Articles | Volume 12, issue 8
https://doi.org/10.5194/amt-12-4309-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-4309-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements
Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
Pedro Miguel Romero-Campos
Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
Natalia Kouremeti
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD-WRC), Davos, Switzerland
Stelios Kazadzis
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD-WRC), Davos, Switzerland
Petri Räisänen
Finnish Meteorological Institute, Helsinki, Finland
Rosa Delia García
Atmospheric Optics Group, Valladolid University, Valladolid, Spain
Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
Africa Barreto
Cimel Electronique, Paris, France
Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
Atmospheric Optics Group, Valladolid University, Valladolid, Spain
Carmen Guirado-Fuentes
Atmospheric Optics Group, Valladolid University, Valladolid, Spain
Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
Ramón Ramos
Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
Carlos Toledano
Atmospheric Optics Group, Valladolid University, Valladolid, Spain
Fernando Almansa
Cimel Electronique, Paris, France
Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
Atmospheric Optics Group, Valladolid University, Valladolid, Spain
Julian Gröbner
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD-WRC), Davos, Switzerland
Related authors
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022, https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out in this paper using long-term ground AERONET photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m height on the island of Tenerife. This is a region that can be considered a key location to study the seasonal dependence of dust transport from the Sahel-Sahara.
Enza Di Tomaso, Jerónimo Escribano, Sara Basart, Paul Ginoux, Francesca Macchia, Francesca Barnaba, Francesco Benincasa, Pierre-Antoine Bretonnière, Arnau Buñuel, Miguel Castrillo, Emilio Cuevas, Paola Formenti, María Gonçalves, Oriol Jorba, Martina Klose, Lucia Mona, Gilbert Montané Pinto, Michail Mytilinaios, Vincenzo Obiso, Miriam Olid, Nick Schutgens, Athanasios Votsis, Ernest Werner, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022, https://doi.org/10.5194/essd-14-2785-2022, 2022
Short summary
Short summary
MONARCH reanalysis of desert dust aerosols extends the existing observation-based information for mineral dust monitoring by providing 3-hourly upper-air, surface and total column key geophysical variables of the dust cycle over Northern Africa, the Middle East and Europe, at a 0.1° horizontal resolution in a rotated grid, from 2007 to 2016. This work provides evidence of the high accuracy of this data set and its suitability for air quality and health and climate service applications.
África Barreto, Emilio Cuevas, Rosa D. García, Judit Carrillo, Joseph M. Prospero, Luka Ilić, Sara Basart, Alberto J. Berjón, Carlos L. Marrero, Yballa Hernández, Juan José Bustos, Slobodan Ničković, and Margarita Yela
Atmos. Chem. Phys., 22, 739–763, https://doi.org/10.5194/acp-22-739-2022, https://doi.org/10.5194/acp-22-739-2022, 2022
Short summary
Short summary
In this study, we categorise the different patterns of dust transport over the subtropical North Atlantic and for the first time robustly describe the dust vertical distribution in the Saharan Air Layer (SAL) over this region. Our results revealed the important role that both dust and water vapour play in the radiative balance in summer and winter and confirm the role of the SAL in the formation of mid-level clouds as a result of the activation of heterogeneous ice nucleation processes.
Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, André Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, and Carlos Torres
Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, https://doi.org/10.5194/acp-22-295-2022, 2022
Short summary
Short summary
We use different methane ground- and space-based remote sensing data sets for investigating the emission strength of three waste disposal sites close to Madrid. We present a method that uses wind-assigned anomalies for deriving emission strengths from satellite data and estimate their uncertainty to 9–14 %. The emission strengths estimated from the remote sensing data sets are significantly larger than the values published in the official register.
Omaira E. García, Matthias Schneider, Eliezer Sepúlveda, Frank Hase, Thomas Blumenstock, Emilio Cuevas, Ramón Ramos, Jochen Gross, Sabine Barthlott, Amelie N. Röhling, Esther Sanromá, Yenny González, Ángel J. Gómez-Peláez, Mónica Navarro-Comas, Olga Puentedura, Margarita Yela, Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Enrique Reyes, Rosa D. García, Pedro P. Rivas, Pedro M. Romero-Campos, Carlos Torres, Natalia Prats, Miguel Hernández, and César López
Atmos. Chem. Phys., 21, 15519–15554, https://doi.org/10.5194/acp-21-15519-2021, https://doi.org/10.5194/acp-21-15519-2021, 2021
Short summary
Short summary
This paper analyses the potential of ground-based Fourier transform infrared (FTIR) solar observations to monitor atmospheric gaseous composition and investigate multiple climate processes. To this end, this work reviews the FTIR programme of one of most relevant ground-based FTIR stations at a global scale, the subtropical Izaña Observatory (IZO, Spain), going over its history during its first 20 years of operation (1999–2018) and exploring its great value for long-term climate research.
Rosa Delia García-Cabrera, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Mario Pó, Ramón Ramos, and Kees Hoogendijk
Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, https://doi.org/10.5194/amt-13-2601-2020, 2020
Short summary
Short summary
Spectral direct UV–visible normal solar irradiance, measured with an EKO MS-711 grating spectroradiometer at the Izaña Atmospheric Observatory (Spain), has been used to determine aerosol optical depth (AOD) at several wavelengths, and has been compared to synchronous AOD measurements from a reference AERONET (Aerosol RObotic NETwork) Cimel sun photometer.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Huizheng Che, Ke Gui, Xiangao Xia, Yaqiang Wang, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Hong Wang, Yu Zheng, Hujia Zhao, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, https://doi.org/10.5194/acp-19-10497-2019, 2019
Short summary
Short summary
A comprehensive assessment of the global and regional AOD trends over the past 37 years (1980–2016) is presented. AOD observations from both AERONET and CARSNET were used for the first time to assess the performance of the MERRA-2 AOD dataset on a global scale. Based on statistical models, we found the meteorological parameters explained a larger proportion of the regional AOD variability (20.4 %–2.8 %) when compared with emission factors (0 %%–56 %).
Alberto Berjón, Africa Barreto, Yballa Hernández, Margarita Yela, Carlos Toledano, and Emilio Cuevas
Atmos. Chem. Phys., 19, 6331–6349, https://doi.org/10.5194/acp-19-6331-2019, https://doi.org/10.5194/acp-19-6331-2019, 2019
Short summary
Short summary
Lidar ratio is a key parameter for the aerosol characterization using satellite remote-sensing platforms as CALIOP. However, there are important differences in the values reported in the bibliography. The geographic characteristics of the IARC observatories location and a 10-year data series allow us to make a unique study of the mineral dust in the Saharan air layer. We report lidar ratios at 523 nm of 49 ± 6 sr and 50 ± 11 sr obtained by two different methods.
Angel J. Gomez-Pelaez, Ramon Ramos, Emilio Cuevas, Vanessa Gomez-Trueba, and Enrique Reyes
Atmos. Meas. Tech., 12, 2043–2066, https://doi.org/10.5194/amt-12-2043-2019, https://doi.org/10.5194/amt-12-2043-2019, 2019
Short summary
Short summary
In 2015, a CO2/CH4/CO CRDS was installed at Izaña station (Tenerife). We present the acceptance tests, the processing of raw data applied, the ambient measurements performed, and their comparison with other continuous in situ measurements. We determine linear relationships between flow rate, CRDS inlet pressure, and CRDS outlet valve aperture; a slight CO2 correction that takes into account changes in the inlet pressure/flow rate and its origin; and the H2O correction for CO in a novel way.
Rosa Delia García, Emilio Cuevas, Ramón Ramos, Victoria Eugenia Cachorro, Alberto Redondas, and José A. Moreno-Ruiz
Geosci. Instrum. Method. Data Syst., 8, 77–96, https://doi.org/10.5194/gi-8-77-2019, https://doi.org/10.5194/gi-8-77-2019, 2019
Short summary
Short summary
IZA is a high-mountain station located in Tenerife (Canary Islands, Spain, at 28.3º N, 16.5º W; 2373 m a.s.l.) and is a representative site of the subtropical North Atlantic free troposphere. It contributes with basic-BSRN radiation measurements, such as, global shortwave radiation, direct radiation, diffuse radiation and longwave downward radiation and extended-BSRN measurements, including ultraviolet ranges, shortwave upward radiation and longwave upward radiation.
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Rosa Delia García, Africa Barreto, Emilio Cuevas, Julian Gröbner, Omaira Elena García, Angel Gómez-Peláez, Pedro Miguel Romero-Campos, Alberto Redondas, Victoria Eugenia Cachorro, and Ramon Ramos
Geosci. Model Dev., 11, 2139–2152, https://doi.org/10.5194/gmd-11-2139-2018, https://doi.org/10.5194/gmd-11-2139-2018, 2018
Short summary
Short summary
A 7-year comparison study between measured and simulated longwave
downward radiation under cloud-free conditions has been performed at BSRN Izaña. Results show an excellent agreement with a mean bias (simulated–measured) less than 1.1 % and RMSE less than 1 %, which are within the instrumental error (2 %).
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
África Barreto, Roberto Román, Emilio Cuevas, Alberto J. Berjón, A. Fernando Almansa, Carlos Toledano, Ramiro González, Yballa Hernández, Luc Blarel, Philippe Goloub, Carmen Guirado, and Margarita Yela
Atmos. Meas. Tech., 10, 3007–3019, https://doi.org/10.5194/amt-10-3007-2017, https://doi.org/10.5194/amt-10-3007-2017, 2017
Short summary
Short summary
This work involves a first analysis of the systematic errors observed in the AOD retrieved at nighttime using the Sun–sky–lunar CE318-T photometer. In this respect, this paper is a first attempt to correct the AOD uncertainties that currently affect the lunar photometry by means of an empirical regression model. We have detected and corrected an important bias correlated to the Moon's phase and zenith angles, especially at longer wavelength channels.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Rosa Delia García, Emilio Cuevas, Omaira Elena García, Ramón Ramos, Pedro Miguel Romero-Campos, Fernado de Ory, Victoria Eugenia Cachorro, and Angel de Frutos
Atmos. Meas. Tech., 10, 731–743, https://doi.org/10.5194/amt-10-731-2017, https://doi.org/10.5194/amt-10-731-2017, 2017
Short summary
Short summary
A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.
A. Fernando Almansa, Emilio Cuevas, Benjamín Torres, África Barreto, Rosa D. García, Victoria E. Cachorro, Ángel M. de Frutos, César López, and Ramón Ramos
Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017, https://doi.org/10.5194/amt-10-565-2017, 2017
Short summary
Short summary
This study presents a new zenith-looking narrow-band radiometer-based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. The ZEN system comprises a robust and automated radiometer (ZEN-R41), and a lookup table methodology for AOD retrieval (ZEN-LUT). Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.
E. Cuevas, Á. J. Gómez-Peláez, S. Rodríguez, E. Terradellas, S. Basart, R. D. García, O. E. García, and S. Alonso-Pérez
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-287, https://doi.org/10.5194/acp-2016-287, 2016
Revised manuscript not accepted
Short summary
Short summary
We revise the North African Dipole Intensity (NAFDI) index, and explain and quantify its relationship with the Saharan Heat Low (SHL) and mid-latitude Rossby waves. An analysis of aerosol optical depth anomalies over Northern Africa is performed for each phase of NAFDI/SHL. A comprehensive top-down conceptual model is introduced to explain the relationships between the NAFDI, the SHL and the mid-latitude Rossby waves and their impact in dust mobilization and transport in Northern Africa.
N. Huneeus, S. Basart, S. Fiedler, J.-J. Morcrette, A. Benedetti, J. Mulcahy, E. Terradellas, C. Pérez García-Pando, G. Pejanovic, S. Nickovic, P. Arsenovic, M. Schulz, E. Cuevas, J. M. Baldasano, J. Pey, S. Remy, and B. Cvetkovic
Atmos. Chem. Phys., 16, 4967–4986, https://doi.org/10.5194/acp-16-4967-2016, https://doi.org/10.5194/acp-16-4967-2016, 2016
Short summary
Short summary
Five dust models are evaluated regarding their performance in predicting an intense Saharan dust outbreak affecting western and northern Europe (NE). Models predict the onset and evolution of the event for all analysed lead times. On average, differences among the models are larger than differences in lead times for each model. The models tend to underestimate the long-range transport towards NE. This is partly due to difficulties in simulating the vertical dust distribution and horizontal wind.
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
África Barreto, Emilio Cuevas, María-José Granados-Muñoz, Lucas Alados-Arboledas, Pedro M. Romero, Julian Gröbner, Natalia Kouremeti, Antonio F. Almansa, Tom Stone, Carlos Toledano, Roberto Román, Mikhail Sorokin, Brent Holben, Marius Canini, and Margarita Yela
Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, https://doi.org/10.5194/amt-9-631-2016, 2016
Short summary
Short summary
This paper presents the new photometer CE318-T, able to perform daytime and
night-time photometric measurements using the sun and the moon as light
sources. This new device permits a complete cycle of diurnal aerosol and water vapour measurements to be extracted, valuable to enhance atmospheric monitoring. We have also highlighted the ability of this new device to capture short-term atmospheric variations, critical for climate studies.
R. D. García, O. E. García, E. Cuevas, V. E. Cachorro, A. Barreto, C. Guirado-Fuentes, N. Kouremeti, J. J. Bustos, P. M. Romero-Campos, and A. M. de Frutos
Atmos. Meas. Tech., 9, 53–62, https://doi.org/10.5194/amt-9-53-2016, https://doi.org/10.5194/amt-9-53-2016, 2016
Short summary
Short summary
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a precision filter radiometer (PFR) between 2003 and 2013.
H. Eskes, V. Huijnen, A. Arola, A. Benedictow, A.-M. Blechschmidt, E. Botek, O. Boucher, I. Bouarar, S. Chabrillat, E. Cuevas, R. Engelen, H. Flentje, A. Gaudel, J. Griesfeller, L. Jones, J. Kapsomenakis, E. Katragkou, S. Kinne, B. Langerock, M. Razinger, A. Richter, M. Schultz, M. Schulz, N. Sudarchikova, V. Thouret, M. Vrekoussis, A. Wagner, and C. Zerefos
Geosci. Model Dev., 8, 3523–3543, https://doi.org/10.5194/gmd-8-3523-2015, https://doi.org/10.5194/gmd-8-3523-2015, 2015
Short summary
Short summary
The MACC project is preparing the operational atmosphere service of the European Copernicus Programme, and uses data assimilation to combine atmospheric models with available observations. Our paper provides an overview of the aerosol and trace gas validation activity of MACC. Topics are the validation requirements, the measurement data, the assimilation systems, the upgrade procedure, operational aspects and the scoring methods. A summary is provided of recent results, including special events.
M. Gil-Ojeda, M. Navarro-Comas, L. Gómez-Martín, J. A. Adame, A. Saiz-Lopez, C. A. Cuevas, Y. González, O. Puentedura, E. Cuevas, J.-F. Lamarque, D. Kinninson, and S. Tilmes
Atmos. Chem. Phys., 15, 10567–10579, https://doi.org/10.5194/acp-15-10567-2015, https://doi.org/10.5194/acp-15-10567-2015, 2015
Short summary
Short summary
The NO2 seasonal evolution in the free troposphere (FT) has been established for the first time, based on a remote sensing technique (MAXDOAS) and thus avoiding the problems of the local pollution of in situ instruments. A clear seasonality has been found, with background levels of 20-40pptv. Evidence has been found on fast, direct injection of surface air into the free troposphere. This result might have implications on the FT distribution of halogens and other species with marine sources.
S. Rodríguez, E. Cuevas, J. M. Prospero, A. Alastuey, X. Querol, J. López-Solano, M. I. García, and S. Alonso-Pérez
Atmos. Chem. Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, https://doi.org/10.5194/acp-15-7471-2015, 2015
Short summary
Short summary
Long-term 28-year variability of Saharan dust export to the Atlantic is correlated with large-scale meteorology in North Africa, particularly with the intensity of the Saharan high to tropical low dipole-like pattern, the so-called North African Dipole. Variability in the dipole intensity is connected with winds, monsoon rain band and latitudinal shifts of the Saharan air layer. Variability in the dipole intensity suggests connections with ENSO and the Sahel drought.
E. Cuevas, C. Camino, A. Benedetti, S. Basart, E. Terradellas, J. M. Baldasano, J. J. Morcrette, B. Marticorena, P. Goloub, A. Mortier, A. Berjón, Y. Hernández, M. Gil-Ojeda, and M. Schulz
Atmos. Chem. Phys., 15, 3991–4024, https://doi.org/10.5194/acp-15-3991-2015, https://doi.org/10.5194/acp-15-3991-2015, 2015
Short summary
Short summary
Atmospheric mineral dust from a MACC-II short reanalysis (2007-2008) has been evaluated over northern Africa and the Middle East using satellite aerosol products, AERONET data, in situ PM10 concentrations, and extinction vertical profiles. The MACC-II AOD spatial and temporal variability shows good agreement with satellite sensors and AERONET. We find a good agreement in averaged extinction vertical profiles between MACC-II and lidars. MACC correctly reproduces daily to interannual PM10.
A. Barreto, E. Cuevas, P. Pallé, P. M. Romero, C. Guirado, C. J. Wehrli, and F. Almansa
Atmos. Meas. Tech., 7, 4103–4116, https://doi.org/10.5194/amt-7-4103-2014, https://doi.org/10.5194/amt-7-4103-2014, 2014
C. Guirado, E. Cuevas, V. E. Cachorro, C. Toledano, S. Alonso-Pérez, J. J. Bustos, S. Basart, P. M. Romero, C. Camino, M. Mimouni, L. Zeudmi, P. Goloub, J. M. Baldasano, and A. M. de Frutos
Atmos. Chem. Phys., 14, 11753–11773, https://doi.org/10.5194/acp-14-11753-2014, https://doi.org/10.5194/acp-14-11753-2014, 2014
Short summary
Short summary
Tamanrasset, in the heart of the Sahara, is a key site for aerosol research. The analysis of more than 2 years (2006-2009) of AERONET and KCICLO-corrected sun photometer measurements shows that atmospheric aerosols at Tamanrasset are modulated by the Convective Boundary Layer leading to pure Saharan dust conditions (April-September) and very clear sky conditions (November-February). Dust potential sources and anthropogenic fine aerosols arriving at Tamanrasset are also identified.
