance, cloud transmission, aerosol transmission, and ozone absorption have been estimated for 14 years 2005–2018 in units of percent per year for 191 locations, mostly large cities, and from EPIC for the entire illuminated Earth.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Hiren Jethva and Omar Torres
Atmos. Meas. Tech., 12, 6489–6503, https://doi.org/10.5194/amt-12-6489-2019, https://doi.org/10.5194/amt-12-6489-2019, 2019
Short summary
Short summary
The intercomparison of satellite- and ground-measured aerosol absorption properties, such as presented here using Aura-OMI and SKYNET sensors, constitutes an important exercise to evaluate relative performance, track algorithm changes, and to diagnose retrieval accuracy and issues. The two datasets are found to agree reasonably well under moderate to higher aerosol loading but show disagreement under lower aerosol amounts due to retrieval issues in both techniques.
Hiren Jethva, Omar Torres, and Yasuko Yoshida
Atmos. Meas. Tech., 12, 4291–4307, https://doi.org/10.5194/amt-12-4291-2019, https://doi.org/10.5194/amt-12-4291-2019, 2019
Short summary
Short summary
Accuracy assessment of the satellite-retrieved aerosol properties is an important exercise to validate and track the changes in the retrieval algorithm. Here, for the first time, three standard aerosol products derived from MODIS Aqua are compared against the ground-based AERONET dataset over the North American region. The present validation analysis provides guidance in the development of inversion schemes to derive aerosol properties from existing and future MODIS-like sensors.
Xiaoguang Xu, Jun Wang, Yi Wang, Jing Zeng, Omar Torres, Jeffrey S. Reid, Steven D. Miller, J. Vanderlei Martins, and Lorraine A. Remer
Atmos. Meas. Tech., 12, 3269–3288, https://doi.org/10.5194/amt-12-3269-2019, https://doi.org/10.5194/amt-12-3269-2019, 2019
Short summary
Short summary
Detecting aerosol layer height from space is challenging. The traditional method relies on active sensors such as lidar that provide the detailed vertical structure of the aerosol profile but is costly with limited spatial coverage (more than 1 year is needed for global coverage). Here we developed a passive remote sensing technique that uses backscattered sunlight to retrieve smoke aerosol layer height over both water and vegetated surfaces from a sensor 1.5 million kilometers from the Earth.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Igor B. Konovalov, Daria A. Lvova, Matthias Beekmann, Hiren Jethva, Eugene F. Mikhailov, Jean-Daniel Paris, Boris D. Belan, Valerii S. Kozlov, Philippe Ciais, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 14889–14924, https://doi.org/10.5194/acp-18-14889-2018, https://doi.org/10.5194/acp-18-14889-2018, 2018
Short summary
Short summary
A good knowledge of black carbon (BC) emissions from open biomass burning (BB) is an important prerequisite for reliable climate predictions, especially in the Arctic. This paper introduces a method to constrain a regional budget of BB BC emissions using satellite measurements of the absorption and extinction optical depths and evaluates its potential application in a large Siberian region.
Melanie S. Hammer, Randall V. Martin, Chi Li, Omar Torres, Max Manning, and Brian L. Boys
Atmos. Chem. Phys., 18, 8097–8112, https://doi.org/10.5194/acp-18-8097-2018, https://doi.org/10.5194/acp-18-8097-2018, 2018
Short summary
Short summary
We apply a simulation of the Ultraviolet Aerosol Index (UVAI), a method of detecting aerosol absorption from satellite observations, to interpret UVAI values observed by the Ozone Monitoring Instrument (OMI) from 2005 to 2015 to understand global trends in aerosol composition. We find that global trends in the UVAI are largely explained by trends in absorption by mineral dust, absorption by brown carbon, and scattering by secondary inorganic aerosol.
Omar Torres, Pawan K. Bhartia, Hiren Jethva, and Changwoo Ahn
Atmos. Meas. Tech., 11, 2701–2715, https://doi.org/10.5194/amt-11-2701-2018, https://doi.org/10.5194/amt-11-2701-2018, 2018
Short summary
Short summary
Since about three years after the launch the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, the sensor’s viewing capability has been affected by what is believed to be an internal obstruction that has reduced OMI’s spatial coverage. It currently affects about half of the instrument’s 60 viewing positions. In this work we carry out an analysis to assess the effect of the reduced spatial coverage on the monthly average values of retrieved parameters.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Jungbin Mok, Nickolay A. Krotkov, Omar Torres, Hiren Jethva, Zhanqing Li, Jhoon Kim, Ja-Ho Koo, Sujung Go, Hitoshi Irie, Gordon Labow, Thomas F. Eck, Brent N. Holben, Jay Herman, Robert P. Loughman, Elena Spinei, Seoung Soo Lee, Pradeep Khatri, and Monica Campanelli
Atmos. Meas. Tech., 11, 2295–2311, https://doi.org/10.5194/amt-11-2295-2018, https://doi.org/10.5194/amt-11-2295-2018, 2018
Short summary
Short summary
Measuring aerosol absorption from the shortest ultraviolet (UV) to the near-infrared (NIR) wavelengths is important for studies of climate, tropospheric photochemistry, human health, and agricultural productivity. We estimate the accuracy and demonstrate consistency of aerosol absorption retrievals from different instruments, after accounting for spectrally varying surface albedo and gaseous absorption.
Peter R. Colarco, Santiago Gassó, Changwoo Ahn, Virginie Buchard, Arlindo M. da Silva, and Omar Torres
Atmos. Meas. Tech., 10, 4121–4134, https://doi.org/10.5194/amt-10-4121-2017, https://doi.org/10.5194/amt-10-4121-2017, 2017
Short summary
Short summary
We need satellite observations to characterize the properties of atmospheric aerosols. Those observations have uncertainties associated with them because of assumptions made in their algorithms. We test the assumptions on a part of the aerosol algorithms used with the Ozone Monitoring Instrument (OMI) flying on the NASA Aura spacecraft. We simulate the OMI observations using a global aerosol model, and then compare what OMI tells us about the simulated aerosols with the model results directly.
Hiren Jethva, Omar Torres, Lorraine Remer, Jens Redemann, John Livingston, Stephen Dunagan, Yohei Shinozuka, Meloe Kacenelenbogen, Michal Segal Rosenheimer, and Rob Spurr
Atmos. Meas. Tech., 9, 5053–5062, https://doi.org/10.5194/amt-9-5053-2016, https://doi.org/10.5194/amt-9-5053-2016, 2016
Short summary
Short summary
Validation of the above-cloud aerosol optical depth retrieved using the "color ratio" method applied to MODIS cloudy-sky
measurements against airborne direct measurements made by NASA’s AATS and 4STAR sun photometers during SAFARI-2000,
ACE-ASIA 2001, and SEAC4RS 2013 reveals a good level of agreement (difference < 0.1), in which most matchups are found
be constrained within the estimated uncertainties associated with the MODIS retrievals (-10 % to +50 %).
