Articles | Volume 11, issue 11
https://doi.org/10.5194/amt-11-6203-2018
https://doi.org/10.5194/amt-11-6203-2018
Research article
 | 
19 Nov 2018
Research article |  | 19 Nov 2018

Machine learning for improved data analysis of biological aerosol using the WIBS

Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher

Related authors

Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer
Simon Ruske, David O. Topping, Virginia E. Foot, Paul H. Kaye, Warren R. Stanley, Ian Crawford, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 10, 695–708, https://doi.org/10.5194/amt-10-695-2017,https://doi.org/10.5194/amt-10-695-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Estimating errors in vehicle secondary aerosol production factors due to oxidation flow reactor response time
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
Atmos. Meas. Tech., 17, 3219–3236, https://doi.org/10.5194/amt-17-3219-2024,https://doi.org/10.5194/amt-17-3219-2024, 2024
Short summary
Quantifying functional group compositions of household fuel-burning emissions
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024,https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
A new software toolkit for optical apportionment of carbonaceous aerosol
Tommaso Isolabella, Vera Bernardoni, Alessandro Bigi, Marco Brunoldi, Federico Mazzei, Franco Parodi, Paolo Prati, Virginia Vernocchi, and Dario Massabò
Atmos. Meas. Tech., 17, 1363–1373, https://doi.org/10.5194/amt-17-1363-2024,https://doi.org/10.5194/amt-17-1363-2024, 2024
Short summary
Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models
Radhika A. Chipade and Mehul R. Pandya
Atmos. Meas. Tech., 16, 5443–5459, https://doi.org/10.5194/amt-16-5443-2023,https://doi.org/10.5194/amt-16-5443-2023, 2023
Short summary
An extraction method for nitrogen isotope measurement of ammonium in a low-concentration environment
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023,https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary

Cited articles

Breiman, L.: Bagging predictors, Machine Learning, 24, 123–140, 1996. a
Breiman, L.: Random forests, Machine Learning, 45, 5–32, 2001. a
Caliński, T. and Harabasz, J.: A dendrite method for cluster analysis, Commun. Stat. A-Theor., 3, 1–27, 1974. a, b
Carrera, M., Zandomeni, R., Fitzgibbon, J., and Sagripanti, J.-L.: Difference between the spore sizes of Bacillus anthracis and other Bacillus species, J. Appl. Microbiol., 102, 303–312, 2007. a
Crawford, I., Bower, K. N., Choularton, T. W., Dearden, C., Crosier, J., Westbrook, C., Capes, G., Coe, H., Connolly, P. J., Dorsey, J. R., Gallagher, M. W., Williams, P., Trembath, J., Cui, Z., and Blyth, A.: Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling, Atmos. Chem. Phys., 12, 4963–4985, https://doi.org/10.5194/acp-12-4963-2012, 2012. a
Download
Short summary
Pollen, bacteria and fungal spores are common in the environment, can have very important implications for public health and may influence the weather. Biological sensors potentially could be used to monitor quantities of these types of particles. However, it is important to transform the measurements from these instruments into counts of these biological particles. The paper tests a variety of approaches for achieving this aim on data collected in a laboratory.