L. Gomez, M. Navarro-Comas, O. Puentedura, Y. Gonzalez, E. Cuevas, and M. Gil-Ojeda
Atmos. Meas. Tech., 7, 3373–3386, https://doi.org/10.5194/amt-7-3373-2014, https://doi.org/10.5194/amt-7-3373-2014, 2014
R. D. García, E. Cuevas, O. E. García, V. E. Cachorro, P. Pallé, J. J. Bustos, P. M. Romero-Campos, and A. M. de Frutos
Atmos. Meas. Tech., 7, 3139–3150, https://doi.org/10.5194/amt-7-3139-2014, https://doi.org/10.5194/amt-7-3139-2014, 2014
H. Che, X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, E. Cuevas-Agulló, L. Blarel, H. Wang, H. Zhao, X. Zhang, Y. Wang, J. Sun, R. Tao, X. Zhang, and G. Shi
Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, https://doi.org/10.5194/acp-14-2125-2014, 2014
A. Barreto, E. Cuevas, B. Damiri, P. M. Romero, and F. Almansa
Atmos. Meas. Tech., 6, 2159–2167, https://doi.org/10.5194/amt-6-2159-2013, https://doi.org/10.5194/amt-6-2159-2013, 2013
A. Barreto, E. Cuevas, B. Damiri, C. Guirado, T. Berkoff, A. J. Berjón, Y. Hernández, F. Almansa, and M. Gil
Atmos. Meas. Tech., 6, 585–598, https://doi.org/10.5194/amt-6-585-2013, https://doi.org/10.5194/amt-6-585-2013, 2013
E. Cuevas, Y. González, S. Rodríguez, J. C. Guerra, A. J. Gómez-Peláez, S. Alonso-Pérez, J. Bustos, and C. Milford
Atmos. Chem. Phys., 13, 1973–1998, https://doi.org/10.5194/acp-13-1973-2013, https://doi.org/10.5194/acp-13-1973-2013, 2013
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3713, https://doi.org/10.5194/egusphere-2024-3713, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We study the impacts of globally increasing sea surface temperatures and sea-ice loss on the atmosphere in wintertime. In future climates, the jet stream shifts southward over the North Atlantic and extends further over Europe. Increasing sea surface temperatures drive these changes. The region of high activity of low-pressure systems is projected to move east towards Europe. Future increasing sea surface temperatures and sea-ice loss contribute with similar magnitude to the eastward shift.
Ilias Fountoulakis, Kyriaki Papachristopoulou, Stelios Kazadzis, Gregor Hülsen, Julian Gröbner, Ioannis-Panagiotis Raptis, Dimitra Kouklaki, Akriti Masoom, Charalampos Kontoes, and Christos S. Zerefos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2964, https://doi.org/10.5194/egusphere-2024-2964, 2024
Short summary
Short summary
The UVIOS2 model has been evaluated at Davos, Switzerland during the UVCIII campaign. The accuracy in the modelled UV indices has been assessed for different combinations of model inputs. A good overall agreement between UVIOS2 and the world reference spectroradiometer QASUME was found (average ratio of ~1 between the modelled and measured UV index), although the variability in the ratio can be large under cloudy conditions.
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman
EGUsphere, https://doi.org/10.5194/egusphere-2024-3458, https://doi.org/10.5194/egusphere-2024-3458, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The effects on polar climates of warmer sea surface temperatures and decreasing sea ice cover have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice.
Yenny González, María F. Sánchez-Barrero, Ioana Popovici, África Barreto, Stephane Victori, Ellsworth J. Welton, Rosa D. García, Pablo G. Sicilia, Fernando A. Almansa, Carlos Torres, and Philippe Goloub
EGUsphere, https://doi.org/10.5194/egusphere-2024-2727, https://doi.org/10.5194/egusphere-2024-2727, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We characterize the optical properties of various aerosols using a compact dual-wavelength depolarization lidar (CIMEL CE376) at 532 and 808 nm. Through a modified two-wavelength Klett inversion method, we assess the vertical distribution and temporal evolution of Saharan dust, volcanic aerosols, and wildfire smoke in the subtropical North Atlantic from August 2021 to August 2023. The study confirms the CE376 lidar's effectiveness in monitoring and characterizing atmospheric aerosols over time.
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, Stephan Nyeki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 6085–6105, https://doi.org/10.5194/amt-17-6085-2024, https://doi.org/10.5194/amt-17-6085-2024, 2024
Short summary
Short summary
Different sun photometer networks use different instruments, post-processing algorithms and calibration protocols for aerosol optical depth (AOD) retrieval. Such differences can affect the homogeneity and comparability of their measurements. In this study, we assess the homogeneity between the sun photometer networks GAW-PFR and SKYNET, analysing common measurements during three campaigns between 2017–2021, and investigate the main cause of the differences.
Akriti Masoom, Stelios Kazadzis, Masimo Valeri, Ioannis-Panagiotis Raptis, Gabrielle Brizzi, Kyriakoula Papachristopoulou, Francesca Barnaba, Stefano Casadio, Axel Kreuter, and Fabrizio Niro
Atmos. Meas. Tech., 17, 5525–5549, https://doi.org/10.5194/amt-17-5525-2024, https://doi.org/10.5194/amt-17-5525-2024, 2024
Short summary
Short summary
Aerosols, which have a wide impact on climate, radiative forcing, and human health, are widely represented by aerosol optical depth (AOD). AOD retrievals require Rayleigh scattering and atmospheric absorption (ozone, NO2, etc.) corrections. We analysed the NO2 (which has a high spatiotemporal variation) uncertainty impact on AOD retrievals using the synergy of co-located ground-based instruments with a long-term dataset at worldwide sites and found significant AOD over- or underestimations.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Pascal Hedelt, Jens Reichardt, Felix Lauermann, Benjamin Weiß, Nicolas Theys, Alberto Redondas, Africa Barreto, Omaira Garcia, and Diego Loyola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1710, https://doi.org/10.5194/egusphere-2024-1710, 2024
Short summary
Short summary
The 2021 volcanic eruption of Tajogaite on La Palma is investigated using ground-based and satellite measurements. In addition, the atmospheric transport of the volcanic cloud towards Europe isstudied in detail. The amount of SO2 released during the eruption as well as the height of the volcanic plume is in excellent agreement between the different measurements. Furthermore, volcanic aerosol microphysical properties could be retrieved using a new retrieval approach based on Lidar measurements.
Ilias Fountoulakis, Alexandra Tsekeri, Stelios Kazadzis, Vassilis Amiridis, Angelos Nersesian, Maria Tsichla, Emmanouil Proestakis, Antonis Gkikas, Kyriakoula Papachristopoulou, Vasileios Barlakas, Claudia Emde, and Bernhard Mayer
Atmos. Chem. Phys., 24, 4915–4948, https://doi.org/10.5194/acp-24-4915-2024, https://doi.org/10.5194/acp-24-4915-2024, 2024
Short summary
Short summary
In our study we provide an assessment, through a sensitivity study, of the limitations of models to calculate the dust direct radiative effect (DRE) due to the underrepresentation of its size, refractive index (RI), and shape. Our results indicate the necessity of including more realistic sizes and RIs for dust particles in dust models, in order to derive better estimations of the dust direct radiative effects.
Karl Voglmeier, Voltaire A. Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, and Wolfgang Steinbrecht
Atmos. Meas. Tech., 17, 2277–2294, https://doi.org/10.5194/amt-17-2277-2024, https://doi.org/10.5194/amt-17-2277-2024, 2024
Short summary
Short summary
Comparison between total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers generally reveals seasonally varying differences of a few percent. This study recommends a new TOC retrieval approach, which effectively eliminates these seasonally varying differences by applying new ozone absorption cross sections, appropriate slit functions for the Dobson instrument, and climatological values for the effective ozone temperature.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Kyriakoula Papachristopoulou, Ilias Fountoulakis, Alkiviadis F. Bais, Basil E. Psiloglou, Nikolaos Papadimitriou, Ioannis-Panagiotis Raptis, Andreas Kazantzidis, Charalampos Kontoes, Maria Hatzaki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 1851–1877, https://doi.org/10.5194/amt-17-1851-2024, https://doi.org/10.5194/amt-17-1851-2024, 2024
Short summary
Short summary
The upgraded systems SENSE2 and NextSENSE2 focus on improving the quality of solar nowcasting and forecasting. SENSE2 provides real-time estimates of solar irradiance across a wide region every 15 min. NextSENSE2 offers short-term forecasts of irradiance up to 3 h ahead. Evaluation with actual data showed that the instantaneous comparison yields the most discrepancies due to the uncertainties of cloud-related information and satellite versus ground-based spatial representativeness limitations.
Carlos Toledano, Sarah Taylor, África Barreto, Stefan Adriaensen, Alberto Berjón, Agnieszka Bialek, Ramiro González, Emma Woolliams, and Marc Bouvet
Atmos. Chem. Phys., 24, 3649–3671, https://doi.org/10.5194/acp-24-3649-2024, https://doi.org/10.5194/acp-24-3649-2024, 2024
Short summary
Short summary
The calibration of Earth observation sensors is key to ensuring the continuity of long-term and global climate records. Satellite sensors, calibrated prior to launch, are susceptible to degradation in space. The Moon provides a stable calibration reference; however, its illumination depends on the Sun–Earth–Moon geometry and must be modelled. A new lunar irradiance model is presented, built upon observations over 5 years at a high-altitude observatory and a rigorous calibration and validation.
Celia Herrero del Barrio, Roberto Román, Ramiro González, Alberto Cazorla, Marcos Herreras-Giralda, Juan Carlos Antuña-Sánchez, Francisco Molero, Francisco Navas-Guzmán, Antonio Serrano, María Ángeles Obregón, Yolanda Sola, Marco Pandolfi, Sara Herrero-Anta, Daniel González-Fernández, Jorge Muñiz-Rosado, David Mateos, Abel Calle, Carlos Toledano, Victoria Eugenia Cachorro, and Ángel Máximo de Frutos
EGUsphere, https://doi.org/10.5194/egusphere-2024-581, https://doi.org/10.5194/egusphere-2024-581, 2024
Preprint withdrawn
Short summary
Short summary
Introducing CAECENET, a novel system that combines sun-sky photometer and ceilometer data, enabling the continuous monitoring and automatic retrieval of both vertical and columnar aerosol properties in near real-time. A case study on a Saharan dust outbreak illustrates it's efficacy in tracking aerosol events. Additionally, the analysis of Canadian wildfires' long-range transport is presented, showing it's utility in monitoring event propagation, aerosol concentration, and optical properties.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024, https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary
Short summary
Our results show that the global model is stable and it provides meaningful results. This way we can include a physics-based presentation of sub-grid physics (physics which happens on a 100 m scale) in the global model, whose resolution is on a 100 km scale.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Verena Schenzinger, Axel Kreuter, Barbara Klotz, Michael Schwarzmann, and Julian Gröbner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-188, https://doi.org/10.5194/amt-2023-188, 2023
Revised manuscript not accepted
Short summary
Short summary
We present a fast an easy method to incorporate clouds from satellite imagery into a model for calculating surface UV index maps in near-real time. To judge the quality of the model, we compare our results to measurements from ground based detectors. We discuss in detail where variations in either of the values come from and why satellite and ground values might not necessarily be comparable in every situation.
Julian Gröbner, Natalia Kouremeti, Gregor Hülsen, Ralf Zuber, Mario Ribnitzky, Saulius Nevas, Peter Sperfeld, Kerstin Schwind, Philipp Schneider, Stelios Kazadzis, África Barreto, Tom Gardiner, Kavitha Mottungan, David Medland, and Marc Coleman
Atmos. Meas. Tech., 16, 4667–4680, https://doi.org/10.5194/amt-16-4667-2023, https://doi.org/10.5194/amt-16-4667-2023, 2023
Short summary
Short summary
Spectral solar irradiance measurements traceable to the International System of Units (SI) allow for intercomparability between instruments and for their validation according to metrological standards. Here we also validate and reduce the uncertainties of the top-of-atmosphere TSIS-1 Hybrid Solar Reference Spectrum (HSRS). The management of large networks, e.g. AERONET or GAW-PFR, will benefit from reducing logistical overhead, improving their resilience and achieving metrological traceability.
Vasiliki Daskalopoulou, Panagiotis I. Raptis, Alexandra Tsekeri, Vassilis Amiridis, Stelios Kazadzis, Zbigniew Ulanowski, Vassilis Charmandaris, Konstantinos Tassis, and William Martin
Atmos. Meas. Tech., 16, 4529–4550, https://doi.org/10.5194/amt-16-4529-2023, https://doi.org/10.5194/amt-16-4529-2023, 2023
Short summary
Short summary
Atmospheric dust particles may present a preferential alignment due to their shape on long range transport. Since dust is abundant and plays a key role to global climate, the elusive observation of orientation will be a game changer to existing measurement techniques and the representation of particles in climate models. We utilize a specifically designed instrument, SolPol, and target the Sun from the ground for large polarization values under dusty conditions, a clear sign of orientation.
Sara Herrero-Anta, Roberto Román, David Mateos, Ramiro González, Juan Carlos Antuña-Sánchez, Marcos Herreras-Giralda, Antonio Fernando Almansa, Daniel González-Fernández, Celia Herrero del Barrio, Carlos Toledano, Victoria E. Cachorro, and Ángel M. de Frutos
Atmos. Meas. Tech., 16, 4423–4443, https://doi.org/10.5194/amt-16-4423-2023, https://doi.org/10.5194/amt-16-4423-2023, 2023
Short summary
Short summary
This paper shows the potential of a simple radiometer like the ZEN-R52 as a possible alternative for aerosol property retrieval in remote areas. A calibration method based on radiative transfer simulations together with an inversion methodology using the GRASP code is proposed here. The results demonstrate that this methodology is useful for the retrieval of aerosol extensive properties like aerosol optical depth (AOD) and aerosol volume concentration for total, fine and coarse modes.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Theano Drosoglou, Ioannis-Panagiotis Raptis, Massimo Valeri, Stefano Casadio, Francesca Barnaba, Marcos Herreras-Giralda, Anton Lopatin, Oleg Dubovik, Gabriele Brizzi, Fabrizio Niro, Monica Campanelli, and Stelios Kazadzis
Atmos. Meas. Tech., 16, 2989–3014, https://doi.org/10.5194/amt-16-2989-2023, https://doi.org/10.5194/amt-16-2989-2023, 2023
Short summary
Short summary
Aerosol optical properties derived from sun photometers depend on the optical depth of trace gases absorbing solar radiation at specific spectral ranges. Various networks use satellite-based climatologies to account for this or neglect their effect. In this work, we evaluate the effect of NO2 absorption in aerosol retrievals from AERONET and SKYNET over two stations in Rome, Italy, with relatively high NO2 spatiotemporal variations, using NO2 data from the Pandora network and the TROPOMI sensor.
Luca Egli, Julian Gröbner, Herbert Schill, and Eliane Maillard Barras
Atmos. Meas. Tech., 16, 2889–2902, https://doi.org/10.5194/amt-16-2889-2023, https://doi.org/10.5194/amt-16-2889-2023, 2023
Short summary
Short summary
This paper introduces a new method to retrieve total column ozone with spectral ground-based measurements from a novel array spectroradiometer. Total column ozone estimates using the small, cost-effective, and robust instrument and the new retrieval method are compared with other co-located total column ozone instruments. The comparison shows that the new system performs similarly to other well-established instruments, which require substantially more maintenance than the system introduced here.
Xiaoyi Zhao, Vitali Fioletov, Alberto Redondas, Julian Gröbner, Luca Egli, Franz Zeilinger, Javier López-Solano, Alberto Berjón Arroyo, James Kerr, Eliane Maillard Barras, Herman Smit, Michael Brohart, Reno Sit, Akira Ogyu, Ihab Abboud, and Sum Chi Lee
Atmos. Meas. Tech., 16, 2273–2295, https://doi.org/10.5194/amt-16-2273-2023, https://doi.org/10.5194/amt-16-2273-2023, 2023
Short summary
Short summary
The Brewer ozone spectrophotometer is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)'s standard ozone monitoring instruments since the 1980s. This work is aimed at obtaining answers to (1) why Brewer primary calibration work can only be performed at certain sites (e.g., Izaña and MLO) and (2) what is needed to assure the equivalence of calibration quality from different sites.
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023, https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
Short summary
This paper investigates the Absolute Cavity Pyrgeometer (ACP) and its use in measuring atmospheric terrestrial irradiances traceable to the standard system of units (SI). This work fits into the objective of the Expert Team on Radiation References, established by the World Meteorological Organization (WMO), to develop and validate instrumentation that can be used as reference instruments for terrestrial radiation measurements.
Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Antonis Gkikas, Ilias Fountoulakis, Akriti Masoom, and Stelios Kazadzis
Atmos. Chem. Phys., 22, 15703–15727, https://doi.org/10.5194/acp-22-15703-2022, https://doi.org/10.5194/acp-22-15703-2022, 2022
Short summary
Short summary
Megacities' air quality is determined by atmospheric aerosols. We focus on changes over the last two decades in the 81 largest cities, using satellite data. European and American cities have lower aerosol compared to African and Asian cities. For European, North American and East Asian cities, aerosols are decreasing over time, especially in China and the US. In the remaining cities, aerosol loads are increasing, particularly in India.
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022, https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Short summary
The aim of this work is to investigate the limitations of calculating long-term trends of a parameter that quantifies the overall effect of atmospheric aerosols on the solar radiation. A main finding is that even instruments with good agreement between their observations can show significantly different linear trends. By calculating time-varying trends, the trend agreement is shown to improve. We also show that different methods of trend estimation can result in significant trend differences.