Santiago Gassó and Omar Torres
Atmos. Meas. Tech., 9, 3031–3052, https://doi.org/10.5194/amt-9-3031-2016, https://doi.org/10.5194/amt-9-3031-2016, 2016
Short summary
Short summary
Aerosol optical depths derived by the OMI near-UV algorithm are evaluated against independent observations over the ocean. The comparison resulted in differences within the expected levels of uncertainty. In addition, in clear sky conditions, the retrieved AODs compare well with independent measurements but they are biased high in partially cloud-contaminated pixels. Additional sources of discrepancies are documented and will be corrected in future versions of the algorithm.
Melanie S. Hammer, Randall V. Martin, Aaron van Donkelaar, Virginie Buchard, Omar Torres, David A. Ridley, and Robert J. D. Spurr
Atmos. Chem. Phys., 16, 2507–2523, https://doi.org/10.5194/acp-16-2507-2016, https://doi.org/10.5194/acp-16-2507-2016, 2016
Short summary
Short summary
We interpret satellite observations to infer the global absorption properties of brown carbon (BrC) aerosols. We incorporate these BrC absorption properties into a chemical transport model to estimate global direct radiative effects and changes in hydroxyl radical (OH) concentrations. To our knowledge, this is the first time the effect of BrC absorption on atmospheric photochemistry has been considered in a global chemical transport model.
Sang Seo Park, Jhoon Kim, Hanlim Lee, Omar Torres, Kwang-Mog Lee, and Sang Deok Lee
Atmos. Chem. Phys., 16, 1987–2006, https://doi.org/10.5194/acp-16-1987-2016, https://doi.org/10.5194/acp-16-1987-2016, 2016
Short summary
Short summary
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT) model, and the differential optical absorption spectroscopy (DOAS) technique. A new algorithm is developed and tested to derive the aerosol effective height for cases over East Asia using radiance data from the Ozone Monitoring Instrument (OMI).
U. Jeong, J. Kim, C. Ahn, O. Torres, X. Liu, P. K. Bhartia, R. J. D. Spurr, D. Haffner, K. Chance, and B. N. Holben
Atmos. Chem. Phys., 16, 177–193, https://doi.org/10.5194/acp-16-177-2016, https://doi.org/10.5194/acp-16-177-2016, 2016
Short summary
Short summary
An aerosol retrieval and error analysis algorithm using OMI measurements based on an optimal-estimation method was developed in this study. The aerosol retrievals were validated using the DRAGON campaign products. The estimated errors of the retrievals represented the actual biases between retrieval and AERONET measurements well. The retrievals, with their estimated uncertainties, are expected to be valuable for relevant studies, such as trace gas retrieval and data assimilation.
P. Castellanos, K. F. Boersma, O. Torres, and J. F. de Haan
Atmos. Meas. Tech., 8, 3831–3849, https://doi.org/10.5194/amt-8-3831-2015, https://doi.org/10.5194/amt-8-3831-2015, 2015
Short summary
Short summary
Inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of light-absorbing aerosols are not well understood. Here we explicitly account for the effects of aerosols in the Dutch OMI NO2 (DOMINO) tropospheric AMF calculation by including aerosol observations collocated with OMI pixels. The AMF calculations that included aerosol absorption and scattering were on average 10% higher than traditional AMFs. Errors can reach a factor of 2 for individual pixels.
L. Zhang, D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, O. Torres, C. Ahn, Z. Lu, J. Cao, and Y. Mao
Atmos. Chem. Phys., 15, 10281–10308, https://doi.org/10.5194/acp-15-10281-2015, https://doi.org/10.5194/acp-15-10281-2015, 2015
Short summary
Short summary
We attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Despite the limitations and uncertainties, using OMI AAOD to constrain BC sources we are able to improve model representation of BC distributions, particularly over China.
V. Buchard, A. M. da Silva, P. R. Colarco, A. Darmenov, C. A. Randles, R. Govindaraju, O. Torres, J. Campbell, and R. Spurr
Atmos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-15-5743-2015, https://doi.org/10.5194/acp-15-5743-2015, 2015
Short summary
Short summary
MERRAero is an aerosol reanalysis based on the GEOS-5 earth system model that incorporates an online aerosol module and assimilation of AOD from MODIS sensors. This study assesses the quality of MERRAero absorption using independent OMI observations. In addition to comparisons to OMI absorption AOD, we have developed a radiative transfer interface to simulate the UV aerosol index from assimilated aerosol fields at OMI footprint. Also, we fully diagnose the model using MISR, AERONET and CALIPSO.
S. DeSouza-Machado, L. Strow, E. Maddy, O. Torres, G. Thomas, D. Grainger, and A. Robinson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-443-2015, https://doi.org/10.5194/amtd-8-443-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) are instruments on the 1.30 pm polar
orbiting Aqua spacecraft. We describe a daytime estimation of dust and
volcanic ash layer heights, using a retrieval algorithm that uses the
information in the AIRS L1B thermal infrared data, constrained by the
MODIS L2 aerosol optical depths. CALIOP aerosol centroid heights are
used for dust height comparisons, as are AATSR volcanic plume heights.
