Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-633-2018
https://doi.org/10.5194/amt-11-633-2018
Research article
 | 
01 Feb 2018
Research article |  | 01 Feb 2018

Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record

Karl-Göran Karlsson and Nina Håkansson

Related authors

Extension of AVHRR-based climate data records: Exploring ways to simulate AVHRR radiances from Suomi-NPP VIIRS data
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
EGUsphere, https://doi.org/10.5194/egusphere-2025-379,https://doi.org/10.5194/egusphere-2025-379, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Leveraging the satellite-based climate data record CLARA-A3 to understand trends and climate regimes relevant for solar energy applications over Europe
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1805,https://doi.org/10.5194/egusphere-2024-1805, 2024
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
CLAAS-3: the third edition of the CM SAF cloud data record based on SEVIRI observations
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023,https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023,https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Cloud-probability-based estimation of black-sky surface albedo from AVHRR data
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022,https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Consideration of the cloud motion for aircraft-based stereographically derived cloud geometry and cloud top heights
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024,https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024,https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2711,https://doi.org/10.5194/egusphere-2024-2711, 2024
Short summary
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2198,https://doi.org/10.5194/egusphere-2024-2198, 2024
Short summary

Cited articles

Barja, B. and Antuña, J. C.: The effect of optically thin cirrus clouds on solar radiation in Camagüey, Cuba, Atmos. Chem. Phys., 11, 8625–8634, https://doi.org/10.5194/acp-11-8625-2011, 2011.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: Satellite simulation software for model assessment, B. Am. Meteor. Soc., 2011, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Charlson, R. J., Ackermann, A. S., Bender, F. A.-M., Anderson, T. L., and Liu, Z.: On the climate forcing consequences of the albedo continuum between cloudy and clear air, Tellus, 59B, 715–727, https://doi.org/10.1111/j.1600-0889.2007.00297.x, 2007.
CM SAF 1: Validation Report – CM SAF Cloud, Albedo, Radiation data record, AVHRR-based, Edition 2 (CLARA-A2) – Cloud Products, SAF/CM/DWD/VAL/GAC/CLD version 2.3, https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002, 2017.
CM SAF 2: Algorithm Theoretical Basis Document – CM SAF Cloud, Albedo, Radiation data record, AVHRR-based, Edition 2 (CLARA-A2) – Cloud Fraction, SAF/CM/DWD/ATBD/CMA_AVHRR version 2.0, https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002, 2017.
Download
Short summary
Data from the high-sensitivity CALIOP cloud lidar onboard the CALIPSO satellite have been used to evaluate cloud amounts estimated from satellite imagery and, specifically, from the climate data record CLARA-A2. The main purpose has been to study the limit of how thin clouds that can be detected efficiently (i.e., detected at the 50 % level) in CLARA-A2 data and how this limit varies globally. The study revealed very large geographical differences in the cloud detection efficiency.
Share