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022, https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary
Short summary
A climate model is used to evaluate how the radiative forcing (RF) associated with black carbon (BC) emissions depends on the latitude, longitude, and seasonality of emissions. It is found that both the direct RF (BC absorption of solar radiation in air) and snow RF (BC absorption in snow/ice) depend strongly on the emission region and season. The results suggest that, for a given mass of BC emitted, climatic impacts are likely to be largest for high-latitude emissions due to the large snow RF.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022, https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out in this paper using long-term ground AERONET photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m height on the island of Tenerife. This is a region that can be considered a key location to study the seasonal dependence of dust transport from the Sahel-Sahara.
Enza Di Tomaso, Jerónimo Escribano, Sara Basart, Paul Ginoux, Francesca Macchia, Francesca Barnaba, Francesco Benincasa, Pierre-Antoine Bretonnière, Arnau Buñuel, Miguel Castrillo, Emilio Cuevas, Paola Formenti, María Gonçalves, Oriol Jorba, Martina Klose, Lucia Mona, Gilbert Montané Pinto, Michail Mytilinaios, Vincenzo Obiso, Miriam Olid, Nick Schutgens, Athanasios Votsis, Ernest Werner, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022, https://doi.org/10.5194/essd-14-2785-2022, 2022
Short summary
Short summary
MONARCH reanalysis of desert dust aerosols extends the existing observation-based information for mineral dust monitoring by providing 3-hourly upper-air, surface and total column key geophysical variables of the dust cycle over Northern Africa, the Middle East and Europe, at a 0.1° horizontal resolution in a rotated grid, from 2007 to 2016. This work provides evidence of the high accuracy of this data set and its suitability for air quality and health and climate service applications.
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022, https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Short summary
Clouds are important for the climate, and cloud droplets have a significant role in cloud properties. Cloud droplets form when air rises and cools and water vapour condenses on small particles that can be natural or of anthropogenic origin. Currently, the updraft velocity, meaning how fast the air rises, is poorly represented in global climate models. In our study, we show three methods that will improve the depiction of updraft velocity and which properties are vital to updrafts.
Luca Egli, Julian Gröbner, Gregor Hülsen, Herbert Schill, and René Stübi
Atmos. Meas. Tech., 15, 1917–1930, https://doi.org/10.5194/amt-15-1917-2022, https://doi.org/10.5194/amt-15-1917-2022, 2022
Short summary
Short summary
This study presents traceable total column ozone retrievals from direct solar spectral irradiance measurements. The retrieved ozone does not require any field calibration with a reference instrument as it is required for other operational network instruments such as Brewer or Dobson. Total column ozone can be retrieved with a traceable overall standard uncertainty of less than 0.8 % indicating a benchmark uncertainty for total column ozone measurements.
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Eleni Marinou, Nikos Hatzianastassiou, Jasper F. Kok, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 3553–3578, https://doi.org/10.5194/acp-22-3553-2022, https://doi.org/10.5194/acp-22-3553-2022, 2022
Short summary
Short summary
We present a comprehensive climatological analysis of dust optical depth (DOD) relying on the MIDAS dataset. MIDAS provides columnar mid-visible (550 nm) DOD at fine spatial resolution (0.1° × 0.1°) over a 15-year period (2003–2017). In the current study, the analysis is performed at various spatial (from regional to global) and temporal (from months to years) scales. More specifically, focus is given to specific regions hosting the major dust sources as well as downwind areas of the planet.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Roberto Román, Juan C. Antuña-Sánchez, Victoria E. Cachorro, Carlos Toledano, Benjamín Torres, David Mateos, David Fuertes, César López, Ramiro González, Tatyana Lapionok, Marcos Herreras-Giralda, Oleg Dubovik, and Ángel M. de Frutos
Atmos. Meas. Tech., 15, 407–433, https://doi.org/10.5194/amt-15-407-2022, https://doi.org/10.5194/amt-15-407-2022, 2022
Short summary
Short summary
An all-sky camera is used to obtain the relative sky radiance, and this radiance is used as input in an inversion code to obtain aerosol properties. This paper is really interesting because it pushes forward the use and capability of sky cameras for more advanced science purposes. Enhanced aerosol properties can be retrieved with accuracy using only an all-sky camera, but synergy with other instruments providing aerosol optical depth could even increase the power of these low-cost instruments.
África Barreto, Emilio Cuevas, Rosa D. García, Judit Carrillo, Joseph M. Prospero, Luka Ilić, Sara Basart, Alberto J. Berjón, Carlos L. Marrero, Yballa Hernández, Juan José Bustos, Slobodan Ničković, and Margarita Yela
Atmos. Chem. Phys., 22, 739–763, https://doi.org/10.5194/acp-22-739-2022, https://doi.org/10.5194/acp-22-739-2022, 2022
Short summary
Short summary
In this study, we categorise the different patterns of dust transport over the subtropical North Atlantic and for the first time robustly describe the dust vertical distribution in the Saharan Air Layer (SAL) over this region. Our results revealed the important role that both dust and water vapour play in the radiative balance in summer and winter and confirm the role of the SAL in the formation of mid-level clouds as a result of the activation of heterogeneous ice nucleation processes.
Moritz Haarig, Albert Ansmann, Ronny Engelmann, Holger Baars, Carlos Toledano, Benjamin Torres, Dietrich Althausen, Martin Radenz, and Ulla Wandinger
Atmos. Chem. Phys., 22, 355–369, https://doi.org/10.5194/acp-22-355-2022, https://doi.org/10.5194/acp-22-355-2022, 2022
Short summary
Short summary
The irregular shape of dust particles makes it difficult to treat them correctly in optical models. Atmospheric measurements of dust optical properties are therefore of great importance. The present study increases the space of observed parameters from 355 and 532 nm towards 1064 nm, which is of special importance for large dust particles. The lidar ratio influenced by mineralogy and the depolarization ratio influenced by shape are measured for the first time at all three wavelengths.
Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, André Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, and Carlos Torres
Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, https://doi.org/10.5194/acp-22-295-2022, 2022
Short summary
Short summary
We use different methane ground- and space-based remote sensing data sets for investigating the emission strength of three waste disposal sites close to Madrid. We present a method that uses wind-assigned anomalies for deriving emission strengths from satellite data and estimate their uncertainty to 9–14 %. The emission strengths estimated from the remote sensing data sets are significantly larger than the values published in the official register.
Stavros-Andreas Logothetis, Vasileios Salamalikis, Antonis Gkikas, Stelios Kazadzis, Vassilis Amiridis, and Andreas Kazantzidis
Atmos. Chem. Phys., 21, 16499–16529, https://doi.org/10.5194/acp-21-16499-2021, https://doi.org/10.5194/acp-21-16499-2021, 2021
Short summary
Short summary
This study investigates the temporal trends of dust optical depth (DOD; 550 nm) on global, regional and seasonal scales over a 15-year period (2003–2017) using the MIDAS (ModIs Dust AeroSol) dataset. The findings of this study revealed that the DOD was increased across the central Sahara and the Arabian Peninsula, with opposite trends over the eastern and western Sahara, the Thar and Gobi deserts, in the Bodélé Depression, and in the southern Mediterranean.
Xinyuan Hou, Martin Wild, Doris Folini, Stelios Kazadzis, and Jan Wohland
Earth Syst. Dynam., 12, 1099–1113, https://doi.org/10.5194/esd-12-1099-2021, https://doi.org/10.5194/esd-12-1099-2021, 2021
Short summary
Short summary
Solar photovoltaics (PV) matters for the carbon neutrality goal. We use climate scenarios to quantify climate risk for PV in Europe and find higher PV potential. The seasonal cycle of PV generation changes in most places. We find an increase in the spatial correlations of daily PV production, implying that PV power balancing through redistribution will be more difficult in the future. Thus, changes in the spatiotemporal structure of PV generation should be included in power system design.
Omaira E. García, Matthias Schneider, Eliezer Sepúlveda, Frank Hase, Thomas Blumenstock, Emilio Cuevas, Ramón Ramos, Jochen Gross, Sabine Barthlott, Amelie N. Röhling, Esther Sanromá, Yenny González, Ángel J. Gómez-Peláez, Mónica Navarro-Comas, Olga Puentedura, Margarita Yela, Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Enrique Reyes, Rosa D. García, Pedro P. Rivas, Pedro M. Romero-Campos, Carlos Torres, Natalia Prats, Miguel Hernández, and César López
Atmos. Chem. Phys., 21, 15519–15554, https://doi.org/10.5194/acp-21-15519-2021, https://doi.org/10.5194/acp-21-15519-2021, 2021
Short summary
Short summary
This paper analyses the potential of ground-based Fourier transform infrared (FTIR) solar observations to monitor atmospheric gaseous composition and investigate multiple climate processes. To this end, this work reviews the FTIR programme of one of most relevant ground-based FTIR stations at a global scale, the subtropical Izaña Observatory (IZO, Spain), going over its history during its first 20 years of operation (1999–2018) and exploring its great value for long-term climate research.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Ralf Zuber, Ulf Köhler, Luca Egli, Mario Ribnitzky, Wolfgang Steinbrecht, and Julian Gröbner
Atmos. Meas. Tech., 14, 4915–4928, https://doi.org/10.5194/amt-14-4915-2021, https://doi.org/10.5194/amt-14-4915-2021, 2021
Short summary
Short summary
We validated two BTS-based systems in a longer-term TOC analysis in the 2019/2020 campaign at Hohenpeißenberg and Davos. The results showed a deviation of the BTS-Solar to Brewers of < 0.1 % with a k = 2 of < 1.5 %. Koherent showed a deviation of 1.7 % with a k = 2 of 2.7 %. Resultingly, the BTS-Solar performance is comparable to Brewers in Hohenpeißenberg. Koherent shows a seasonal variation in Davos due to the sensitivity of its TOC retrieval algorithm to stratospheric temperature.
Marek Šmíd, Geiland Porrovecchio, Jiří Tesař, Tim Burnitt, Luca Egli, Julian Grőbner, Petr Linduška, and Martin Staněk
Atmos. Meas. Tech., 14, 3573–3582, https://doi.org/10.5194/amt-14-3573-2021, https://doi.org/10.5194/amt-14-3573-2021, 2021
Short summary
Short summary
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference wavelength scale, with a bandwidth of emitted radiation of 0.13 nm and uncertainty in wavelength of 0.02 nm. TuPS was successfully used for the in-field characterization of 14 Dobson spectrophotometers in campaigns in Europe. The line spread functions of Dobsons measured by TuPS in conjunction with the cross-sections from IUP improves the consistency between the Dobson and Brewer from 3 % to 1 %.
Julian Gröbner, Herbert Schill, Luca Egli, and René Stübi
Atmos. Meas. Tech., 14, 3319–3331, https://doi.org/10.5194/amt-14-3319-2021, https://doi.org/10.5194/amt-14-3319-2021, 2021
Short summary
Short summary
The world's longest continuous total column ozone time series was initiated in 1926 at the Lichtklimatisches Observatorium (LKO), at Arosa, in the Swiss Alps. The measurements between Dobson and Brewer spectroradiometers have shown seasonal variations of the order of 2 %. The results of the study show that the consistency between the two instrument types can be significantly improved when the ozone cross-sections from Serdyuchenko et al. (2013) and the measured slit functions are used.
Joonas Merikanto, Kalle Nordling, Petri Räisänen, Jouni Räisänen, Declan O'Donnell, Antti-Ilari Partanen, and Hannele Korhonen
Atmos. Chem. Phys., 21, 5865–5881, https://doi.org/10.5194/acp-21-5865-2021, https://doi.org/10.5194/acp-21-5865-2021, 2021
Short summary
Short summary
Human-induced aerosols concentrate around their emission sources, yet their climate effects span far and wide. Here, we use two climate models to robustly identify the mechanisms of how Asian anthropogenic aerosols impact temperatures across the globe. A total removal of Asian anthropogenic aerosols increases the global temperatures by 0.26 ± 0.04 °C in the models, with the strongest warming taking place over the Arctic due to increased atmospheric transport of energy towards the high north.
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021, https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
Short summary
This paper presents a new technique to exploit the potential of all-sky cameras. The sky radiance at three effective wavelengths is calculated and compared with alternative measurements and simulated data. The proposed method will be useful for the retrieval of aerosol and cloud properties.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez García-Pando
Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021, https://doi.org/10.5194/amt-14-309-2021, 2021
Short summary
Short summary
We present the development of the MIDAS (ModIs Dust AeroSol) data set, providing daily dust optical depth (DOD; 550 nm) at a global scale and fine spatial resolution (0.1° x 0.1°) over a 15-year period (2003–2017). It has been developed via the synergy of MODIS-Aqua and MERRA-2 data, while CALIOP and AERONET retrievals are used for its assessment. MIDAS upgrades existing dust observational capabilities, and it is suitable for dust climatological studies, model evaluation, and data assimilation.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Roberto Román, Ramiro González, Carlos Toledano, África Barreto, Daniel Pérez-Ramírez, Jose A. Benavent-Oltra, Francisco J. Olmo, Victoria E. Cachorro, Lucas Alados-Arboledas, and Ángel M. de Frutos
Atmos. Meas. Tech., 13, 6293–6310, https://doi.org/10.5194/amt-13-6293-2020, https://doi.org/10.5194/amt-13-6293-2020, 2020
Short summary
Short summary
Atmospheric-aerosol and gaseous properties can be derived at night-time if the lunar irradiance at the ground is measured. To this end, the knowledge of lunar irradiance at the top of the atmosphere is necessary. This extraterrestrial lunar irradiance is usually calculated by models since it varies with several geometric factors mainly depending on time and location. This paper proposes a correction to the most used lunar-irradiance model to be applied for atmospheric-aerosol characterization.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
Ilias Fountoulakis, Henri Diémoz, Anna Maria Siani, Gregor Hülsen, and Julian Gröbner
Earth Syst. Sci. Data, 12, 2787–2810, https://doi.org/10.5194/essd-12-2787-2020, https://doi.org/10.5194/essd-12-2787-2020, 2020
Short summary
Short summary
In this study we discuss the procedures and the technical aspects which ensure the high quality of the measurements of the global solar ultraviolet (UV) irradiance performed by a Bentham spectroradiometer located at Aosta–Saint-Christophe (north-western Alps), Italy. This particular instrument is the reference for the Aosta Valley UV monitoring network, which is the first UV monitoring network in Italy. The final spectra constitute one of the most accurate datasets globally.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Rosa Delia García-Cabrera, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Mario Pó, Ramón Ramos, and Kees Hoogendijk
Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, https://doi.org/10.5194/amt-13-2601-2020, 2020
Short summary
Short summary
Spectral direct UV–visible normal solar irradiance, measured with an EKO MS-711 grating spectroradiometer at the Izaña Atmospheric Observatory (Spain), has been used to determine aerosol optical depth (AOD) at several wavelengths, and has been compared to synchronous AOD measurements from a reference AERONET (Aerosol RObotic NETwork) Cimel sun photometer.
Christine Aebi, Julian Gröbner, Stelios Kazadzis, Laurent Vuilleumier, Antonis Gkikas, and Niklaus Kämpfer
Atmos. Meas. Tech., 13, 907–923, https://doi.org/10.5194/amt-13-907-2020, https://doi.org/10.5194/amt-13-907-2020, 2020
Short summary
Short summary
Clouds are one of the largest sources of uncertainties in climate models. The current study estimates the cloud optical thickness (COT), the effective droplet radius and the single scattering albedo of stratus–altostratus and cirrus–cirrostratus clouds in Payerne, Switzerland, by combining ground- and satellite-based measurements and radiative transfer models. The estimated values are thereafter compared with data retrieved from other methods. The mean COT is distinct for different seasons.
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary
Short summary
Ground-based sun photometers have been used to analyze the properties of long-range transported Saharan dust over Barbados. The measurements were carried out as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE), carried out in the Caribbean in 2013. A variety of instruments, ground-based and airborne, were used in this research. In this paper, the sun photometer data are presented and related to data collected from other co-located instruments.
Jose Antonio Benavent-Oltra, Roberto Román, Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, África Barreto, Anton Lopatin, David Fuertes, Milagros Herrera, Benjamin Torres, Oleg Dubovik, Juan Luis Guerrero-Rascado, Philippe Goloub, Francisco Jose Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 14149–14171, https://doi.org/10.5194/acp-19-14149-2019, https://doi.org/10.5194/acp-19-14149-2019, 2019
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different
remote-sensing measurements to obtain the aerosol vertical and column properties, both during the day and at night-time. The column properties are compared with AERONET products, and the vertical properties retrieved by GRASP are compared with in situ measurements at high-altitude stations. As an originality, we proposed three new schemes to retrieve the night-time aerosol properties.
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Huizheng Che, Ke Gui, Xiangao Xia, Yaqiang Wang, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Hong Wang, Yu Zheng, Hujia Zhao, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, https://doi.org/10.5194/acp-19-10497-2019, 2019
Short summary
Short summary
A comprehensive assessment of the global and regional AOD trends over the past 37 years (1980–2016) is presented. AOD observations from both AERONET and CARSNET were used for the first time to assess the performance of the MERRA-2 AOD dataset on a global scale. Based on statistical models, we found the meteorological parameters explained a larger proportion of the regional AOD variability (20.4 %–2.8 %) when compared with emission factors (0 %%–56 %).
Kalle Nordling, Hannele Korhonen, Petri Räisänen, Muzaffer Ege Alper, Petteri Uotila, Declan O'Donnell, and Joonas Merikanto
Atmos. Chem. Phys., 19, 9969–9987, https://doi.org/10.5194/acp-19-9969-2019, https://doi.org/10.5194/acp-19-9969-2019, 2019
Short summary
Short summary
We carry out long equilibrium climate simulations with two modern climate models and show that the climate model dynamic response contributes strongly to the anthropogenic aerosol response. We demonstrate that identical aerosol descriptions do not improve climate model skill to estimate regional anthropogenic aerosol impacts. Our experiment utilized two independent climate models (NorESM and ECHAM6) with an identical description for aerosols optical properties and indirect effect.