M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, and X.-P. Zhao
Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, https://doi.org/10.5194/acp-14-3657-2014, 2014
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
O. Torres, C. Ahn, and Z. Chen
Atmos. Meas. Tech., 6, 3257–3270, https://doi.org/10.5194/amt-6-3257-2013, https://doi.org/10.5194/amt-6-3257-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Sensitivity studies of nighttime top-of-atmosphere radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals
Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO) – estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data
HETEAC – the Hybrid End-To-End Aerosol Classification model for EarthCARE
DeLiAn – a growing collection of depolarization ratio, lidar ratio and Ångström exponent for different aerosol types and mixtures from ground-based lidar observations
The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
POLIPHON conversion factors for retrieving dust-related cloud condensation nuclei and ice-nucleating particle concentration profiles at oceanic sites
Ground-based remote sensing of aerosol properties using high-resolution infrared emission and lidar observations in the High Arctic
The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm
Aerosol optical depth retrieval from the EarthCARE multi-spectral imager: the M-AOT product
A compact formulation for the retrieval of the overlap function in an elastic/Raman aerosol lidar
Volcanic cloud detection using Sentinel-3 satellite data by means of neural networks: the Raikoke 2019 eruption test case
Evaluating the effects of columnar NO2 on the accuracy of aerosol optical properties retrievals
The new MISR research aerosol retrieval algorithm: a multi-angle, multi-spectral, bounded-variable least squares retrieval of aerosol particle properties over both land and water
The classification of atmospheric hydrometeors and aerosols from the EarthCARE radar and lidar: the A-TC, C-TC and AC-TC products
Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data
Atmospheric visibility inferred from continuous-wave Doppler wind lidar
Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra
Exploring geometrical stereoscopic aerosol top height retrieval from geostationary satellite imagery in East Asia
Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology
Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean
SAGE III/ISS aerosol/cloud categorization and its impact on GloSSAC
Employing relaxed smoothness constraints on imaginary part of refractive index in AERONET aerosol retrieval algorithm
Observation of bioaerosol transport using wideband integrated bioaerosol sensor and coherent Doppler lidar
Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system
Enhancing MAX-DOAS atmospheric state retrievals by multispectral polarimetry – studies using synthetic data
Assessing the benefits of Imaging Infrared Radiometer observations for the CALIOP version 4 cloud and aerosol discrimination algorithm
A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars
Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index
Aerosol models from the AERONET database: application to surface reflectance validation
Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6 × 6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data
Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product
Retrieval of UV–visible aerosol absorption using AERONET and OMI–MODIS synergy: spatial and temporal variability across major aerosol environments
Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements
Ash particle refractive index model for simulating the brightness temperature spectrum of volcanic ash clouds from satellite infrared sounder measurements
Retrieval of aerosol properties using relative radiance measurements from an all-sky camera
Optimization of Aeolus' aerosol optical properties by maximum-likelihood estimation
A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments
Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm
Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models
Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations
Mass concentration estimates of long-range-transported Canadian biomass burning aerosols from a multi-wavelength Raman polarization lidar and a ceilometer in Finland
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Introducing the MISR level 2 near real-time aerosol product
Estimation of PM2.5 concentration in China using linear hybrid machine learning model
Species correlation measurements in turbulent flare plumes: considerations for field measurements
Retrieval of aerosol microphysical properties from atmospheric lidar sounding: an investigation using synthetic measurements and data from the ACEPOL campaign
Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns
Deriving boundary layer height from aerosol lidar using machine learning: KABL and ADABL algorithms
Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, https://doi.org/10.5194/amt-16-2485-2023, 2023
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Brian Cairns, Xiaoguang Xu, and J. Vanderlei Martins
Atmos. Meas. Tech., 16, 2067–2087, https://doi.org/10.5194/amt-16-2067-2023, https://doi.org/10.5194/amt-16-2067-2023, 2023
Short summary
Short summary
Multi-angle polarimetric measurements have been shown to greatly improve the remote sensing capability of aerosols and help atmospheric correction for ocean color retrievals. However, the uncertainty correlations among different measurement angles have not been well characterized. In this work, we provided a practical framework to evaluate the impact of the angular uncertainty correlation in retrieval results and a method to directly estimate correlation strength from retrieval residuals.
Yun He, Zhenping Yin, Albert Ansmann, Fuchao Liu, Longlong Wang, Dongzhe Jing, and Huijia Shen
Atmos. Meas. Tech., 16, 1951–1970, https://doi.org/10.5194/amt-16-1951-2023, https://doi.org/10.5194/amt-16-1951-2023, 2023
Short summary
Short summary
With the AERONET database, this study derives dust-related conversion factors at oceanic sites used in the POLIPHON method, which can convert lidar-retrieved dust extinction to ice-nucleating particle (INP)- and cloud condensation nuclei (CCN)-relevant parameters. The particle linear depolarization ratio in the AERONET aerosol inversion product is used to identify dust data points. The derived conversion factors can be applied to inverse 3-D global distributions of dust-related INPCs and CCNCs.
Denghui Ji, Mathias Palm, Christoph Ritter, Philipp Richter, Xiaoyu Sun, Matthias Buschmann, and Justus Notholt
Atmos. Meas. Tech., 16, 1865–1879, https://doi.org/10.5194/amt-16-1865-2023, https://doi.org/10.5194/amt-16-1865-2023, 2023
Short summary
Short summary
To measuring aerosol components, a Fourier transform infrared spectrometer (FTIS) and a lidar are operated in Ny-Ålesund, Spitsbergen (78° N, 11° E). Using the FTIS, a retrieval algorithm is developed for dust, sea salt, black carbon, and sulfate. The distribution of aerosols or clouds is provided by lidar and used as an indicator for aerosol or cloud retrieval with the FTS. Thus, a two-instrument joint-observation scheme is designed and is used on the data measured from 2019 to the present.
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023, https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosols in the stratosphere from volcanic eruptions and major wildfire events. This paper describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
Nicole Docter, Rene Preusker, Florian Filipitsch, Lena Kritten, Franziska Schmidt, and Jürgen Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2023-150, https://doi.org/10.5194/egusphere-2023-150, 2023
Short summary
Short summary
We describe the stand-alone retrieval algorithm used to derive aerosol properties relying on measurements of the Multi-Spectral Imager (MSI) on-board the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. This aerosol data product will be available as M-AOT after the launch of EarthCARE. Additionally, we applied the algorithm to simulated EarthCARE MSI and Moderate Resolution Imaging Spectroradiometer (MODIS) data for pre-launch algorithm verification.
Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Michaël Sicard, Federico Dios, Cristina Gil-Díaz, Daniel Camilo Fortunato dos Santos Oliveira, and Francesc Rocadenbosch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-333, https://doi.org/10.5194/amt-2022-333, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
In this paper, an explicit formula for recovering the overlap function of an aerosol lidar system is presented. It makes use of the elastic and Raman channels of the lidar. Some considerations are made about assumptions made on lidar ratio value. Results are presented for two measurements.
Ilaria Petracca, Davide De Santis, Matteo Picchiani, Stefano Corradini, Lorenzo Guerrieri, Fred Prata, Luca Merucci, Dario Stelitano, Fabio Del Frate, Giorgia Salvucci, and Giovanni Schiavon
Atmos. Meas. Tech., 15, 7195–7210, https://doi.org/10.5194/amt-15-7195-2022, https://doi.org/10.5194/amt-15-7195-2022, 2022
Short summary
Short summary
The authors propose a near-real-time procedure for the detection of volcanic clouds by means of Sentinel-3 satellite data and neural networks. The algorithm results in an automatic image classification where ashy pixels are distinguished from other surfaces with remarkable accuracy. The model is considerably faster if compared to other approaches which are time consuming, case specific, and not automatic. The algorithm can be significantly helpful for emergency management during eruption events.
Theano Drosoglou, Ioannis-Panagiotis Raptis, Massimo Valeri, Stefano Casadio, Francesca Barnaba, Marcos Herreras-Giralda, Anton Lopatin, Oleg Dubovik, Gabriele Brizzi, Fabrizio Niro, Monica Campanelli, and Stelios Kazadzis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-319, https://doi.org/10.5194/amt-2022-319, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Aerosol optical properties derived from sun-photometers depend on the optical depth of trace gases absorbing solar radiation at specific spectral ranges. Various networks use satellite-based climatologies to account for this or neglect their effect. In this work, we evaluate the effect of NO2 absorption in aerosol retrievals from AERONET and SKYNET over two stations in Rome, Italy, with relatively high NO2 spatiotemporal variations, using NO2 data from the Pandora network and the TROPOMI sensor.
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022, https://doi.org/10.5194/amt-15-6865-2022, 2022
Short summary
Short summary
Launched in December 1999, NASA’s Multi-angle Imaging SpectroRadiometer (MISR) has given researchers qualitative constraints on aerosol particle properties for the past 22 years. Here, we present a new MISR research aerosol retrieval algorithm (RA) that utilizes over-land surface reflectance data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) to address limitations of the MISR operational aerosol retrieval algorithm and improve retrievals of aerosol particle properties.
Abdanour Irbah, Julien Delanoë, Gerd-Jan van Zadelhoff, David P. Donovan, Pavlos Kollias, Bernat Puigdomènech Treserras, Shannon Mason, Robin J. Hogan, and Aleksandra Tatarevic
EGUsphere, https://doi.org/10.5194/egusphere-2022-1217, https://doi.org/10.5194/egusphere-2022-1217, 2022
Short summary
Short summary
The Cloud Profiling Radar (CPR) and Atmospheric Lidar (ATLID) aboard the EarthCare satellite are used to probe the Earth's atmosphere by measuring cloud and aerosol profiles. ATLID is sensitive to aerosols and small cloud particles and CPR to large ice particles, snowflakes and raindrops. It is the synergy of the measurements of these two instruments allowing a better classification of the atmospheric targets and the description of the associated products, which are the subject of this paper.
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, Xi Chen, Yele Sun, Jianjun Li, Guigang Tang, and Wenxuan Chai
Atmos. Meas. Tech., 15, 6127–6144, https://doi.org/10.5194/amt-15-6127-2022, https://doi.org/10.5194/amt-15-6127-2022, 2022
Short summary
Short summary
We develop a new algorithm to get the vertical mass concentration profiles of fine aerosol components based on the synergy of ground-based remote sensing for the first time. The comparisons with in situ observations and chemistry transport models validate the performance of the algorithm. Uncertainties caused by input parameters are also assessed in this paper. We expected that the algorithm can provide a new idea for lidar inversion and promote the development of aerosol component profiles.
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022, https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary
Short summary
Visibility is how well we can see something. Visibility sensors, such as employed in meteorological observatories and airports, measure at a point at the instrument location, which may not be representative of visibilities further away, e.g. near the sea surface during sea spray. Light detecting and ranging (lidar) can measure visibility further away. We find wind lidar to be a viable tool to measure visibility with low accuracy, which could suffice for safety-uncritical applications.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, and Yeseul Cho
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-249, https://doi.org/10.5194/amt-2022-249, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Aerosol height information is important in understanding vertical structure of aerosol layer and long-range transport. In this study, a geometrical aerosol top height (ATH) retrieval using parallax of two geostationary satellites was investigated. With sufficient longitudinal separation between the two satellites, decent ATH product could be retrieved. The stereoscopic algorithm enables diurnal variation monitoring of aerosol layer over broader area without interference of sensor calibration.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Boris Barchunov, and Mikhail Korenskii
Atmos. Meas. Tech., 15, 4881–4900, https://doi.org/10.5194/amt-15-4881-2022, https://doi.org/10.5194/amt-15-4881-2022, 2022
Short summary
Short summary
An approach to reveal variability in aerosol type at a high spatiotemporal resolution, by combining fluorescence and Mie–Raman lidar data, is presented. We applied this new classification scheme to lidar data obtained by LOA, University of Lille, in 2020–2021. It is demonstrated that the separation of the main particle types, such as smoke, dust, pollen, and urban, can be performed with a height resolution of 60 m and temporal resolution better than 10 min for the current lidar configuration.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
Mahesh Kovilakam, Larry Thomason, and Travis Knepp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-222, https://doi.org/10.5194/amt-2022-222, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
The manuscript describes SAGE III/ISS aerosol/cloud categorization and its implications on Global Space-based Stratospheric Aerosol Climatology (GloSSAC). The presence of data from SAGE type of multi-wavelength measurements is important in GloSSAC. The new aerosol/cloud categorization method described in this manuscript will help retain more measurements, particularly in the lower stratosphere during and following volcanic event and other processes.
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Oleg Dubovik, Joel S. Schafer, Alexander Smirnov, and Mikhail Sorokin
Atmos. Meas. Tech., 15, 4135–4151, https://doi.org/10.5194/amt-15-4135-2022, https://doi.org/10.5194/amt-15-4135-2022, 2022
Short summary
Short summary
This paper describes modification of smoothness constraints on the imaginary part of the refractive index employed in the AERONET aerosol retrieval algorithm. This modification is termed relaxed due to the weaker strength of this new smoothness constraint. Applying the modified version of the smoothness constraint results in a significant reduction of retrieved light absorption by brown-carbon-containing aerosols.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Jan-Lukas Tirpitz, Udo Frieß, Robert Spurr, and Ulrich Platt
Atmos. Meas. Tech., 15, 2077–2098, https://doi.org/10.5194/amt-15-2077-2022, https://doi.org/10.5194/amt-15-2077-2022, 2022
Short summary
Short summary
MAX-DOAS is a widely used measurement technique for the remote detection of atmospheric aerosol and trace gases. It relies on the analysis of ultra-violet and visible radiation spectra of skylight. To date, information contained in the skylight's polarisation state has not been utilised. On the basis of synthetic data, we carried out sensitivity analyses to assess the potential of polarimetry for MAX-DOAS applications.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Marco Di Paolantonio, Davide Dionisi, and Gian Luigi Liberti
Atmos. Meas. Tech., 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022, https://doi.org/10.5194/amt-15-1217-2022, 2022
Short summary
Short summary
A procedure for the characterization of the lidar transmitter–receiver geometry was developed. This characterization is currently implemented in the Rome RMR lidar to optimize the telescope/beam alignment, retrieve the overlap function, and estimate the absolute and relative tilt of the laser beam. This procedure can be potentially used to complement the standard EARLINET quality assurance tests.
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022, https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary
Short summary
The aerosol optical depth (AOD) characteristics in an urban area of Rome were retrieved over a period of 11 years (2010–2020) to determine, for the first time, their effect on the incoming ultraviolet (UV) solar radiation. The surface forcing efficiency shows that the AOD is the primary parameter affecting the surface irradiance in Rome, and it is found to be greater for smaller zenith angles and for larger and more absorbing particles in the UV range (such as, e.g., mineral dust).