Stephanie Fiedler, Stefan Kinne, Wan Ting Katty Huang, Petri Räisänen, Declan O'Donnell, Nicolas Bellouin, Philip Stier, Joonas Merikanto, Twan van Noije, Risto Makkonen, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 6821–6841, https://doi.org/10.5194/acp-19-6821-2019, https://doi.org/10.5194/acp-19-6821-2019, 2019
Alberto Berjón, Africa Barreto, Yballa Hernández, Margarita Yela, Carlos Toledano, and Emilio Cuevas
Atmos. Chem. Phys., 19, 6331–6349, https://doi.org/10.5194/acp-19-6331-2019, https://doi.org/10.5194/acp-19-6331-2019, 2019
Short summary
Short summary
Lidar ratio is a key parameter for the aerosol characterization using satellite remote-sensing platforms as CALIOP. However, there are important differences in the values reported in the bibliography. The geographic characteristics of the IARC observatories location and a 10-year data series allow us to make a unique study of the mineral dust in the Saharan air layer. We report lidar ratios at 523 nm of 49 ± 6 sr and 50 ± 11 sr obtained by two different methods.
Angel J. Gomez-Pelaez, Ramon Ramos, Emilio Cuevas, Vanessa Gomez-Trueba, and Enrique Reyes
Atmos. Meas. Tech., 12, 2043–2066, https://doi.org/10.5194/amt-12-2043-2019, https://doi.org/10.5194/amt-12-2043-2019, 2019
Short summary
Short summary
In 2015, a CO2/CH4/CO CRDS was installed at Izaña station (Tenerife). We present the acceptance tests, the processing of raw data applied, the ambient measurements performed, and their comparison with other continuous in situ measurements. We determine linear relationships between flow rate, CRDS inlet pressure, and CRDS outlet valve aperture; a slight CO2 correction that takes into account changes in the inlet pressure/flow rate and its origin; and the H2O correction for CO in a novel way.
Rosa Delia García, Emilio Cuevas, Ramón Ramos, Victoria Eugenia Cachorro, Alberto Redondas, and José A. Moreno-Ruiz
Geosci. Instrum. Method. Data Syst., 8, 77–96, https://doi.org/10.5194/gi-8-77-2019, https://doi.org/10.5194/gi-8-77-2019, 2019
Short summary
Short summary
IZA is a high-mountain station located in Tenerife (Canary Islands, Spain, at 28.3º N, 16.5º W; 2373 m a.s.l.) and is a representative site of the subtropical North Atlantic free troposphere. It contributes with basic-BSRN radiation measurements, such as, global shortwave radiation, direct radiation, diffuse radiation and longwave downward radiation and extended-BSRN measurements, including ultraviolet ranges, shortwave upward radiation and longwave upward radiation.
Kaisa Lakkala, Alberto Redondas, Outi Meinander, Laura Thölix, Britta Hamari, Antonio Fernando Almansa, Virgilio Carreno, Rosa Delia García, Carlos Torres, Guillermo Deferrari, Hector Ochoa, Germar Bernhard, Ricardo Sanchez, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 16019–16031, https://doi.org/10.5194/acp-18-16019-2018, https://doi.org/10.5194/acp-18-16019-2018, 2018
Short summary
Short summary
Solar UV irradiances were measured at Ushuaia (54° S) and Marambio (64° S) during 2000–2013. The measurements were part of the Antarctic NILU-UV network, which was maintained as a cooperation between Spain, Argentina and Finland. The time series of the network were analysed for the first time in this study. At both stations maximum UV indices and daily doses were measured when spring-time ozone loss episodes occurred. The maximum UV index was 13 and 12 in Ushuaia and Marambio, respectively.
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Short summary
A newly developed hemispherical thermal infrared cloud camera (IRCCAM) is presented. The IRCCAM allows automatic cloud detection during the day and at night-time. The cloud fraction determined from the IRCCAM is compared with the cloud fraction determined from other instruments over a time period of 2 years. The IRCCAM has an agreement of +/- 2 oktas cloud fraction in 90 % of the data compared to other instruments. There are no significant differences between seasons or different times of day.
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Marco Zanatta, Paolo Laj, Martin Gysel, Urs Baltensperger, Stergios Vratolis, Konstantinos Eleftheriadis, Yutaka Kondo, Philippe Dubuisson, Victor Winiarek, Stelios Kazadzis, Peter Tunved, and Hans-Werner Jacobi
Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018, https://doi.org/10.5194/acp-18-14037-2018, 2018
Short summary
Short summary
The research community aims to quantify the actual contribution of soot particles to the recent Arctic warming. We discovered that mixing of soot with other components might enhance its light absorption power by 50 %. The neglection of such amplification might lead to the underestimation of radiative forcing by 0.12 W m−2. Thus a better understanding of the optical properties of soot is a crucial step for an accurate quantification of the radiative impact of soot in the Arctic atmosphere.
Kaisa Lakkala, Antti Arola, Julian Gröbner, Sergio Fabian León-Luis, Alberto Redondas, Stelios Kazadzis, Tomi Karppinen, Juha Matti Karhu, Luca Egli, Anu Heikkilä, Tapani Koskela, Antonio Serrano, and José Manuel Vilaplana
Atmos. Meas. Tech., 11, 5167–5180, https://doi.org/10.5194/amt-11-5167-2018, https://doi.org/10.5194/amt-11-5167-2018, 2018
Short summary
Short summary
The performance of the cosine error correction method for correcting spectral UV measurements of the Brewer spectroradiometer was studied. The correction depends on the sky radiation distribution, which can change during one spectral scan. The results showed that the correction varied between 4 and 14 %, and that the relative differences between the reference and the Brewer diminished by 10 %. The method is applicable to other instruments as long as the required input parameters are available.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Bentorey Hernández-Cruz, Javier López-Solano, Juan J. Rodriguez-Franco, José M. Vilaplana, Julian Gröbner, John Rimmer, Alkiviadis F. Bais, Vladimir Savastiouk, Juan R. Moreta, Lamine Boulkelia, Nis Jepsen, Keith M. Wilson, Vadim Shirotov, and Tomi Karppinen
Atmos. Chem. Phys., 18, 9441–9455, https://doi.org/10.5194/acp-18-9441-2018, https://doi.org/10.5194/acp-18-9441-2018, 2018
Short summary
Short summary
This work shows an overview of the total ozone comparison of the Brewer instrument during the 10th RBCC-E campaign in a joint effort with the EUBREWNET COST 1207 action. The status of the network after 2 years of calibration shows 16 out of the 21 participating Brewer instruments (76 %) agreed within better than ±1 %, and 10 instruments (50 %) agreed within better than ±0.5 %. After applying the final calibration and the stray light correction all working instruments agreed at the ±0.5 % level.
Cristian Velasco-Merino, David Mateos, Carlos Toledano, Joseph M. Prospero, Jack Molinie, Lovely Euphrasie-Clotilde, Ramiro González, Victoria E. Cachorro, Abel Calle, and Angel M. de Frutos
Atmos. Chem. Phys., 18, 9411–9424, https://doi.org/10.5194/acp-18-9411-2018, https://doi.org/10.5194/acp-18-9411-2018, 2018
Short summary
Short summary
We present the first comparison of columnar aerosol properties recorded by sun photometry of Saharan dust between western Africa and Caribbean Basin. A comprehensive climatology of 20 years of data is presented in the two areas. To our knowledge, we present the first global climatology of columnar aerosols in the Caribbean Basin. Changes after transport in aerosol load, size distribution, shape, and absorbing and scattering variables are quantified using long-term records between 1996 and 2014.
Anna Vaskuri, Petri Kärhä, Luca Egli, Julian Gröbner, and Erkki Ikonen
Atmos. Meas. Tech., 11, 3595–3610, https://doi.org/10.5194/amt-11-3595-2018, https://doi.org/10.5194/amt-11-3595-2018, 2018
Short summary
Short summary
In this work, we introduce a Monte Carlo uncertainty analysis that takes into account possible systematic spectral deviations in the atmospheric full spectrum ozone retrieval method. Accounting for possible systematic spectral deviations in the spectral data is important since they produce larger total ozone column uncertainties than uncorrelated noise-like variations that traditional uncertainty estimations predict.
Rosa Delia García, Africa Barreto, Emilio Cuevas, Julian Gröbner, Omaira Elena García, Angel Gómez-Peláez, Pedro Miguel Romero-Campos, Alberto Redondas, Victoria Eugenia Cachorro, and Ramon Ramos
Geosci. Model Dev., 11, 2139–2152, https://doi.org/10.5194/gmd-11-2139-2018, https://doi.org/10.5194/gmd-11-2139-2018, 2018
Short summary
Short summary
A 7-year comparison study between measured and simulated longwave
downward radiation under cloud-free conditions has been performed at BSRN Izaña. Results show an excellent agreement with a mean bias (simulated–measured) less than 1.1 % and RMSE less than 1 %, which are within the instrumental error (2 %).
Juan Carlos Antuña-Marrero, Victoria Cachorro Revilla, Frank García Parrado, Ángel de Frutos Baraja, Albeth Rodríguez Vega, David Mateos, René Estevan Arredondo, and Carlos Toledano
Atmos. Meas. Tech., 11, 2279–2293, https://doi.org/10.5194/amt-11-2279-2018, https://doi.org/10.5194/amt-11-2279-2018, 2018
Short summary
Short summary
Comparing AOD measurements from MODIS (Terra and Aqua), sun photometer and pyrheliometers broadband instruments in Cuba.
Theano Drosoglou, Maria Elissavet Koukouli, Natalia Kouremeti, Alkiviadis F. Bais, Irene Zyrichidou, Dimitris Balis, Ronald J. van der A, Jin Xu, and Ang Li
Atmos. Meas. Tech., 11, 2239–2255, https://doi.org/10.5194/amt-11-2239-2018, https://doi.org/10.5194/amt-11-2239-2018, 2018
Short summary
Short summary
A diurnal pattern of tropospheric NO2 with two maxima around late morning and late afternoon is revealed, reflecting high anthropogenic emissions, and a minimum at noon, due to photochemical destruction of tropospheric NO2. GOME-2B shows the smallest underestimation despite its large pixel size. The distance between the measurement location and the satellite pixel center affects mostly GOME-2B data selection. The effect of clouds is more profound on the selection of OMI overpass data.
Joni-Pekka Pietikäinen, Tiina Markkanen, Kevin Sieck, Daniela Jacob, Johanna Korhonen, Petri Räisänen, Yao Gao, Jaakko Ahola, Hannele Korhonen, Ari Laaksonen, and Jussi Kaurola
Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018, https://doi.org/10.5194/gmd-11-1321-2018, 2018
Short summary
Short summary
The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied. Our results show that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2 m temperature and precipitation and that the model can reproduce surface water temperature, ice depth and ice season length with reasonably high accuracy.
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Christof Janssen, Hadj Elandaloussi, and Julian Gröbner
Atmos. Meas. Tech., 11, 1707–1723, https://doi.org/10.5194/amt-11-1707-2018, https://doi.org/10.5194/amt-11-1707-2018, 2018
Short summary
Short summary
Monitoring ozone layer recovery at a rate of few percent per decade requires dedicated instrumentation and spectroscopic data of the highest quality. Highly accurate absorption cross sections of ozone are rare, especially in the important UV region between 300 and 340 nm. Our measurement provides the first reference point with permil level of accuracy in this range. Interestingly, our value is lower than currently used data. This might resolve an inconsistency between UV and IR measurements.
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Panagiotis-Ioannis Raptis, Stelios Kazadzis, Julian Gröbner, Natalia Kouremeti, Lionel Doppler, Ralf Becker, and Constantinos Helmis
Atmos. Meas. Tech., 11, 1143–1157, https://doi.org/10.5194/amt-11-1143-2018, https://doi.org/10.5194/amt-11-1143-2018, 2018
Short summary
Short summary
The purpose of this work is to retrieve integrated water vapour using spectral measurements from Precision Solar Spectroradiometer (PSR). Two different approaches were developed one using single-channel direct sun irradiance measurements, and the second one integrating at a certain spectral region. The results of the spectral approach are closer to the retrievals of non-photometric techniques (GPS, microwave radiometer and radiosondes), suggesting this method provide more accurate IWV product.
Stelios Kazadzis, Dimitra Founda, Basil E. Psiloglou, Harry Kambezidis, Nickolaos Mihalopoulos, Arturo Sanchez-Lorenzo, Charikleia Meleti, Panagiotis I. Raptis, Fragiskos Pierros, and Pierre Nabat
Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, https://doi.org/10.5194/acp-18-2395-2018, 2018
Short summary
Short summary
The National Observatory of Athens has been collecting solar radiation, sunshine duration, and cloud and visibility data/observations since the beginning of the 20th century. In this work we present surface solar radiation data since 1953 and reconstructed data since 1900. We have attempted to show and discuss the long-term changes in solar surface radiation over Athens, Greece, using these unique datasets.
David Fuertes, Carlos Toledano, Ramiro González, Alberto Berjón, Benjamín Torres, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 7, 67–81, https://doi.org/10.5194/gi-7-67-2018, https://doi.org/10.5194/gi-7-67-2018, 2018
Short summary
Short summary
CÆLIS is a software system which aims at simplifying the management of a photometric ground-based network, providing tools by monitoring the instruments, processing the data in real time and offering the scientific community a new tool to work with the data. The present work describes the system architecture of CÆLIS and some examples of applications and data processing.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Panagiotis I. Raptis, Iphigenia Keramitsoglou, Chris Kiranoudis, and Alkiviadis F. Bais
Atmos. Meas. Tech., 11, 907–924, https://doi.org/10.5194/amt-11-907-2018, https://doi.org/10.5194/amt-11-907-2018, 2018
Short summary
Short summary
Continuous monitoring of solar energy from space is critical for its efficient exploitation and distribution. For this reason we developed neural-network- and function-based real-time models, which are capable of producing massive radiation outputs in high spectral, spatial and temporal resolution. The models' performance against ground-based measurements revealed a dependence on input quality and resolution, and an overall accuracy under cloudless and high solar energy potential conditions.
Stelios Kazadzis, Natalia Kouremeti, Stephan Nyeki, Julian Gröbner, and Christoph Wehrli
Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, https://doi.org/10.5194/gi-7-39-2018, 2018
Short summary
Short summary
The World Optical Depth Research Calibration Center (WORCC) has been established after the recommendations of WMO for calibration of aerosol optical depth (AOD) -related sun photometers. WORCC is mandated to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of sun photometers. To calibrate such instruments aiming at low measurement uncertainties the quality assurance, quality control and a basic hierarchy have to be defined and followed.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit de Leeuw, and Ronald J. van der A
Atmos. Chem. Phys., 18, 1337–1362, https://doi.org/10.5194/acp-18-1337-2018, https://doi.org/10.5194/acp-18-1337-2018, 2018
Short summary
Short summary
We provide a 3-D climatology of desert dust aerosols over South and East Asia, based on 9 years of CALIPSO observations and an EARLINET methodology. The results provide the horizontal, vertical and seasonal distribution of dust aerosols over SE Asia along with the change in dust transport pathways. The dataset is unique for its potential applications, including evaluation and assimilation activities in atmospheric simulations and the estimation of the climatic impact of dust aerosols.
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Petri Räisänen, Risto Makkonen, Alf Kirkevåg, and Jens B. Debernard
The Cryosphere, 11, 2919–2942, https://doi.org/10.5194/tc-11-2919-2017, https://doi.org/10.5194/tc-11-2919-2017, 2017
Short summary
Short summary
While snow grains are non-spherical, spheres are often assumed in radiation calculations. Here, we replace spherical snow grains with non-spherical snow grains in a climate model. This leads to a somewhat higher snow albedo (by 0.02–0.03), increased snow and sea ice cover, and a distinctly colder climate (by over 1 K in the global mean). It also impacts the radiative effects of aerosols in snow. Overall, this work highlights the important role of snow albedo parameterization for climate models.
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary
Short summary
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3–5 years. Information about fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud cover, cloud type and other atmospheric parameters have an influence on the magnitude of the longwave cloud effect as well as on the shortwave.
René Stübi, Herbert Schill, Jörg Klausen, Laurent Vuilleumier, Julian Gröbner, Luca Egli, and Dominique Ruffieux
Atmos. Meas. Tech., 10, 4479–4490, https://doi.org/10.5194/amt-10-4479-2017, https://doi.org/10.5194/amt-10-4479-2017, 2017
Short summary
Short summary
Long-term measurement series are the pillars of all climate change analysis. The Arosa total ozone series is the world's longest record, starting in 1926. To secure the future of these measurements, it is foreseen to move the instruments in Davos. To ascertain that the series will not be affected by this change, a multiyear campaign of parallel measurements on both sites has been done. The analysis of these data is presented and it is concluded that no discernible difference can be identified.
Benjamin Torres, Oleg Dubovik, David Fuertes, Gregory Schuster, Victoria Eugenia Cachorro, Tatsiana Lapyonok, Philippe Goloub, Luc Blarel, Africa Barreto, Marc Mallet, Carlos Toledano, and Didier Tanré
Atmos. Meas. Tech., 10, 3743–3781, https://doi.org/10.5194/amt-10-3743-2017, https://doi.org/10.5194/amt-10-3743-2017, 2017
Short summary
Short summary
This study evaluates the potential of using only aerosol optical depth measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP algorithm. The practical motivation for the present study is the large amount of optical-depth-only measurements that exist in the ground-based networks. The retrievals could complete an existing data set of aerosol properties that is key to understanding aerosol climate effects.