Jean-Claude Roger, Eric Vermote, Sergii Skakun, Emilie Murphy, Oleg Dubovik, Natacha Kalecinski, Bruno Korgo, and Brent Holben
Atmos. Meas. Tech., 15, 1123–1144, https://doi.org/10.5194/amt-15-1123-2022, https://doi.org/10.5194/amt-15-1123-2022, 2022
Short summary
Short summary
From measurements of the sky performed by AERONET, we determined the microphysical properties of the atmospheric particles (aerosols) for each AERONET site. We used the aerosol optical thickness and its variation over the visible spectrum. This allows us to determine an aerosol model useful for (but not only) the validation of the surface reflectance satellite-derived product. The impact of the aerosol model uncertainties on the surface reflectance validation has been found to be 1 % to 3 %.
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022, https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Short summary
This paper uses a machine learning algorithm to infer high-resolution maps of particulate air quality in eastern China, Japan, and the Korean peninsula, using data from a geostationary satellite along with meteorology. We then perform an extensive evaluation of this inferred air quality and use it to diagnose trends in the region. We hope this paper and the associated data will be valuable to other scientists interested in epidemiology, air quality, remote sensing, and machine learning.
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Short summary
We have developed a machine-learning-based model that can be used to correct the Sentinel-3 satellite-based aerosol parameter data of the Synergy data product. The strength of the model is that the original satellite data processing does not have to be carried out again but the correction can be carried out with the data already available. We show that the correction significantly improves the accuracy of the satellite aerosol parameters.
Vinay Kayetha, Omar Torres, and Hiren Jethva
Atmos. Meas. Tech., 15, 845–877, https://doi.org/10.5194/amt-15-845-2022, https://doi.org/10.5194/amt-15-845-2022, 2022
Short summary
Short summary
Existing measurements of spectral aerosol absorption are limited, particularly in the UV region. We use the synergy of satellite and ground measurements to derive spectral single scattering albedo of aerosols from the UV–visible spectrum. The resulting spectral SSAs are used to investigate seasonality in absorption for carbonaceous, dust, and urban aerosols. Regional aerosol absorption models that could be used to make reliable assumptions in satellite remote sensing of aerosols are derived.
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022, https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary
Short summary
Aerosols are tiny particles suspended in the atmosphere. A fraction of these particles can form clouds and are called cloud condensation nuclei (CCN). Measurements of such aerosol particles are necessary to study the aerosol–cloud interactions and reduce the uncertainty in our future climate predictions. We present a novel methodology to estimate global 3D CCN concentrations from the CALIPSO satellite measurements. The final data set will be used to study the aerosol–cloud interactions.
Hiroshi Ishimoto, Masahiro Hayashi, and Yuzo Mano
Atmos. Meas. Tech., 15, 435–458, https://doi.org/10.5194/amt-15-435-2022, https://doi.org/10.5194/amt-15-435-2022, 2022
Short summary
Short summary
Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds (VACs) and radiative transfer calculations, we attempt to simulate the measured brightness temperature spectra (BTS) of volcanic ash aerosols in the infrared region. In particular, the dependence on the ash refractive index (RI) model is investigated.
Roberto Román, Juan C. Antuña-Sánchez, Victoria E. Cachorro, Carlos Toledano, Benjamín Torres, David Mateos, David Fuertes, César López, Ramiro González, Tatyana Lapionok, Marcos Herreras-Giralda, Oleg Dubovik, and Ángel M. de Frutos
Atmos. Meas. Tech., 15, 407–433, https://doi.org/10.5194/amt-15-407-2022, https://doi.org/10.5194/amt-15-407-2022, 2022
Short summary
Short summary
An all-sky camera is used to obtain the relative sky radiance, and this radiance is used as input in an inversion code to obtain aerosol properties. This paper is really interesting because it pushes forward the use and capability of sky cameras for more advanced science purposes. Enhanced aerosol properties can be retrieved with accuracy using only an all-sky camera, but synergy with other instruments providing aerosol optical depth could even increase the power of these low-cost instruments.
Frithjof Ehlers, Thomas Flament, Alain Dabas, Dimitri Trapon, Adrien Lacour, Holger Baars, and Anne Grete Straume-Lindner
Atmos. Meas. Tech., 15, 185–203, https://doi.org/10.5194/amt-15-185-2022, https://doi.org/10.5194/amt-15-185-2022, 2022
Short summary
Short summary
The Aeolus satellite observes the Earth and can vertically detect any kind of particles (aerosols or clouds) in the atmosphere below it. These observations are typically very noisy, which needs to be accounted for. This work dampens the noise in Aeolus' aerosol and cloud data, which are provided publicly by the ESA, so that the scientific community can make better use of it. This makes the data potentially more useful for weather prediction and climate research.
Alberto Sorrentino, Alessia Sannino, Nicola Spinelli, Michele Piana, Antonella Boselli, Valentino Tontodonato, Pasquale Castellano, and Xuan Wang
Atmos. Meas. Tech., 15, 149–164, https://doi.org/10.5194/amt-15-149-2022, https://doi.org/10.5194/amt-15-149-2022, 2022
Short summary
Short summary
We present a novel approach that can be used to obtain microphysical properties of atmospheric aerosol, up to several kilometers in the atmosphere, from lidar measurements taken from the ground. Our approach provides accurate reconstructions under many different experimental conditions. Our results can contribute to the expansion of the use of remote sensing techniques for air quality monitoring and atmospheric science in general.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Michal Segal Rozenhaimer, Meloë Kacenelenbogen, Yohei Shinozuka, Connor Flynn, Rich Ferrare, Sharon Burton, Chris Hostetler, Marc Mallet, and Paquita Zuidema
Atmos. Meas. Tech., 15, 61–77, https://doi.org/10.5194/amt-15-61-2022, https://doi.org/10.5194/amt-15-61-2022, 2022
Short summary
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, https://doi.org/10.5194/amt-14-7851-2021, 2021
Short summary
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA.
We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.
Oscar S. Sandvik, Johan Friberg, Moa K. Sporre, and Bengt G. Martinsson
Atmos. Meas. Tech., 14, 7153–7165, https://doi.org/10.5194/amt-14-7153-2021, https://doi.org/10.5194/amt-14-7153-2021, 2021
Short summary
Short summary
A method to form SO2 profiles in the stratosphere with high vertical resolution following volcanic eruptions is introduced. The method combines space-based high-resolution vertical aerosol profiles and SO2 measurements the first 2 weeks after an eruption with air mass trajectory analyses. The SO2 is located at higher altitude than in most previous studies. The detailed resolution of the SO2 profile is unprecedented compared to other methods.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, Mikhail V. Panchenko, and Meinrat O. Andreae
Atmos. Meas. Tech., 14, 6647–6673, https://doi.org/10.5194/amt-14-6647-2021, https://doi.org/10.5194/amt-14-6647-2021, 2021
Short summary
Short summary
The absorption of solar light by organic matter, known as brown carbon (BrC), contributes significantly to the radiative budget of the Earth’s atmosphere, but its representation in atmospheric models is uncertain. This paper advances a methodology to constrain model parameters characterizing BrC absorption of atmospheric aerosol originating from biomass burning with the available remote ground-based observations of atmospheric aerosol.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021, https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Short summary
This article documents the development and testing of a new near real-time (NRT) aerosol product from the MISR instrument on NASA’s Terra platform. The NRT product capitalizes on the unique attributes of the MISR retrieval approach, which leads to a high-quality and reliable aerosol data product. Several modifications are described that allow for rapid product generation within a 3 h window following acquisition. Implications for the product quality and consistency are discussed.
Zhihao Song, Bin Chen, Yue Huang, Li Dong, and Tingting Yang
Atmos. Meas. Tech., 14, 5333–5347, https://doi.org/10.5194/amt-14-5333-2021, https://doi.org/10.5194/amt-14-5333-2021, 2021
Short summary
Short summary
The linear hybrid machine learning model achieves the expected target well. The overall inversion accuracy (R2) of the model is 0.84, and the RMSE is 12.92 µg m−3. R2 was above 0.7 in more than 70 % of the sites, whereas RMSE and mean absolute error were below 20 and 15 µg m−3, respectively. There was severe pollution in winter with an average PM2.5 concentration of 62.10 µg m−3. However, there was only slight pollution in summer with an average PM2.5 concentration of 47.39 µg m−3.
Scott P. Seymour and Matthew R. Johnson
Atmos. Meas. Tech., 14, 5179–5197, https://doi.org/10.5194/amt-14-5179-2021, https://doi.org/10.5194/amt-14-5179-2021, 2021
Short summary
Short summary
Field measurements of gas flare emissions often assume that combustion species are spatially and temporally correlated in the plume. By measuring black carbon (BC) and water vapour in turbulent lab-scale flare plumes, this study shows that the well-correlated species assumption is not universally valid and that field measurements may be subject to large added uncertainty. Further analysis suggests that this uncertainty is easily avoided, and initial guidance is provided on sampling protocols.
William G. K. McLean, Guangliang Fu, Sharon P. Burton, and Otto P. Hasekamp
Atmos. Meas. Tech., 14, 4755–4771, https://doi.org/10.5194/amt-14-4755-2021, https://doi.org/10.5194/amt-14-4755-2021, 2021
Short summary
Short summary
In this study, we present results from aerosol retrievals using both synthetic and real lidar datasets, including measurements from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, a combined initiative between NASA and SRON (the Netherlands Institute for Space Research). Aerosol microphysical retrievals were performed using the High Spectral Resolution Lidar-2 (HSRL-2) setup, alongside several others, with the ACEPOL retrievals also compared to polarimeter retrievals.
Hyunkwang Lim, Sujung Go, Jhoon Kim, Myungje Choi, Seoyoung Lee, Chang-Keun Song, and Yasuko Kasai
Atmos. Meas. Tech., 14, 4575–4592, https://doi.org/10.5194/amt-14-4575-2021, https://doi.org/10.5194/amt-14-4575-2021, 2021
Short summary
Short summary
Aerosol property observations by satellites from geostationary Earth orbit (GEO) in particular have advantages of frequent sampling better than 1 h in addition to broader spatial coverage. This study provides data fusion products of aerosol optical properties from four different algorithms for two different GEO satellites: GOCI and AHI. The fused aerosol products adopted ensemble-mean and maximum-likelihood estimation methods. The data fusion provides improved results with better accuracy.
Thomas Rieutord, Sylvain Aubert, and Tiago Machado
Atmos. Meas. Tech., 14, 4335–4353, https://doi.org/10.5194/amt-14-4335-2021, https://doi.org/10.5194/amt-14-4335-2021, 2021
Short summary
Short summary
This article describes two methods to estimate the height of the very first layer of the atmosphere. It is measured with aerosol lidars, and the two new methods are based on machine learning. Both are open source and available under free licenses. A sensitivity analysis and a 2-year evaluation against meteorological balloons were carried out. One method has a good agreement with balloons but is limited by training, and the other has less good agreement with balloons but is more flexible.
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021, https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Short summary
Multi-angle polarimetric measurements can retrieve accurate aerosol properties over complex atmosphere and ocean systems; however, most retrieval algorithms require high computational costs. We propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems and then conduct simultaneous aerosol and ocean color retrievals on AirHARP measurements. The computational acceleration is 103 times with CPU or 104 times with GPU.
Cited articles
Ahn, C., Torres, O. and Jethva, H.: Assessment of OMI near-UV aerosol optical
depth over land, J. Geophys. Res.-Atmos., 119, 2457–2473,
https://doi.org/10.1002/2013JD020188, 2014.
Alfaro-Contreras, R., Zhang, J., Campbell, J. R., and Reid, J. S.:
Investigating the frequency and interannual variability in global above-cloud
aerosol characteristics with CALIOP and OMI, Atmos. Chem. Phys., 16, 47–69,
https://doi.org/10.5194/acp-16-47-2016, 2016.
Chand, D., Anderson, T. L., Wood, R., Charlson, R. J., Hu, Y., Liu, Z., and
Vaughan, M.: Quantifying above-cloud aerosol using spaceborne lidar for
improved understanding of cloudy-sky direct climate forcing, J. Geophys.
Res., 113, D13206, https://doi.org/10.1029/2007JD009433, 2008.
Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.:
Satellite-derived direct radiative effect of aerosols dependent on cloud
cover, Nat. Geosci., 2, 181–184, https://doi.org/10.1038/NGEO437, 2009.
Deirmendjian, D.: Electromagnetic scattering on spherical polydispersions,
American Elsevier Publishing Company, Inc., 108 pp., New York, 1969.
Devasthale, A. and Thomas, M. A.: A global survey of aerosol-liquid water
cloud overlap based on four years of CALIPSO-CALIOP data, Atmos. Chem. Phys.,
11, 1143–1154, https://doi.org/10.5194/acp-11-1143-2011, 2011.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishcenko, M., Yang,
P., Eck, T. F., Volten, H., Munoz, O., Vehelmann, B., van der Zande, W. J.,
Leon, J. F., Sorokin, M., and Slutsker, I.: Application of spheroid models to
account for aerosol particle nonsphericity in remote sensing of desert dust,
J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
Eck, T. F., Holben, B. N., Reid, J. S., MukelabaiM. M., Piketh,S. J., Torres,
O., Jethva, H. T., Hyer, E. J., Ward,D. E., Dubovik, O., Sinyuk, A.,
Schafer,J. S., Giles, D. M., Sorokin, M., Smirnov, A., and Slutsker, I.: A
seasonal trend of single scattering albedo in southern African
biomass-burning particles: Implications for satellite products and estimates
of emissions for the world's largest biomass-burning source, J. Geophys.