Alberto Cazorla, Juan Andrés Casquero-Vera, Roberto Román, Juan Luis Guerrero-Rascado, Carlos Toledano, Victoria E. Cachorro, José Antonio G. Orza, María Luisa Cancillo, Antonio Serrano, Gloria Titos, Marco Pandolfi, Andres Alastuey, Natalie Hanrieder, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 17, 11861–11876, https://doi.org/10.5194/acp-17-11861-2017, https://doi.org/10.5194/acp-17-11861-2017, 2017
Short summary
Short summary
This work presents a method for the calibration and automated quality assurance of inversion of ceilometer profiles that is applied to the Iberian Ceilometer Network (ICENET). A cast study during an unusually intense dust outbreak affecting the Iberian Peninsula is shown. Results reveal that it is possible to obtain a quantitative optical aerosol characterization with ceilometers over large areas, and this information has a great potential for alert systems and model assimilation and evaluation.
Julian Gröbner, Ingo Kröger, Luca Egli, Gregor Hülsen, Stefan Riechelmann, and Peter Sperfeld
Atmos. Meas. Tech., 10, 3375–3383, https://doi.org/10.5194/amt-10-3375-2017, https://doi.org/10.5194/amt-10-3375-2017, 2017
Short summary
Short summary
We have produced a benchmark high-resolution solar extraterrestrial spectrum from ground-based measurements of direct solar irradiance in the wavelength range 300 to 500 nm. This spectrum can be used for model calculations and for validating solar spectra measured in space. The metrological traceability of this solar spectrum to the International System of Units (SI) is assured by an unbroken chain of calibrations traceable to the primary spectral irradiance standard of PTB.
Moritz Haarig, Albert Ansmann, Dietrich Althausen, André Klepel, Silke Groß, Volker Freudenthaler, Carlos Toledano, Rodanthi-Elisavet Mamouri, David A. Farrell, Damien A. Prescod, Eleni Marinou, Sharon P. Burton, Josef Gasteiger, Ronny Engelmann, and Holger Baars
Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, https://doi.org/10.5194/acp-17-10767-2017, 2017
Short summary
Short summary
Our measurements performed with a lidar on Barbados give a vertical profile of Saharan dust, which was transported over 5000 km across the Atlantic. The new triple-wavelength depolarization technique reveals more information about the shape and size of dust, which will improve our understanding of the aging process of dust in the atmosphere and its representation in dust models. Changing properties of dust particles influence the solar radiation and the cloud properties and thus our climate.
Stephan Nyeki, Stefan Wacker, Julian Gröbner, Wolfgang Finsterle, and Martin Wild
Atmos. Meas. Tech., 10, 3057–3071, https://doi.org/10.5194/amt-10-3057-2017, https://doi.org/10.5194/amt-10-3057-2017, 2017
Short summary
Short summary
A large number of radiometers used to measure solar and terrestrial broadband radiation are traceable to World Standard Groups at PMOD/WRC in Davos, Switzerland. A small correction of each group may be required in the future, and this study examines the methods and implications of this on data sets collected at four remote baseline stations since the 1990s. The goal is to develop a better estimate of the solar and terrestrial radiation budget at the Earth's surface.
África Barreto, Roberto Román, Emilio Cuevas, Alberto J. Berjón, A. Fernando Almansa, Carlos Toledano, Ramiro González, Yballa Hernández, Luc Blarel, Philippe Goloub, Carmen Guirado, and Margarita Yela
Atmos. Meas. Tech., 10, 3007–3019, https://doi.org/10.5194/amt-10-3007-2017, https://doi.org/10.5194/amt-10-3007-2017, 2017
Short summary
Short summary
This work involves a first analysis of the systematic errors observed in the AOD retrieved at nighttime using the Sun–sky–lunar CE318-T photometer. In this respect, this paper is a first attempt to correct the AOD uncertainties that currently affect the lunar photometry by means of an empirical regression model. We have detected and corrected an important bias correlated to the Moon's phase and zenith angles, especially at longer wavelength channels.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017, https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
Short summary
We study the impact of dust on solar energy using remote sensing data in conjunction with synergistic modelling and forecasting techniques. Under high aerosol loads, we found great solar energy losses of the order of 80 and 50% for concentrated solar power and photovoltaic installations, respectively. The 1-day forecast presented an overall accuracy within 10% in direct comparison to the real conditions under high energy potential, optimising the efficient energy planning and policies.
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017, https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary
Short summary
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the NWP model, without compromising on computational efficiency. Fast physically based radiation parametrizations are also valuable for high-resolution ensemble forecasting.
Päivi Haapanala, Petri Räisänen, Greg M. McFarquhar, Jussi Tiira, Andreas Macke, Michael Kahnert, John DeVore, and Timo Nousiainen
Atmos. Chem. Phys., 17, 6865–6882, https://doi.org/10.5194/acp-17-6865-2017, https://doi.org/10.5194/acp-17-6865-2017, 2017
Short summary
Short summary
The dependence of solar-disk and circumsolar radiances on ice cloud
properties is studied with a Monte Carlo radiative transfer model. Ice
crystal roughness (or more generally, non-ideality) is found to be the
most important parameter influencing the circumsolar radiance, and ice
crystal sizes and shapes also play significant roles. When comparing
with radiances measured with the SAM instrument, rough ice crystals
reproduce the measurements better than idealized smooth ice crystals do.
Theano Drosoglou, Alkiviadis F. Bais, Irene Zyrichidou, Natalia Kouremeti, Anastasia Poupkou, Natalia Liora, Christos Giannaros, Maria Elissavet Koukouli, Dimitris Balis, and Dimitrios Melas
Atmos. Chem. Phys., 17, 5829–5849, https://doi.org/10.5194/acp-17-5829-2017, https://doi.org/10.5194/acp-17-5829-2017, 2017
Short summary
Short summary
We present ground-based tropospheric NO2 measurements performed within the area of Thessaloniki, Greece. The comparisons with OMI/Aura, GOME-2A and GOME-2B data sets have shown a significant underestimation of the NO2 levels over the urban area by the satellite sensors. This finding can be attributed to the strong NO2 gradients. By applying adjustment factors, calculated using an air quality model, on the OMI/Aura observations, the comparison over the urban site has improved significantly.
Thomas Carlund, Natalia Kouremeti, Stelios Kazadzis, and Julian Gröbner
Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, https://doi.org/10.5194/amt-10-905-2017, 2017
Short summary
Short summary
Aerosols play an important role in atmospheric processes. Aerosol optical depth is the most common measure of columnar aerosol load. We present a sunphotometer called UVPFR that is able to measure aerosol optical depth in the ultraviolet range, including the calibration, characterization and validation of the instrument/measurements. The instrument will serve as a reference on the intercalibration of Brewer spectrophotometers that are also able to measure aerosol optical depth in the UV region.
Rosa Delia García, Emilio Cuevas, Omaira Elena García, Ramón Ramos, Pedro Miguel Romero-Campos, Fernado de Ory, Victoria Eugenia Cachorro, and Angel de Frutos
Atmos. Meas. Tech., 10, 731–743, https://doi.org/10.5194/amt-10-731-2017, https://doi.org/10.5194/amt-10-731-2017, 2017
Short summary
Short summary
A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.
A. Fernando Almansa, Emilio Cuevas, Benjamín Torres, África Barreto, Rosa D. García, Victoria E. Cachorro, Ángel M. de Frutos, César López, and Ramón Ramos
Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017, https://doi.org/10.5194/amt-10-565-2017, 2017
Short summary
Short summary
This study presents a new zenith-looking narrow-band radiometer-based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. The ZEN system comprises a robust and automated radiometer (ZEN-R41), and a lookup table methodology for AOD retrieval (ZEN-LUT). Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Silke Groß, Josef Gasteiger, Volker Freudenthaler, Thomas Müller, Daniel Sauer, Carlos Toledano, and Albert Ansmann
Atmos. Chem. Phys., 16, 11535–11546, https://doi.org/10.5194/acp-16-11535-2016, https://doi.org/10.5194/acp-16-11535-2016, 2016
Short summary
Short summary
Dual-wavelength depolarization sensitive Raman lidar measurements were used to characterize the optical properties of the dust loaded convective boundary layer over the Caribbean. Furthermore we derived the dust volume fraction and dust mass concentration within the convective boundary layer.
Dimitra Founda, Stelios Kazadzis, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, Maria Lianou, and Panagiotis I. Raptis
Atmos. Chem. Phys., 16, 11219–11236, https://doi.org/10.5194/acp-16-11219-2016, https://doi.org/10.5194/acp-16-11219-2016, 2016
Short summary
Short summary
Historical time series are unique sources of information for past climate and atmospheric composition change. The 82-year time series of visibility data collected at the National Observatory of Athens (NOA) was an excellent proxy for the long-term evolution of particulate pollution in the eastern Mediterranean, at times when direct aerosol measurements were missing. Evolution of particulate pollution of both local and regional origin is nicely reflected on visibility records of NOA.
Antonis Gkikas, Sara Basart, Nikos Hatzianastassiou, Eleni Marinou, Vassilis Amiridis, Stelios Kazadzis, Jorge Pey, Xavier Querol, Oriol Jorba, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 16, 8609–8642, https://doi.org/10.5194/acp-16-8609-2016, https://doi.org/10.5194/acp-16-8609-2016, 2016
Short summary
Short summary
This study presents the 3-D structures of intense Mediterranean desert dust outbreaks, over the period Mar 2000–Feb 2013. The desert dust (DD) episodes are identified through an objective and dynamic algorithm, which utilizes satellite retrievals (MODIS, TOMS and OMI) as inputs. The performance of the satellite algorithm is evaluated vs. AERONET and PM10 data. The geometrical characteristics of the identified DD episodes are analyzed using the collocated CALIOP profiles as a complementary tool.
Victoria E. Cachorro, Maria A. Burgos, David Mateos, Carlos Toledano, Yasmine Bennouna, Benjamín Torres, Ángel M. de Frutos, and Álvaro Herguedas
Atmos. Chem. Phys., 16, 8227–8248, https://doi.org/10.5194/acp-16-8227-2016, https://doi.org/10.5194/acp-16-8227-2016, 2016
Short summary
Short summary
This study presents the first desert dust (DD) long-term inventory simultaneously using columnar aerosol optical depth (AOD) and the Ångström exponent and surface particulate-matter (PM) concentrations. The DD contribution to the aerosol load is evaluated in the period 2003–2014 for columnar and surface data, analysing the correlation between DD contributions to AOD and PM10. Saharan mineral dust can explain up to 30 % of the total aerosol load decrease observed in the study area.
Jani Huttunen, Harri Kokkola, Tero Mielonen, Mika Esa Juhani Mononen, Antti Lipponen, Juha Reunanen, Anders Vilhelm Lindfors, Santtu Mikkonen, Kari Erkki Juhani Lehtinen, Natalia Kouremeti, Alkiviadis Bais, Harri Niska, and Antti Arola
Atmos. Chem. Phys., 16, 8181–8191, https://doi.org/10.5194/acp-16-8181-2016, https://doi.org/10.5194/acp-16-8181-2016, 2016
Short summary
Short summary
For a good estimate of the current forcing by anthropogenic aerosols, knowledge in past is needed. One option to lengthen time series is to retrieve aerosol optical depth from solar radiation measurements. We have evaluated several methods for this task. Most of the methods produce aerosol optical depth estimates with a good accuracy. However, machine learning methods seem to be the most applicable not to produce any systematic biases, since they do not need constrain the aerosol properties.
Henri Diémoz, Kostas Eleftheratos, Stelios Kazadzis, Vassilis Amiridis, and Christos S. Zerefos
Atmos. Meas. Tech., 9, 1871–1888, https://doi.org/10.5194/amt-9-1871-2016, https://doi.org/10.5194/amt-9-1871-2016, 2016
Short summary
Short summary
A new algorithm allowed to retrieve aerosol optical depths from a Brewer spectrophotometer in Athens with excellent agreement with AERONET. The instrument radiometric stability and the performances of in situ Langley extrapolations as a way to track it are investigated. Potential sources of error and recommendations to operators are reported. MkIV Brewers represent a great source of information about aerosols in the past decades and a promising worldwide network for coordinated AOD measurements.
E. Cuevas, Á. J. Gómez-Peláez, S. Rodríguez, E. Terradellas, S. Basart, R. D. García, O. E. García, and S. Alonso-Pérez
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-287, https://doi.org/10.5194/acp-2016-287, 2016
Revised manuscript not accepted
Short summary
Short summary
We revise the North African Dipole Intensity (NAFDI) index, and explain and quantify its relationship with the Saharan Heat Low (SHL) and mid-latitude Rossby waves. An analysis of aerosol optical depth anomalies over Northern Africa is performed for each phase of NAFDI/SHL. A comprehensive top-down conceptual model is introduced to explain the relationships between the NAFDI, the SHL and the mid-latitude Rossby waves and their impact in dust mobilization and transport in Northern Africa.
N. Huneeus, S. Basart, S. Fiedler, J.-J. Morcrette, A. Benedetti, J. Mulcahy, E. Terradellas, C. Pérez García-Pando, G. Pejanovic, S. Nickovic, P. Arsenovic, M. Schulz, E. Cuevas, J. M. Baldasano, J. Pey, S. Remy, and B. Cvetkovic
Atmos. Chem. Phys., 16, 4967–4986, https://doi.org/10.5194/acp-16-4967-2016, https://doi.org/10.5194/acp-16-4967-2016, 2016
Short summary
Short summary
Five dust models are evaluated regarding their performance in predicting an intense Saharan dust outbreak affecting western and northern Europe (NE). Models predict the onset and evolution of the event for all analysed lead times. On average, differences among the models are larger than differences in lead times for each model. The models tend to underestimate the long-range transport towards NE. This is partly due to difficulties in simulating the vertical dust distribution and horizontal wind.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
África Barreto, Emilio Cuevas, María-José Granados-Muñoz, Lucas Alados-Arboledas, Pedro M. Romero, Julian Gröbner, Natalia Kouremeti, Antonio F. Almansa, Tom Stone, Carlos Toledano, Roberto Román, Mikhail Sorokin, Brent Holben, Marius Canini, and Margarita Yela
Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, https://doi.org/10.5194/amt-9-631-2016, 2016
Short summary
Short summary
This paper presents the new photometer CE318-T, able to perform daytime and
night-time photometric measurements using the sun and the moon as light
sources. This new device permits a complete cycle of diurnal aerosol and water vapour measurements to be extracted, valuable to enhance atmospheric monitoring. We have also highlighted the ability of this new device to capture short-term atmospheric variations, critical for climate studies.
R. D. García, O. E. García, E. Cuevas, V. E. Cachorro, A. Barreto, C. Guirado-Fuentes, N. Kouremeti, J. J. Bustos, P. M. Romero-Campos, and A. M. de Frutos
Atmos. Meas. Tech., 9, 53–62, https://doi.org/10.5194/amt-9-53-2016, https://doi.org/10.5194/amt-9-53-2016, 2016
Short summary
Short summary
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a precision filter radiometer (PFR) between 2003 and 2013.
R. Pirazzini, P. Räisänen, T. Vihma, M. Johansson, and E.-M. Tastula
The Cryosphere, 9, 2357–2381, https://doi.org/10.5194/tc-9-2357-2015, https://doi.org/10.5194/tc-9-2357-2015, 2015
Short summary
Short summary
We illustrate a method to measure the size distribution of a snow particle metric from macro photos of snow particles. This snow particle metric corresponds well to the optically equivalent effective radius. Our results evidence the impact of grain shape on albedo, indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of surface roughness on the shortwave infrared albedo.
H. Eskes, V. Huijnen, A. Arola, A. Benedictow, A.-M. Blechschmidt, E. Botek, O. Boucher, I. Bouarar, S. Chabrillat, E. Cuevas, R. Engelen, H. Flentje, A. Gaudel, J. Griesfeller, L. Jones, J. Kapsomenakis, E. Katragkou, S. Kinne, B. Langerock, M. Razinger, A. Richter, M. Schultz, M. Schulz, N. Sudarchikova, V. Thouret, M. Vrekoussis, A. Wagner, and C. Zerefos
Geosci. Model Dev., 8, 3523–3543, https://doi.org/10.5194/gmd-8-3523-2015, https://doi.org/10.5194/gmd-8-3523-2015, 2015
Short summary
Short summary
The MACC project is preparing the operational atmosphere service of the European Copernicus Programme, and uses data assimilation to combine atmospheric models with available observations. Our paper provides an overview of the aerosol and trace gas validation activity of MACC. Topics are the validation requirements, the measurement data, the assimilation systems, the upgrade procedure, operational aspects and the scoring methods. A summary is provided of recent results, including special events.
O. Kemppinen, T. Nousiainen, S. Merikallio, and P. Räisänen
Atmos. Chem. Phys., 15, 11117–11132, https://doi.org/10.5194/acp-15-11117-2015, https://doi.org/10.5194/acp-15-11117-2015, 2015
Short summary
Short summary
Combinations of simple mathematical model shapes called ellipsoids are used in many remote sensing and modeling applications to denote dust particles. In this study we investigate how accurately various physical parameters can be retrieved by using ellipsoids. The results show that using ellipsoids can lead to wrong results, while at the same time seeming like they work well. This means that extreme care should be used when using ellipsoids for dust, and extra validation measures should be used.
S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl
Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, https://doi.org/10.5194/acp-15-11067-2015, 2015
Short summary
Short summary
In June and July 2013 dual-wavelength lidar measurements were performed in Barbados to study long-range transported Saharan dust across the Atlantic Ocean and investigate transport-induced changes. The focus of our measurements is the intensive optical properties, the lidar ratio and the particle linear depolarization ratio. While the lidar ratio shows no differences compared to the values of fresh Saharan dust, the particle linear depolarization ratio shows slight differences.
M. Gil-Ojeda, M. Navarro-Comas, L. Gómez-Martín, J. A. Adame, A. Saiz-Lopez, C. A. Cuevas, Y. González, O. Puentedura, E. Cuevas, J.-F. Lamarque, D. Kinninson, and S. Tilmes
Atmos. Chem. Phys., 15, 10567–10579, https://doi.org/10.5194/acp-15-10567-2015, https://doi.org/10.5194/acp-15-10567-2015, 2015
Short summary
Short summary
The NO2 seasonal evolution in the free troposphere (FT) has been established for the first time, based on a remote sensing technique (MAXDOAS) and thus avoiding the problems of the local pollution of in situ instruments. A clear seasonality has been found, with background levels of 20-40pptv. Evidence has been found on fast, direct injection of surface air into the free troposphere. This result might have implications on the FT distribution of halogens and other species with marine sources.
F. Chouza, O. Reitebuch, S. Groß, S. Rahm, V. Freudenthaler, C. Toledano, and B. Weinzierl
Atmos. Meas. Tech., 8, 2909–2926, https://doi.org/10.5194/amt-8-2909-2015, https://doi.org/10.5194/amt-8-2909-2015, 2015
S. Rodríguez, E. Cuevas, J. M. Prospero, A. Alastuey, X. Querol, J. López-Solano, M. I. García, and S. Alonso-Pérez
Atmos. Chem. Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, https://doi.org/10.5194/acp-15-7471-2015, 2015
Short summary
Short summary
Long-term 28-year variability of Saharan dust export to the Atlantic is correlated with large-scale meteorology in North Africa, particularly with the intensity of the Saharan high to tropical low dipole-like pattern, the so-called North African Dipole. Variability in the dipole intensity is connected with winds, monsoon rain band and latitudinal shifts of the Saharan air layer. Variability in the dipole intensity suggests connections with ENSO and the Sahel drought.
P. Räisänen, A. Kokhanovsky, G. Guyot, O. Jourdan, and T. Nousiainen
The Cryosphere, 9, 1277–1301, https://doi.org/10.5194/tc-9-1277-2015, https://doi.org/10.5194/tc-9-1277-2015, 2015
Short summary
Short summary
While snow grains are distinctly non-spherical, spheres are often assumed in radiative transfer calculations. Here, angular scattering measurements for blowing snow are used to select an optically equivalent snow grain shape model. Parameterizations are then developed for the asymmetry parameter, single-scattering co-albedo and phase function of snow. The parameterizations will help to improve the treatment of snow in radiative transfer applications, including remote sensing and climate models.
J. Tonttila, E. J. O'Connor, A. Hellsten, A. Hirsikko, C. O'Dowd, H. Järvinen, and P. Räisänen
Atmos. Chem. Phys., 15, 5873–5885, https://doi.org/10.5194/acp-15-5873-2015, https://doi.org/10.5194/acp-15-5873-2015, 2015
E. Cuevas, C. Camino, A. Benedetti, S. Basart, E. Terradellas, J. M. Baldasano, J. J. Morcrette, B. Marticorena, P. Goloub, A. Mortier, A. Berjón, Y. Hernández, M. Gil-Ojeda, and M. Schulz
Atmos. Chem. Phys., 15, 3991–4024, https://doi.org/10.5194/acp-15-3991-2015, https://doi.org/10.5194/acp-15-3991-2015, 2015
Short summary
Short summary
Atmospheric mineral dust from a MACC-II short reanalysis (2007-2008) has been evaluated over northern Africa and the Middle East using satellite aerosol products, AERONET data, in situ PM10 concentrations, and extinction vertical profiles. The MACC-II AOD spatial and temporal variability shows good agreement with satellite sensors and AERONET. We find a good agreement in averaged extinction vertical profiles between MACC-II and lidars. MACC correctly reproduces daily to interannual PM10.
H. Lyamani, A. Valenzuela, D. Perez-Ramirez, C. Toledano, M. J. Granados-Muñoz, F. J. Olmo, and L. Alados-Arboledas
Atmos. Chem. Phys., 15, 2473–2486, https://doi.org/10.5194/acp-15-2473-2015, https://doi.org/10.5194/acp-15-2473-2015, 2015
Short summary
Short summary
High aerosol loads over Alborán were mainly associated with desert dust transport and occasional advection from central European urban-industrial areas. The fine particle load observed over Alborán was surprisingly similar to that obtained over the other three nearest AERONET stations, suggesting homogeneous spatial distribution of fine particle loads over the four studied sites in spite of the large differences in local sources.
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
J. Tonttila, H. Järvinen, and P. Räisänen
Atmos. Chem. Phys., 15, 703–714, https://doi.org/10.5194/acp-15-703-2015, https://doi.org/10.5194/acp-15-703-2015, 2015
D. Mateos, M. Antón, C. Toledano, V. E. Cachorro, L. Alados-Arboledas, M. Sorribas, M. J. Costa, and J. M. Baldasano
Atmos. Chem. Phys., 14, 13497–13514, https://doi.org/10.5194/acp-14-13497-2014, https://doi.org/10.5194/acp-14-13497-2014, 2014
Short summary
Short summary
A long-term analysis of aerosol radiative effects over the Iberian Peninsula is carried out. A reduction of aerosol effects on solar radiation at the surface is observed in the 2000s. Aerosol forcing efficiency is stronger for small and absorbing particles. The contributions of the ultraviolet, visible, and near-infrared spectral intervals to the total shortwave efficiency vary with the aerosol types, producing the visible range the dominant contribution for all aerosol types.
P. Räisänen, A. Luomaranta, H. Järvinen, M. Takala, K. Jylhä, O. N. Bulygina, K. Luojus, A. Riihelä, A. Laaksonen, J. Koskinen, and J. Pulliainen
Geosci. Model Dev., 7, 3037–3057, https://doi.org/10.5194/gmd-7-3037-2014, https://doi.org/10.5194/gmd-7-3037-2014, 2014
Short summary
Short summary
Snowmelt influences greatly the climatic conditions in spring. This study evaluates the timing of springtime end of snowmelt in the ECHAM5 model. A key finding is that, in much of northern Eurasia, snow disappears too early in ECHAM5, in spite of a slight cold bias in spring. This points to the need for a more comprehensive treatment of the surface energy budget. In particular, the surface temperature for the snow-covered and snow-free parts of a climate model grid cell should be separated.
A. Barreto, E. Cuevas, P. Pallé, P. M. Romero, C. Guirado, C. J. Wehrli, and F. Almansa
Atmos. Meas. Tech., 7, 4103–4116, https://doi.org/10.5194/amt-7-4103-2014, https://doi.org/10.5194/amt-7-4103-2014, 2014
C. Guirado, E. Cuevas, V. E. Cachorro, C. Toledano, S. Alonso-Pérez, J. J. Bustos, S. Basart, P. M. Romero, C. Camino, M. Mimouni, L. Zeudmi, P. Goloub, J. M. Baldasano, and A. M. de Frutos
Atmos. Chem. Phys., 14, 11753–11773, https://doi.org/10.5194/acp-14-11753-2014, https://doi.org/10.5194/acp-14-11753-2014, 2014
Short summary
Short summary
Tamanrasset, in the heart of the Sahara, is a key site for aerosol research. The analysis of more than 2 years (2006-2009) of AERONET and KCICLO-corrected sun photometer measurements shows that atmospheric aerosols at Tamanrasset are modulated by the Convective Boundary Layer leading to pure Saharan dust conditions (April-September) and very clear sky conditions (November-February). Dust potential sources and anthropogenic fine aerosols arriving at Tamanrasset are also identified.
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
L. Gomez, M. Navarro-Comas, O. Puentedura, Y. Gonzalez, E. Cuevas, and M. Gil-Ojeda
Atmos. Meas. Tech., 7, 3373–3386, https://doi.org/10.5194/amt-7-3373-2014, https://doi.org/10.5194/amt-7-3373-2014, 2014
R. D. García, E. Cuevas, O. E. García, V. E. Cachorro, P. Pallé, J. J. Bustos, P. M. Romero-Campos, and A. M. de Frutos
Atmos. Meas. Tech., 7, 3139–3150, https://doi.org/10.5194/amt-7-3139-2014, https://doi.org/10.5194/amt-7-3139-2014, 2014
S. V. Henriksson, J.-P. Pietikäinen, A.-P. Hyvärinen, P. Räisänen, K. Kupiainen, J. Tonttila, R. Hooda, H. Lihavainen, D. O'Donnell, L. Backman, Z. Klimont, and A. Laaksonen
Atmos. Chem. Phys., 14, 10177–10192, https://doi.org/10.5194/acp-14-10177-2014, https://doi.org/10.5194/acp-14-10177-2014, 2014
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka
Atmos. Chem. Phys., 14, 8701–8721, https://doi.org/10.5194/acp-14-8701-2014, https://doi.org/10.5194/acp-14-8701-2014, 2014
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014, https://doi.org/10.5194/amt-7-2013-2014, 2014
Y. S. Bennouna, V. Cachorro, M. A. Burgos, C. Toledano, B. Torres, and A. de Frutos
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-5829-2014, https://doi.org/10.5194/amtd-7-5829-2014, 2014
Revised manuscript not accepted
M. I. García, S. Rodríguez, Y. González, and R. D. García
Atmos. Chem. Phys., 14, 3865–3881, https://doi.org/10.5194/acp-14-3865-2014, https://doi.org/10.5194/acp-14-3865-2014, 2014
M. Taylor, S. Kazadzis, and E. Gerasopoulos
Atmos. Meas. Tech., 7, 839–858, https://doi.org/10.5194/amt-7-839-2014, https://doi.org/10.5194/amt-7-839-2014, 2014
C. S. Zerefos, P. Tetsis, A. Kazantzidis, V. Amiridis, S. C. Zerefos, J. Luterbacher, K. Eleftheratos, E. Gerasopoulos, S. Kazadzis, and A. Papayannis
Atmos. Chem. Phys., 14, 2987–3015, https://doi.org/10.5194/acp-14-2987-2014, https://doi.org/10.5194/acp-14-2987-2014, 2014
H. Che, X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, E. Cuevas-Agulló, L. Blarel, H. Wang, H. Zhao, X. Zhang, Y. Wang, J. Sun, R. Tao, X. Zhang, and G. Shi
Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, https://doi.org/10.5194/acp-14-2125-2014, 2014
B. Torres, O. Dubovik, C. Toledano, A. Berjon, V. E. Cachorro, T. Lapyonok, P. Litvinov, and P. Goloub
Atmos. Chem. Phys., 14, 847–875, https://doi.org/10.5194/acp-14-847-2014, https://doi.org/10.5194/acp-14-847-2014, 2014
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
Y.-C. Chen, B. Hamre, Ø. Frette, S. Blindheim, K. Stebel, P. Sobolewski, C. Toledano, and J. J. Stamnes
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-10761-2013, https://doi.org/10.5194/amtd-6-10761-2013, 2013
Preprint withdrawn
C. E. Chung, H. Cha, T. Vihma, P. Räisänen, and D. Decremer
Atmos. Chem. Phys., 13, 11209–11219, https://doi.org/10.5194/acp-13-11209-2013, https://doi.org/10.5194/acp-13-11209-2013, 2013
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
B. Torres, C. Toledano, A. Berjón, D. Fuertes, V. Molina, R. Gonzalez, M. Canini, V. E. Cachorro, P. Goloub, T. Podvin, L. Blarel, O. Dubovik, Y. Bennouna, and A. M. de Frutos
Atmos. Meas. Tech., 6, 2207–2220, https://doi.org/10.5194/amt-6-2207-2013, https://doi.org/10.5194/amt-6-2207-2013, 2013
A. Barreto, E. Cuevas, B. Damiri, P. M. Romero, and F. Almansa
Atmos. Meas. Tech., 6, 2159–2167, https://doi.org/10.5194/amt-6-2159-2013, https://doi.org/10.5194/amt-6-2159-2013, 2013
J. Tonttila, P. Räisänen, and H. Järvinen
Atmos. Chem. Phys., 13, 7551–7565, https://doi.org/10.5194/acp-13-7551-2013, https://doi.org/10.5194/acp-13-7551-2013, 2013
T. Egorova, E. Rozanov, J. Gröbner, M. Hauser, and W. Schmutz
Atmos. Chem. Phys., 13, 3811–3823, https://doi.org/10.5194/acp-13-3811-2013, https://doi.org/10.5194/acp-13-3811-2013, 2013
A. V. Lindfors, N. Kouremeti, A. Arola, S. Kazadzis, A. F. Bais, and A. Laaksonen
Atmos. Chem. Phys., 13, 3733–3741, https://doi.org/10.5194/acp-13-3733-2013, https://doi.org/10.5194/acp-13-3733-2013, 2013
A. Barreto, E. Cuevas, B. Damiri, C. Guirado, T. Berkoff, A. J. Berjón, Y. Hernández, F. Almansa, and M. Gil
Atmos. Meas. Tech., 6, 585–598, https://doi.org/10.5194/amt-6-585-2013, https://doi.org/10.5194/amt-6-585-2013, 2013
E. Cuevas, Y. González, S. Rodríguez, J. C. Guerra, A. J. Gómez-Peláez, S. Alonso-Pérez, J. Bustos, and C. Milford
Atmos. Chem. Phys., 13, 1973–1998, https://doi.org/10.5194/acp-13-1973-2013, https://doi.org/10.5194/acp-13-1973-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Intercomparison of aerosol optical depth retrievals from GAW-PFR and SKYNET sun photometer networks and the effect of calibration
Evaluation of Aeolus feature mask and particle extinction coefficient profile products using CALIPSO data
Assessment of the impact of NO2 contribution on aerosol-optical-depth measurements at several sites worldwide
Improved mean field estimates from the Geostationary Environment Monitoring Spectrometer (GEMS) Level-3 aerosol optical depth (L3 AOD) product: using spatiotemporal variability
Evaluation of on-site calibration procedures for SKYNET Prede POM sun–sky photometers
Aerosol optical property measurement using the orbiting high-spectral-resolution lidar on board the DQ-1 satellite: retrieval and validation
Regional validation of the solar irradiance tool SolaRes in clear-sky conditions, with a focus on the aerosol module
An empirical characterization of the aerosol Ångström exponent interpolation bias using SAGE III/ISS data
Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE
Characterization of dust aerosols from ALADIN and CALIOP measurements
Lidar depolarization characterization using a reference system
Algorithm evaluation for polarimetric remote sensing of atmospheric aerosols
Validation of initial observation from the first spaceborne high-spectral-resolution lidar with a ground-based lidar network
Ozone and aerosol optical depth retrievals using the ultraviolet multi-filter rotating shadow-band radiometer
Aerosol layer height (ALH) retrievals from oxygen absorption bands: Intercomparison and validation among different satellite platforms, GEMS, EPIC, and TROPOMI
Expanding the coverage of Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrievals over shallow, turbid, and eutrophic waters
Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network
Spectral aerosol optical depth from SI-traceable spectral solar irradiance measurements
Quality assessment of aerosol lidars at 1064 nm in the framework of the MEMO campaign
Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: the TROPOspheric Monitoring Instrument (TROPOMI) NO2 product and the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical depth (AOD) data fusion product and its proxy
Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity
First assessment of Aeolus Standard Correct Algorithm particle backscatter coefficient retrievals in the eastern Mediterranean
Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry
Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation
Sensitivity of aerosol optical depth trends using long-term measurements of different sun photometers
Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3
Performance evaluation for retrieving aerosol optical depth from the Directional Polarimetric Camera (DPC) based on the GRASP algorithm
Assessment of tropospheric CALIPSO Version 4.2 aerosol types over the ocean using independent CALIPSO–SODA lidar ratios
Real-time UV index retrieval in Europe using Earth observation-based techniques: system description and quality assessment
Evaluation of UV–visible MAX-DOAS aerosol profiling products by comparison with ceilometer, sun photometer, and in situ observations in Vienna, Austria
Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval
Characterization of aerosol size properties from measurements of spectral optical depth: a global validation of the GRASP-AOD code using long-term AERONET data
Retrieval of aerosol fine-mode fraction over China from satellite multiangle polarized observations: validation and comparison
Retrieval and evaluation of tropospheric-aerosol extinction profiles using multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements over Athens, Greece
Empirically derived parameterizations of the direct aerosol radiative effect based on ORACLES aircraft observations
TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020
Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Interannual and seasonal variations in the aerosol optical depth of the atmosphere in two regions of Spitsbergen (2002–2018)
Evaluation of UV aerosol retrievals from an ozone lidar
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa
Evaluation of the OMPS/LP stratospheric aerosol extinction product using SAGE III/ISS observations
A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling
A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data
The 2018 fire season in North America as seen by TROPOMI: aerosol layer height intercomparisons and evaluation of model-derived plume heights
Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations
Aerosol and cloud top height information of Envisat MIPAS measurements
Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product
Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm
A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, Stephan Nyeki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 6085–6105, https://doi.org/10.5194/amt-17-6085-2024, https://doi.org/10.5194/amt-17-6085-2024, 2024
Short summary
Short summary
Different sun photometer networks use different instruments, post-processing algorithms and calibration protocols for aerosol optical depth (AOD) retrieval. Such differences can affect the homogeneity and comparability of their measurements. In this study, we assess the homogeneity between the sun photometer networks GAW-PFR and SKYNET, analysing common measurements during three campaigns between 2017–2021, and investigate the main cause of the differences.
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024, https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary
Short summary
We describe the new feature mask (AEL-FM) and aerosol profile retrieval (AEL-PRO) algorithms developed for Aeolus lidar and present the evaluation of the Aeolus products using CALIPSO data for dust aerosols over Africa. We have found that Aeolus and CALIPSO show similar aerosol patterns in the collocated orbits and have good agreement for the extinction coefficients for the dust aerosols, especially for the cloud-free scenes. The finding is applicable to Aeolus L2A product Baseline 17.
Akriti Masoom, Stelios Kazadzis, Masimo Valeri, Ioannis-Panagiotis Raptis, Gabrielle Brizzi, Kyriakoula Papachristopoulou, Francesca Barnaba, Stefano Casadio, Axel Kreuter, and Fabrizio Niro
Atmos. Meas. Tech., 17, 5525–5549, https://doi.org/10.5194/amt-17-5525-2024, https://doi.org/10.5194/amt-17-5525-2024, 2024
Short summary
Short summary
Aerosols, which have a wide impact on climate, radiative forcing, and human health, are widely represented by aerosol optical depth (AOD). AOD retrievals require Rayleigh scattering and atmospheric absorption (ozone, NO2, etc.) corrections. We analysed the NO2 (which has a high spatiotemporal variation) uncertainty impact on AOD retrievals using the synergy of co-located ground-based instruments with a long-term dataset at worldwide sites and found significant AOD over- or underestimations.