Res.-Atmos., 118, 6414–6432, https://doi.org/10.1002/jgrd.50500, 2013.
Elvidge, C. D. and Baugh, K. E.: Survey of fires in Southeast Asia and India
during 1987, in Global Biomass Burning, vol. 2, edited by: Levine, J.,
663–670, MIT Press, Cambridge, MA, USA, 1996.
Eswaran, K., Satheesh, S. K., and Srinivasan, J.: Dependence of `critical
cloud fraction' on aerosol composition, Atmos. Sci. Lett., 16, 380–385,
https://doi.org/10.1002/asl2.571, 2015.
Feng, N. and Christopher, S. A.: Measurement-based estimates of direct
radiative effects of absorbing aerosols above clouds. J. Geophys. Res.-Atmos.,
120, 6908–6921, https://doi.org/10.1002/2015JD023252, 2015.
Garstang, M., Tyson, P. D., Swap, R., Edwards, M., Kallberg, P., and
Lindesay, J. A.: Horizontal and vertical transport of air over southern
Africa, J. Geophys. Res., 101, 23721–23736, 1996.
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and Celarier, E.:
Global distribution of UV- absorbing aerosols from Nimbus 7/TOMS data, J.
Geophys. Res., 102, 16911–16922, https://doi.org/10.1029/96JD03680,
1997.
Hu, Y., Vaughan, M., Liu, Z., Powell, K., and Rodier, S.: Retrieving optical depths
and lidar ratios for transparent layers above opaque water clouds from
CALIPSO lidar measurements, IEEE Geosci. Remote Sens. Lett., 4, 523–526,
https://doi.org/10.1109/LGRS.2007.901085, 2007.
Huang, J., Zhang, C., and Prospero, J. M.: African dust outbreaks: a
satellite perspective of temporal and spatial variability over the tropical
Atlantic Ocean, J. Geophys. Res., 115, D05202, https://doi.org/10.1029/2009JD012516,
2010.
Huebert, B., Bates, T., Russell, P., Seinfield, J., Wang, M., Uematsu, M.,
and Kim, Y. J.: An overview of ACE-Asia: Strategies for quantifying the
relationships between Asian aerosols and their climatic impacts, J. Geophys.
Res., 108, 8633, https://doi.org/10.1029/2003JD003550, 2003
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA,
1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Jethva, H. and Torres, O.: Satellite-based evidence of wavelength-dependent
aerosol absorption in biomass burning smoke inferred from Ozone Monitoring
Instrument, Atmos. Chem. Phys., 11, 10541–10551,
https://doi.org/10.5194/acp-11-10541-2011, 2011.
Jethva, H., Torres, O., and Ahn, C.: Global assessment of OMI aerosol
single-scattering albedo using ground- based AERONET inversion, J. Geophys.
Res.-Atmos., 119, 9020–9040, https://doi.org/10.1002/2014JD021672, 2014.
Jethva, H., Torres, O., Remer, L. A., and Bhartia, P. K.: A Color Ratio
Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of
Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS
Measurements, IEEE T. Geosci. Remote Sens., 51,
3862–3870, https://doi.org/10.1109/TGRS.2012.2230008, 2013.
Jethva, H., Torres, O., Waquet, F., Chand, D., and Hu, Y.: How do A-train
sensors intercompare in the retrieval of above-cloud aerosol optical depth? A
case study-based assessment, Geophys. Res. Lett., 41, 186–192,
https://doi.org/10.1002/2013GL058405, 2014.
Jethva, H.: Interactive comment on “Investigating the frequency and trends
in global above-cloud aerosol characteristics with CALIOP and OMI” by R.
Alfaro-Contreras et al., Atmos. Chem. Phys. Discuss., 15, C1488–C1496,
2015.
Jethva, H., Torres, O., Remer, L., Redemann, J., Livingston, J., Dunagan, S.,
Shinozuka, Y., Kacenelenbogen, M., Rosenheimer, M. S., and Spurr, R.:
Validating MODIS above-cloud aerosol optical depth retrieved from “color
ratio” algorithm using direct measurements made by NASA's airborne AATS and
4STAR sensors, Atmos. Meas. Tech., 9, 5053–5062, https://doi.org/10.5194/amt-9-5053-2016, 2016.
Liu, H., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., and Sachse,
G. W.: Transport pathways for Asian pollution outflow over the Pacific:
Interannual and seasonal variations, J. Geophys. Res., 108, 8786,
https://doi.org/10.1029/2002JD003102, 2003.
Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., and Fan, S.:
Dust transport and deposition observed from the Terra-Moderate Resolution
Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean, J.
Geophys. Res., 110, D10S12, https://doi.org/10.1029/2003JD004436, 2005.
Keil, A. and Haywood, J. M.: Solar radiative forcing by biomass burning
aerosol particles during SAFARI2000: A case study based on measured aerosol
and cloud properties, J. Geophys. Res., 108, 8467,
https://doi.org/10.1029/2002JD002315, 2003.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral
dependence of light absorption by aerosols is affected by organic carbon, J.
Geophys. Res., 109, D21208, https://doi.org/10.1029/2004JD004999, 2004.
Lu, Z., Liu, X., Zhang, Z., Zhao, C., Meyer, K. Rajapakshe, C., Wu, C., Yang,
Z., and Penner, J. E.: Biomass smoke from southern Africa can significantly
enhance the brightness of stratocumulus over the southeastern Atlantic Ocean,
P. Natl. Acad. Sci., 115, 2924–2929, https://doi.org/10.1073/pnas.1713703115, 2018.
Meyer, K., Platnick, S., Oreopoulos, L., and Lee, D.: Estimating the direct
radiative effect of absorbing aerosols overlying marine boundary layer clouds
in the southeast Atlantic using MODIS and CALIOP, J. Geophys. Res.-Atmos.,
118, 4801–4815, https://doi.org/10.1002/jgrd.50449, 2013.
Meyer, K., Platnick, S., and Zhang, Z.: Simultaneously inferring above-cloud
absorbing aerosol optical thickness and underlying liquid phase cloud optical
and microphysical properties using MODIS, J. Geophys. Res.-Atmos., 120,
5524–5547, https://doi.org/10.1002/2015JD023128, 2015.