Sooyon Kim, Yeseul Cho, Hanjeong Ki, Seyoung Park, Dagun Oh, Seungjun Lee, Yeonghye Cho, Jhoon Kim, Wonjin Lee, Jaewoo Park, Ick Hoon Jin, and Sangwook Kang
Atmos. Meas. Tech., 17, 5221–5241, https://doi.org/10.5194/amt-17-5221-2024, https://doi.org/10.5194/amt-17-5221-2024, 2024
Short summary
Short summary
This paper describes new work that improves the processing of GEMS AOD data. First, we enhance the inverse-distance-weighting algorithm by incorporating quality flag information, assigning weights that are inversely proportional to the number of unreliable grids. Second, we leverage a spatiotemporal merging method to address both spatial and temporal variability. Finally, we estimate the mean field values for GEMS AOD data, enhancing our understanding of the impact of aerosols on climate change.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Chenxing Zha, Lingbing Bu, Zhi Li, Qin Wang, Ahmad Mubarak, Pasindu Liyanage, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 17, 4425–4443, https://doi.org/10.5194/amt-17-4425-2024, https://doi.org/10.5194/amt-17-4425-2024, 2024
Short summary
Short summary
China has launched the atmospheric environment monitoring satellite DQ-1, which consists of an advanced lidar system. Our research presents a retrieval algorithm of the DQ-1 lidar system, and the retrieval results are consistent with other datasets. We also use the DQ-1 dataset to investigate dust and volcanic aerosols. This research shows that the DQ-1 lidar system can accurately measure the Earth's atmosphere and has potential for scientific applications.
Thierry Elias, Nicolas Ferlay, Gabriel Chesnoiu, Isabelle Chiapello, and Mustapha Moulana
Atmos. Meas. Tech., 17, 4041–4063, https://doi.org/10.5194/amt-17-4041-2024, https://doi.org/10.5194/amt-17-4041-2024, 2024
Short summary
Short summary
In the solar energy application field, it is key to simulate solar resources anywhere on the globe. We conceived the Solar Resource estimate (SolaRes) tool to provide precise and accurate estimates of solar resources for any solar plant technology. We present the validation of SolaRes by comparing estimates with measurements made on two ground-based platforms in northern France for 2 years at 1 min resolution. Validation is done in clear-sky conditions where aerosols are the main factors.
Robert P. Damadeo, Viktoria F. Sofieva, Alexei Rozanov, and Larry W. Thomason
Atmos. Meas. Tech., 17, 3669–3678, https://doi.org/10.5194/amt-17-3669-2024, https://doi.org/10.5194/amt-17-3669-2024, 2024
Short summary
Short summary
Comparing different aerosol data sets for scientific studies often requires converting aerosol extinction data between different wavelengths. A common approximation for the spectral behavior of aerosol is the Ångström formula; however, this introduces biases. Using measurements across many different wavelengths from a single instrument, we derive an empirical relationship to both characterize this bias and offer a correction for other studies that may employ this analysis approach.
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Rui Song, Adam Povey, and Roy G. Grainger
Atmos. Meas. Tech., 17, 2521–2538, https://doi.org/10.5194/amt-17-2521-2024, https://doi.org/10.5194/amt-17-2521-2024, 2024
Short summary
Short summary
In our study, we explored aerosols, tiny atmospheric particles affecting the Earth's climate. Using data from two lidar-equipped satellites, ALADIN and CALIOP, we examined a 2020 Saharan dust event. The newer ALADIN's results aligned with CALIOP's. By merging their data, we corrected CALIOP's discrepancies, enhancing the dust event depiction. This underscores the significance of advanced satellite instruments in aerosol research. Our findings pave the way for upcoming satellite missions.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Otto Hasekamp, Pavel Litvinov, Guangliang Fu, Cheng Chen, and Oleg Dubovik
Atmos. Meas. Tech., 17, 1497–1525, https://doi.org/10.5194/amt-17-1497-2024, https://doi.org/10.5194/amt-17-1497-2024, 2024
Short summary
Short summary
Aerosols are particles in the atmosphere that cool the climate by reflecting and absorbing sunlight (direct effect) and changing cloud properties (indirect effect). The scale of aerosol cooling is uncertain, hampering accurate climate predictions. We compare two algorithms for the retrieval of aerosol properties from multi-angle polarimetric measurements: Generalized Retrieval of Atmosphere and Surface Properties (GRASP) and Remote sensing of Trace gas and Aerosol Products (RemoTAP).
Qiantao Liu, Zhongwei Huang, Jiqiao Liu, Weibiao Chen, Qingqing Dong, Songhua Wu, Guangyao Dai, Meishi Li, Wuren Li, Ze Li, Xiaodong Song, and Yuan Xie
Atmos. Meas. Tech., 17, 1403–1417, https://doi.org/10.5194/amt-17-1403-2024, https://doi.org/10.5194/amt-17-1403-2024, 2024
Short summary
Short summary
The achieved results revealed that the ACDL observations were in good agreement with the ground-based lidar measurements during dust events. The heights of cloud top and bottom from these two measurements were well matched and comparable. This study proves that the ACDL provides reliable observations of aerosol and cloud in the presence of various climatic conditions, which helps to further evaluate the impacts of aerosol on climate and the environment, as well as on the ecosystem in the future.
Joseph Michalsky and Glen McConville
Atmos. Meas. Tech., 17, 1017–1022, https://doi.org/10.5194/amt-17-1017-2024, https://doi.org/10.5194/amt-17-1017-2024, 2024
Short summary
Short summary
The ozone in the atmosphere is measured by looking at the sun and measuring how diminished the light in the ultraviolet is relative to how bright it is above the Earth's atmosphere. This typically uses spectral instruments that are either costly or no longer manufactured. This paper uses a relatively inexpensive interference filter instrument to perform the same task. Daily ozone measurements with the latter and this filter instrument are compared. Aerosols are calculated as a by-product.
Hyerim Kim, Xi Chen, Jun Wang, Zhendong Lu, Meng Zhou, Gregory Carmichael, Sang Seo Park, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2023-3115, https://doi.org/10.5194/egusphere-2023-3115, 2024
Short summary
Short summary
We compare aerosol layer height (ALH) derived from satellite platforms (GEMS, EPIC, TROPOMI). Validation against CALIOP shows high correlation for EPIC and TROPOMI (R > 0.7, overestimation ~0.8 km), while GEMS displays minimal bias (0.1 km) with a lower correlation (R = 0.64). Categorizing GEMS ALH with UVAI ≥ 3 improves agreement. GEMS exhibits a narrower ALH range and lower mean value than TROPOMI and EPIC. Diurnal variation of EPIC and GEMS ALH aligns with the boundary layer development.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Julian Gröbner, Natalia Kouremeti, Gregor Hülsen, Ralf Zuber, Mario Ribnitzky, Saulius Nevas, Peter Sperfeld, Kerstin Schwind, Philipp Schneider, Stelios Kazadzis, África Barreto, Tom Gardiner, Kavitha Mottungan, David Medland, and Marc Coleman
Atmos. Meas. Tech., 16, 4667–4680, https://doi.org/10.5194/amt-16-4667-2023, https://doi.org/10.5194/amt-16-4667-2023, 2023
Short summary
Short summary
Spectral solar irradiance measurements traceable to the International System of Units (SI) allow for intercomparability between instruments and for their validation according to metrological standards. Here we also validate and reduce the uncertainties of the top-of-atmosphere TSIS-1 Hybrid Solar Reference Spectrum (HSRS). The management of large networks, e.g. AERONET or GAW-PFR, will benefit from reducing logistical overhead, improving their resilience and achieving metrological traceability.
Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang
Atmos. Meas. Tech., 16, 4307–4318, https://doi.org/10.5194/amt-16-4307-2023, https://doi.org/10.5194/amt-16-4307-2023, 2023
Short summary
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.
Jincheol Park, Jia Jung, Yunsoo Choi, Hyunkwang Lim, Minseok Kim, Kyunghwa Lee, Yun Gon Lee, and Jhoon Kim
Atmos. Meas. Tech., 16, 3039–3057, https://doi.org/10.5194/amt-16-3039-2023, https://doi.org/10.5194/amt-16-3039-2023, 2023
Short summary
Short summary
In response to the recent release of new geostationary platform-derived observational data generated by the Geostationary Environment Monitoring Spectrometer (GEMS) and its sister instruments, this study utilized the GEMS data fusion product and its proxy data in adjusting aerosol precursor emissions over East Asia. The use of spatiotemporally more complete observation references in updating the emissions resulted in more promising model performances in estimating aerosol loadings in East Asia.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Bastiaan van Diedenhoven, Otto P. Hasekamp, Brian Cairns, Gregory L. Schuster, Snorre Stamnes, Michael Shook, and Luke Ziemba
Atmos. Meas. Tech., 15, 7411–7434, https://doi.org/10.5194/amt-15-7411-2022, https://doi.org/10.5194/amt-15-7411-2022, 2022
Short summary
Short summary
The strong variability in the chemistry of atmospheric particulate matter affects the amount of water aerosols absorb and their effect on climate. We present a remote sensing method to determine the amount of water in particulate matter. Its application to airborne instruments indicates that the observed aerosols have rather low water contents and low fractions of soluble particles. Future satellites will be able to yield global aerosol water uptake data.
Milagros E. Herrera, Oleg Dubovik, Benjamin Torres, Tatyana Lapyonok, David Fuertes, Anton Lopatin, Pavel Litvinov, Cheng Chen, Jose Antonio Benavent-Oltra, Juan L. Bali, and Pablo R. Ristori
Atmos. Meas. Tech., 15, 6075–6126, https://doi.org/10.5194/amt-15-6075-2022, https://doi.org/10.5194/amt-15-6075-2022, 2022
Short summary
Short summary
This study deals with the dynamic error estimates of the aerosol-retrieved properties by the GRASP algorithm, which are provided for directly retrieved and derived parameters. Moreover, GRASP provides full covariance matrices that appear to be a useful approach for optimizing observation schemes and retrieval set-ups. The validation of the retrieved dynamic error estimates is done through real and synthetic measurements using sun photometer and lidar observations.
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022, https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Short summary
The aim of this work is to investigate the limitations of calculating long-term trends of a parameter that quantifies the overall effect of atmospheric aerosols on the solar radiation. A main finding is that even instruments with good agreement between their observations can show significantly different linear trends. By calculating time-varying trends, the trend agreement is shown to improve. We also show that different methods of trend estimation can result in significant trend differences.
Larisa Sogacheva, Matthieu Denisselle, Pekka Kolmonen, Timo H. Virtanen, Peter North, Claire Henocq, Silvia Scifoni, and Steffen Dransfeld
Atmos. Meas. Tech., 15, 5289–5322, https://doi.org/10.5194/amt-15-5289-2022, https://doi.org/10.5194/amt-15-5289-2022, 2022
Short summary
Short summary
The aim of this study was to provide global characterisation of a new SYNERGY aerosol product derived from the data from the OLCI and SLSTR sensors aboard the Sentinel-3A and Sentinel-3B satellites. Over ocean, the performance of SYNERGY-retrieved AOD is good. Reduced performance over land was expected since the surface reflectance and angular distribution of scattering are more difficult to treat. Validation statistics are often slightly better for S3B and in the Southern Hemisphere.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary
Short summary
For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Stefan F. Schreier, Tim Bösch, Andreas Richter, Kezia Lange, Michael Revesz, Philipp Weihs, Mihalis Vrekoussis, and Christoph Lotteraner
Atmos. Meas. Tech., 14, 5299–5318, https://doi.org/10.5194/amt-14-5299-2021, https://doi.org/10.5194/amt-14-5299-2021, 2021
Short summary
Short summary
This paper reports on the evaluation of aerosol profiling products retrieved from ground-based MAX-DOAS instruments using the BOREAS algorithm. Aerosol extinction profiles, near-surface aerosol extinction, and aerosol optical depth are compared to measurements collected with ceilometer, sun photometer, and in situ instruments. We show that these MAX-DOAS aerosol profiling products provide useful information to study spatial and temporal variations above the urban area of Vienna.
Carmen Córdoba-Jabonero, Albert Ansmann, Cristofer Jiménez, Holger Baars, María-Ángeles López-Cayuela, and Ronny Engelmann
Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021, https://doi.org/10.5194/amt-14-5225-2021, 2021
Short summary
Short summary
An experimental assessment of a polarized micro-pulse lidar (P-MPL) in comparison to reference lidars is presented regarding the retrieval of aerosol optical properties. The evaluation is focused on both the optimally determined overlap function and volume linear depolarization ratio. A P-MPL overlap must be regularly estimated to derive suitable aerosol products (backscatter, extinction, and particle depolarization ratio). This methodology can be easily applied to other P-MPL systems.
Benjamin Torres and David Fuertes
Atmos. Meas. Tech., 14, 4471–4506, https://doi.org/10.5194/amt-14-4471-2021, https://doi.org/10.5194/amt-14-4471-2021, 2021
Short summary
Short summary
The article shows the capacity of the new GRASP-AOD approach to be used for large datasets of aerosol optical depth from ground-based observations, through a comparison with standard AERONET codes. This new approach reduces the requirements in terms of measurements (no need of scattering information) to derive some basic aerosol size and optical properties. A broad use of this algorithm would increase the datasets of aerosol properties from ground-based observations.
Yang Zhang, Zhengqiang Li, Zhihong Liu, Yongqian Wang, Lili Qie, Yisong Xie, Weizhen Hou, and Lu Leng
Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021, https://doi.org/10.5194/amt-14-1655-2021, 2021
Short summary
Short summary
The aerosol fine-mode fraction (FMF) is an important parameter reflecting the content of man-made aerosols. This study carried out the retrieval of FMF in China based on multi-angle polarization data and validated the results. The results of this study can contribute to the FMF retrieval algorithm of multi-angle polarization sensors. At the same time, a high-precision FMF dataset of China was obtained, which can provide basic data for atmospheric environment research.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Priyanka deSouza, Ralph A. Kahn, James A. Limbacher, Eloise A. Marais, Fábio Duarte, and Carlo Ratti
Atmos. Meas. Tech., 13, 5319–5334, https://doi.org/10.5194/amt-13-5319-2020, https://doi.org/10.5194/amt-13-5319-2020, 2020
Short summary
Short summary
This paper presents a novel method to constrain the size distribution derived from low-cost optical particle counters (OPCs) using satellite data to develop higher-quality particulate matter (PM) estimates. Such estimates can enable cities that do not have access to expensive reference air quality monitors, especially those in the global south, to develop effective air quality management plans.
Dmitry M. Kabanov, Christoph Ritter, and Sergey M. Sakerin
Atmos. Meas. Tech., 13, 5303–5317, https://doi.org/10.5194/amt-13-5303-2020, https://doi.org/10.5194/amt-13-5303-2020, 2020
Short summary
Short summary
Long-term photometer measurements of two sites on Spitsbergen, Barentsburg and Ny-Ålesund, in the European Arctic are presented and compared. We find slightly higher aerosol optical depths at Barentsburg and attribute this to a higher concentration of small particles.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020, https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Short summary
The aim of this paper is to present the assimilation of lidar observations from the CALIOP instrument onboard the CALIPSO satellite in the chemistry-transport model of Météo-France, MOCAGE. We presented the first results of the assimilation of the extinction coefficient observations of the CALIOP lidar instrument during the pre-ChArMEx-TRAQA field campaign. We evaluated the added value of the assimilation product to better document a desert dust transport event compared to the model free run.
Carl Malings, Daniel M. Westervelt, Aliaksei Hauryliuk, Albert A. Presto, Andrew Grieshop, Ashley Bittner, Matthias Beekmann, and R. Subramanian
Atmos. Meas. Tech., 13, 3873–3892, https://doi.org/10.5194/amt-13-3873-2020, https://doi.org/10.5194/amt-13-3873-2020, 2020
Short summary
Short summary
Most air quality information comes from accurate but expensive instruments. These can be supplemented by lower-cost sensors to increase the density of ground data and expand monitoring into less well-instrumented areas, like sub-Saharan Africa. In this paper, we look at how low-cost sensor data can be combined with satellite information on air quality (which requires ground data to properly calibrate measurements) and assess the benefits these low-cost sensors provide in this context.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020, https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Short summary
This paper presents a first validation of the TROPOspheric Monitoring Instrument (TROPOMI) aerosol layer height (ALH) product, which is an estimate of the height of an aerosol layer using a spectrometer on board ESA's Sentinel-5 Precursor satellite mission. Comparison between the TROPOMI ALH product and co-located aerosol extinction heights from the CALIOP instrument on board NASA's CALIPSO mission show good agreement for selected cases over the ocean and large differences over land.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Jonas Witthuhn, Anja Hünerbein, and Hartwig Deneke
Atmos. Meas. Tech., 13, 1387–1412, https://doi.org/10.5194/amt-13-1387-2020, https://doi.org/10.5194/amt-13-1387-2020, 2020
Short summary
Short summary
Reliable reference measurements over ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Here, a uniqe set of shipborne reference aerosol products obtained from Microtops sunphotometer and GUVis-3511 shadowband radiometer observations are compared to aerosol products from the MODIS and SEVIRI satellite sensors, and the CAMS reanalysis over the Atlantic Ocean. The present evaluation highlights the importance of an aerosol-type based analysis.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Ekaterina Y. Zhdanova, Natalia Y. Chubarova, and Alexei I. Lyapustin
Atmos. Meas. Tech., 13, 877–891, https://doi.org/10.5194/amt-13-877-2020, https://doi.org/10.5194/amt-13-877-2020, 2020
Short summary
Short summary
We estimated the distribution of aerosol optical thickness (AOT) with a spatial resolution of 1 km over the Moscow megacity using the MAIAC satellite aerosol product from May to September over the years 2000–2017. We revealed that the MAIAC product is a reliable instrument for assessing the spatial features of urban aerosol pollution and its temporal dynamics. The local aerosol effect is about 0.02–0.04 in AOT in the visible spectral range over the Moscow megacity.