Min, M and Zhang, Z.: On the influence of cloud fraction diurnal cycle and
sub-grid cloud optical thickness variability on all-sky direct aerosol
radiative forcing, J. Quant. Spectroscopy and Rad. Trans., 142, 25–36,
https://doi.org/10.1016/j.jqsrt.2014.03.014, 2014.
Moorthy, K. K., Babu, S. S., and Satheesh, S. K.: Aerosol Characteristics and
Radiative Impacts over the Arabian Sea during the Intermonsoon Season:
Results from ARMEX Field Campaign, J. Atmos. Sci., 62, 192–206,
https://doi.org/10.1175/JAS-3378.1, 2005.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:
Environmental Characterization Of Global Sources Of Atmospheric Soil Dust
Identified With The Nimbus 7 Total Ozone Mapping Spectrometer (TOMS)
Absorbing Aerosol Product, Rev. Geophys., 40, 1002,
https://doi.org/10.1029/2000rg000095, 2002.
Satheesh, S., Krishna Moorthy, K., Kaufman, Y., and Takemura, T.: Aerosol
optical depth, physical properties and radiative forcing over the Arabian
Sea, Meteorol. Atmos. Phys., 91, 45–62, https://doi.org/10.1007/s00703-004-0097-4,
2006.
Sayer A. M., Hsu, N. C., Bettenhausen, C., Lee, J., Redemann, J., Schmid, B.,
and Shinozuka, Y.: Extending “Deep Blue” aerosol retrieval coverage to
cases of absorbing aerosols above clouds: Sensitivity analysis and first case
studies, J. Geophys. Res.-Atmos., 121, 4830–4854,
https://doi.org/10.1002/2015JD024729, 2016
Schenkeveld, V. M. E., Jaross, G., Marchenko, S., Haffner, D., Kleipool, Q.
L., Rozemeijer, N. C., Veefkind, J. P., and Levelt, P. F.: In-flight
performance of the Ozone Monitoring Instrument, Atmos. Meas. Tech., 10,
1957–1986, https://doi.org/10.5194/amt-10-1957-2017, 2017.
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T.,
Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A.,
Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G.,
Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura,
T.: Radiative forcing by aerosols as derived from the AeroCom present-day and
pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246,
https://doi.org/10.5194/acp-6-5225-2006, 2006.
Sinha, P., Jaeglé, L., Hobbs, P. V., and Liang, Q.: Transport of biomass
burning emissions from southern Africa, J. Geophys. Res., 109, D20204,
https://doi.org/10.1029/2004JD005044, 2004.
Spurr, R. J. D.: VLIDORT: A linearized pseudo-spherical vector discrete
ordinate radiative transfer code for forward model and retrieval studies in
multilayer multiple scattering media, J. Quant. Spectrosc. Ra., 102,
316–342, https://doi.org/10.1016/j.jqsrt.2006.05.005, 2006.
Streets, D. G., Yarber, K. F., Woo, J.-H., and Carmichael, G. R.: Biomass
burning in Asia: Annual and seasonal estimates and atmospheric emissions,
Global Biogeochem. Cy., 17, 1099, https://doi.org/10.1029/2003GB002040, 2003.
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J.:
Derivation of aerosol properties from satellite measurements of backscattered
ultraviolet radiation: Theoretical basis, J. Geophys. Res., 103,
17099–17110, https://doi.org/10.1029/98JD00900, 1998.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.
K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products from Ozone
Monitoring Instrument observations: An overview, J. Geophys. Res., 112,
D24S47, https://doi.org/10.1029/2007JD008809, 2007.
Torres, O., Jethva, H., and Bhartia, P. K.: Retrieval of Aerosol Optical
Depth above Clouds from OMI Observations: Sensitivity Analysis and Case
Studies, J. Atmos. Sci., 69, 1037–1053, https://doi.org/10.1175/JAS- D-11-0130.1, 2012.
Torres, O., Ahn, C., and Chen, Z.: Improvements to the OMI near-UV aerosol
algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 6,
3257–3270, https://doi.org/10.5194/amt-6-3257-2013, 2013.
Torres, O., Bhartia, P. K., Jethva, H., and Ahn, C.: Impact of the ozone
monitoring instrument row anomaly on the long-term record of aerosol
products, Atmos. Meas. Tech., 11, 2701–2715,
https://doi.org/10.5194/amt-11-2701-2018, 2018.
Wagner, R., Ajtai, T., Kandler, K., Lieke, K., Linke, C., Müller, T.,
Schnaiter, M., and Vragel, M.: Complex refractive indices of Saharan dust
samples at visible and near UV wavelengths: a laboratory study, Atmos. Chem.
Phys., 12, 2491–2512, https://doi.org/10.5194/acp-12-2491-2012, 2012.
Waquet, F., Riedi, J., Labonnote, L. C., Goloub, P., Cairns, B., Deuzé,
J.-L., and Tanré D.: Aerosol remote sensing over clouds using A-train
observations, J. Atmos. Sci., 66, 2468–2480, https://doi.org/10.1175/2009JAS3026.1, 2009.
Waquet, F., Cornet, C., Deuzé, J.-L., Dubovik, O., Ducos, F., Goloub, P.,
Herman, M., Lapyonok, T., Labonnote, L. C., Riedi, J., Tanré, D.,
Thieuleux, F., and Vanbauce, C.: Retrieval of aerosol microphysical and
optical properties above liquid clouds from POLDER/PARASOL polarization
measurements, Atmos. Meas. Tech., 6, 991–1016,
https://doi.org/10.5194/amt-6-991-2013, 2013.
Wilcox, E. M.: Direct and semi-direct radiative forcing of smoke aerosols
over clouds, Atmos. Chem. Phys., 12, 139–149,
https://doi.org/10.5194/acp-12-139-2012, 2012.
Yu, H., Chin, M., Bian, H., Yuan, T., Prospero, J. M., Omar, A. H., Remer, L.
A., Winker, D. M., Yang, Y., Zhang, Y., and Zhang, Z.: Quantification of
trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO
lidar measurements, Remote Sens. Environ., 159, 232–249, https://doi.org/10.1016/j.rse.2014.12.010, 2015.
Zhang, Z., Meyer, K., Yu, H., Platnick, S., Colarco, P., Liu, Z., and
Oreopoulos, L.: Shortwave direct radiative effects of above-cloud aerosols
over global oceans derived from 8 years of CALIOP and MODIS observations,
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016,
2016.
Short summary
We introduce a new global satellite product of aerosol amounts lofted above the clouds from near-UV observations of Aura/OMI. The global decadal record derived from the product has revealed unprecedented quantitative information of light-absorbing aerosols above the cloud over several oceanic and continental regions of the world. The new dataset characterizing the optical properties of aerosol-cloud overlap will help quantify their radiative effects and representation in climate models.
We introduce a new global satellite product of aerosol amounts lofted above the clouds from...