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020, https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Andrew M. Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C. Povey, Kerstin Stebel, and Marcin L. Witek
Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, https://doi.org/10.5194/amt-13-373-2020, 2020
Short summary
Short summary
Satellite measurements of the Earth are routinely processed to estimate useful quantities; one example is the amount of atmospheric aerosols (which are particles such as mineral dust, smoke, volcanic ash, or sea spray). As with all measurements and inferred quantities, there is some degree of uncertainty in this process.
There are various methods to estimate these uncertainties. A related question is the following: how reliable are these estimates? This paper presents a method to assess them.
Cited articles
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Ångström, A.: On the atmospheric transmission of sun radiation and on dust in
the air, Geogr. Ann., 11, 156–166, 1929. a
Balkanski, Y., Schulz, M., Marticorena, B., Bergametti, G., Guelle, W., Dulac,
F., Moulin, C., and Lambert, C.: Importance of the source term and of the
size distribution to model the mineral dust cycle, in: The impact of desert
dust across the Mediterranean, 69–76, Springer,
https://doi.org/10.1007/978-94-017-3354-0_6, 1996. a
Barker, H. W.: Solar radiative transfer through clouds possessing isotropic
variable extinction coefficient, Q. J. Roy.
Meteor. Soc., 118, 1145–1162,
https://doi.org/10.1002/qj.49711850807, 1992. a
Barker, H. W.: Estimating cloud field albedo using one-dimensional series of
optical depth, J. Atmos. Sci., 53, 2826–2837,
https://doi.org/10.1175/1520-0469(1996)053<2826:ECFAUO>2.0.CO;2, 1996. a
Barreto, A., Cuevas, E., Pallé, P., Romero, P. M., Guirado, C., Wehrli, C. J., and Almansa, F.: Recovering long-term aerosol optical depth series (1976–2012) from an astronomical potassium-based resonance scattering spectrometer, Atmos. Meas. Tech., 7, 4103–4116, https://doi.org/10.5194/amt-7-4103-2014, 2014. a
Barreto, Á., Cuevas, E., Granados-Muñoz, M.-J., Alados-Arboledas, L., Romero, P. M., Gröbner, J., Kouremeti, N., Almansa, A. F., Stone, T., Toledano, C., Román, R., Sorokin, M., Holben, B., Canini, M., and Yela, M.: The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation, Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, 2016. a, b, c, d
Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M., and Gobbi, G. P.: Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations, Atmos. Chem. Phys., 9, 8265–8282, https://doi.org/10.5194/acp-9-8265-2009, 2009. a, b, c
Basart, S., Pérez, C., Nickovic, S., Cuevas, E., and Baldasano, J.:
Development and evaluation of the BSC-DREAM8b dust regional model over
Northern Africa, the Mediterranean and the Middle East, Tellus B, 64, 18539, https://doi.org/10.3402/tellusb.v64i0.18539,
2012. a
Benedetti, A., Reid, J. S., Knippertz, P., Marsham, J. H., Di Giuseppe, F., Rémy, S., Basart, S., Boucher, O., Brooks, I. M., Menut, L., Mona, L., Laj, P., Pappalardo, G., Wiedensohler, A., Baklanov, A., Brooks, M., Colarco, P. R., Cuevas, E., da Silva, A., Escribano, J., Flemming, J., Huneeus, N., Jorba, O., Kazadzis, S., Kinne, S., Popp, T., Quinn, P. K., Sekiyama, T. T., Tanaka, T., and Terradellas, E.: Status and future of numerical atmospheric aerosol prediction with a focus on data requirements, Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, 2018. a
Berjón, A., Barreto, A., Hernández, Y., Yela, M., Toledano, C., and Cuevas, E.: A 10-year characterization of the Saharan Air Layer lidar ratio in the subtropical North Atlantic, Atmos. Chem. Phys., 19, 6331–6349, https://doi.org/10.5194/acp-19-6331-2019, 2019. a
Böhm-Vitense, E.: Introduction to stellar astrophysics, Vol. 2. Stellar
atmospheres, Cambridge University Press, Cambridge
(UK), 12+ 245 p., ISBN 0-521-34403-4,
1989. a
Bokoye, A., Royer, A., O'Neil, N., Cliche, P., Fedosejevs, G., Teillet, P., and
McArthur, L.: Characterization of atmospheric aerosols across Canada from a
ground-based sunphotometer network: AEROCAN, Atmos. Ocean, 39, 429–456,
https://doi.org/10.1080/07055900.2001.9649687, 2001. a
Cachorro, V., Toledano, C., Sorribas, M., Berjón, A., De Frutos, A., and
Laulainen, N.: An “in situ” calibration-correction procedure (KCICLO)
based on AOD diurnal cycle: Comparative results between AERONET and
reprocessed (KCICLO method) AOD-alpha data series at El Arenosillo, Spain,
J. Geophys. Res.-Atmos., 113, D02207,
https://doi.org/10.1029/2007JD009001, 2008. a, b
Cachorro, V. E., Romero, P. M., Toledano, C., Cuevas, E., and de Frutos, A. M.:
The fictitious diurnal cycle of aerosol optical depth: A new approach for
“in situ” calibration and correction of AOD data series, Geophys.
Res. Lett., 31, L12106, https://doi.org/10.1029/2004GL019651, 2004. a, b
Campanelli, M., Nakajima, T., and Olivieri, B.: Determination of the solar
calibration constant for a sun-sky radiometer: proposal of an in-situ
procedure, Appl. Opt., 43, 651–659, 2004. a
Carlund, T., Kouremeti, N., Kazadzis, S., and Gröbner, J.: Aerosol optical depth determination in the UV using a four-channel precision filter radiometer, Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, 2017. a
Carrillo, J., Guerra, J. C., and Cuevas, E., and Barrancos, J.: Characterization
of the Marine Boundary Layer and the Trade-Wind Inversion over the
Sub-tropical North Atlantic, Bound.-Lay. Meteorol., 158, 311–330,
https://doi.org/10.1007/s10546-015-0081-1,
2016. a
Che, H., Zhang, X.-Y., Xia, X., Goloub, P., Holben, B., Zhao, H., Wang, Y., Zhang, X.-C., Wang, H., Blarel, L., Damiri, B., Zhang, R., Deng, X., Ma, Y., Wang, T., Geng, F., Qi, B., Zhu, J., Yu, J., Chen, Q., and Shi, G.: Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013, Atmos. Chem. Phys., 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015, 2015. a
Chedin, A., Capelle, V., and Scott, N.: Detection of IASI dust AOD trends over
Sahara: How many years of data required?, Atmos. Res., 212,
120–129, https://doi.org/10.1016/j.atmosres.2018.05.004,
2018. a
Chubarova, N. Y., Poliukhov, A. A., and Gorlova, I. D.: Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction, Atmos. Meas. Tech., 9, 313–334, https://doi.org/10.5194/amt-9-313-2016, 2016. a
Cuevas, E., González, Y., Rodríguez, S., Guerra, J. C., Gómez-Peláez, A. J., Alonso-Pérez, S., Bustos, J., and Milford, C.: Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere, Atmos. Chem. Phys., 13, 1973–1998, https://doi.org/10.5194/acp-13-1973-2013, 2013. a
Cuevas, E., Camino, C., Benedetti, A., Basart, S., Terradellas, E., Baldasano, J. M., Morcrette, J. J., Marticorena, B., Goloub, P., Mortier, A., Berjón, A., Hernández, Y., Gil-Ojeda, M., and Schulz, M.: The MACC-II 2007–2008 reanalysis: atmospheric dust evaluation and characterization over northern Africa and the Middle East, Atmos. Chem. Phys., 15, 3991–4024, https://doi.org/10.5194/acp-15-3991-2015, 2015. a, b, c, d, e, f
Cuevas, E., Gómez-Peláez, A., Rodríguez, S., Terradellas, E., Basart, S.,
García, R., García, O., and Alonso-Pérez, S.: The pulsating nature of
large-scale Saharan dust transport as a result of interplays between
mid-latitude Rossby waves and the North African Dipole Intensity, Atmos.
Environ., 167, 586–602,
https://doi.org/10.1016/j.atmosenv.2017.08.059,
2017a. a
Cuevas, E., Milford, C., Bustos, J. J., del Campo-Hernández, García, O.,
D., G. R., Gómez-Peláez, Guirado-Fuentes, C., Marrero, C., Prats, N.,
Ramos, R., Redondas, A., Reyes, E., Rodríguez, S., Romero-Campos, P.,
Scheneider, M., Belmonte, J., Yela, M., Almansa, F., Barreto, A.,
López-Solano, C., Basart, S., Terradellas, E., Afonso, S., Bayo, C.,
Berjón, A., Bethencourt, J., Carreño, V., Castro, N. J., Cruz, A. M.,
Damas, M., De Ory-Ajamil, F., García, M. I., Gómez-Trueba, V.,
González, Y., Hernández, C., Hernández, Y., Hernández-Cruz, B.,
Jover, M., León, S., López-Fernández, R., López-Solano, J.,
Rodríguez, E., Rodríguez-Franco, J., Rodríguez-Valido, M., Sálamo,
C., Sanromá, E., Santana, D., Santo-Tomás, F., Sepúlveda, E., Sierra,
M., and Sosa, E.: Izaña Atmospheric Research Center Activity Report
2015–2016, State Meteorological Agency (AEMET), 2017b. a
Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., Bourrianne, T., Momboisse, G., Sellegri, K., Schwarzenbock, A., Freney, E., Mallet, M., and Formenti, P.: Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean, Atmos. Chem. Phys., 16, 1081–1104, https://doi.org/10.5194/acp-16-1081-2016, 2016. a
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018. a
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D.,
Tanré, D., and Slutsker, I.: Variability of absorption and optical
properties of key aerosol types observed in worldwide locations, J.
Atmos. Sci., 59, 590–608,
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002. a
Eck, T., Holben, B., Reid, J., Dubovik, O., Smirnov, A., O'neill, N., Slutsker,
I., and Kinne, S.: Wavelength dependence of the optical depth of biomass
burning, urban, and desert dust aerosols, J. Geophys. Res.-Atmos., 104, 31333–31349, https://doi.org/10.1029/1999JD900923, 1999. a, b, c, d, e, f, g
Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291, https://doi.org/10.5194/acp-3-1285-2003, 2003. a
Freidenreich, S. and Ramaswamy, V.: A new multiple-band solar radiative
parameterization for general circulation models, J. Geophys. Res.-Atmos., 104, 31389–31409,
https://doi.org/10.1029/1999JD900456, 1999. a
García, R. D., Cuevas, E., García, O. E., Cachorro, V. E., Pallé, P., Bustos, J. J., Romero-Campos, P. M., and de Frutos, A. M.: Reconstruction of global solar radiation time series from 1933 to 2013 at the Izaña Atmospheric Observatory, Atmos. Meas. Tech., 7, 3139–3150, https://doi.org/10.5194/amt-7-3139-2014, 2014. a
García, R. D., Cuevas, E., Ramos, R., Cachorro, V. E., Redondas, A., and Moreno-Ruiz, J. A.: Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements and quality control/assurance procedures, Geosci. Instrum. Method. Data Syst., 8, 77–96, https://doi.org/10.5194/gi-8-77-2019, 2019. a
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019. a, b, c, d, e, f, g, h, i
Goloub, P., Li, Z., Dubovik, O., Blarel, L., Podvin, T., Jankowiak, I., Lecoq,
R., Deroo, C., Chatenet, B., Morel, J., Cuevas, E., and Ramos, R.:
PHOTONS/AERONET sunphotometer network overview: description, activities,
results, in: Fourteenth International Symposium on Atmospheric and Ocean
Optics/Atmospheric Physics, vol. 6936, p. 69360V, International Society for
Optics and Photonics, 2007. a, b
Grassl, H.: Calculated circumsolar radiation as a function of aerosol type,
field of view, wavelength, and optical depth, Appl. Opt., 10, 2542–2543,
https://doi.org/10.1364/AO.10.002542, 1971. a
Guirado, C., Cuevas, E., Cachorro, V. E., Toledano, C., Alonso-Pérez, S., Bustos, J. J., Basart, S., Romero, P. M., Camino, C., Mimouni, M., Zeudmi, L., Goloub, P., Baldasano, J. M., and de Frutos, A. M.: Aerosol characterization at the Saharan AERONET site Tamanrasset, Atmos. Chem. Phys., 14, 11753–11773, https://doi.org/10.5194/acp-14-11753-2014, 2014. a
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A., Vermote,
E., Reagan, J., and Kaufman, Y.: Multi-band automatic sun and sky scanning
radiometer system for measurement of aerosols, CNES, Proceedings
of 6th International Symposium on Physical Measurements and Signatures in
Remote Sensing, 75–83, 1994. a, b, c
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A., Vermote,
E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., and
Smirnov, A.: AERONET – A Federated Instrument Network and Data Archive for
Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998. a, b, c, d, e, f
Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer,
A.,Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’neill, N. T., Pietras, C., Pinker, C., Voss, K., and Zibordi, G.: An emerging
ground-based aerosol climatology: Aerosol optical depth from AERONET, J. Geophys. Res.-Atmos., 106, 12067–12097,
https://doi.org/10.1029/2001JD900014, 2001. a, b
Huneeus, N., Basart, S., Fiedler, S., Morcrette, J.-J., Benedetti, A., Mulcahy, J., Terradellas, E., Pérez García-Pando, C., Pejanovic, G., Nickovic, S., Arsenovic, P., Schulz, M., Cuevas, E., Baldasano, J. M., Pey, J., Remy, S., and Cvetkovic, B.: Forecasting the northern African dust outbreak towards Europe in April 2011: a model intercomparison, Atmos. Chem. Phys., 16, 4967–4986, https://doi.org/10.5194/acp-16-4967-2016, 2016. a
IPCC: The Physical Science Basis. Intergovernmental Panel on Climate Change,
https://doi.org/10.1017/CBO9781107415324, 2013. a
Jarosławski, J., Krzyścin, J. W., Puchalski, S., and Sobolewski, P.: On
the optical thickness in the UV range: Analysis of the ground-based data
taken at Belsk, Poland, J. Geophys. Res.-Atmos., 108, 4722,
https://doi.org/10.1029/2003JD003571, 2003. a
Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as retrieved
by MISR, J. Geophys. Res.-Atmos., 120, 4248–4281,
https://doi.org/10.1002/2015JD023322,
2015. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year
reanalysis project, B. Am. Meteorol. Soc., 77,
437–472, 1996. a
Kasten, F.: A new table and approximation formula for the relative optical air
mass, Arch. Meteor. Geophy. B,
14, 206–223, https://doi.org/10.1007/BF02248840, 1966. a
Kasten, F. and Young, A. T.: Revised optical air mass tables and approximation
formula, Appl. Opt., 28, 4735–4738, https://doi.org/10.1364/AO.28.004735, 1989. a, b
Kazadzis, S., Veselovskii, I., Amiridis, V., Gröbner, J., Suvorina, A., Nyeki, S., Gerasopoulos, E., Kouremeti, N., Taylor, M., Tsekeri, A., and Wehrli, C.: Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET, Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014, 2014. a, b
Kazadzis, S., Kouremeti, N., Diémoz, H., Gröbner, J., Forgan, B. W., Campanelli, M., Estellés, V., Lantz, K., Michalsky, J., Carlund, T., Cuevas, E., Toledano, C., Becker, R., Nyeki, S., Kosmopoulos, P. G., Tatsiankou, V., Vuilleumier, L., Denn, F. M., Ohkawara, N., Ijima, O., Goloub, P., Raptis, P. I., Milner, M., Behrens, K., Barreto, A., Martucci, G., Hall, E., Wendell, J., Fabbri, B. E., and Wehrli, C.: Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, 2018a. a, b, c, d, e
Kazadzis, S., Kouremeti, N., Nyeki, S., Gröbner, J., and Wehrli, C.: The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements, Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, 2018b. a, b, c, d, e, f, g, h
Kentarchos, A., Roelofs, G., Lelieveld, J., and Cuevas, E.: On the origin of
elevated surface ozone concentrations at Izana Observatory, Tenerife during
late March 1996, Geophys. Res. Lett., 27, 3699–3702,
https://doi.org/10.1029/2000GL011518, 2000. a
Kim, S.-W., Jefferson, A., Soon-Chang, Y., Dutton, E., Ogren, J., Valero, F.,
Kim, J., and Holben, B.: Comparisons of aerosol optical depth and surface
shortwave irradiance and their effect on the aerosol surface radiative
forcing estimation, J. Geophys. Res.-Atmos., 110, D07204,
https://doi.org/10.1029/2004JD004989, 2005. a
Kim, S.-W., Yoon, S.-C., Kim, J., and Kim, S.-Y.: Seasonal and monthly
variations of columnar aerosol optical properties over east Asia determined
from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements,
Atmos. Environ., 41, 1634–1651,
https://doi.org/10.1016/j.atmosenv.2006.10.044, 2007. a, b
Kim, S.-W., Yoon, S.-C., Dutton, E., Kim, J., and Wehrli, C.and Holben, B.:
Global surface-based sun photometer network for long-term observations of
column aerosol optical properties: intercomparison of aerosol optical depth,
Aerosol Sci. Tech., 42, 1–9,
https://doi.org/10.1080/02786820701699743, 2008. a, b, c, d
Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L., and Lelieveld, J.: Aerosol optical depth trend over the Middle East, Atmos. Chem. Phys., 16, 5063–5073, https://doi.org/10.5194/acp-16-5063-2016, 2016. a
Komhyr, W.: Dobson spectrophotometer systematic total ozone measurement error,
Geophys. Res. Lett., 7, 161–163, 1980. a
Komhyr, W. D., Grass, R. D., and Leonard, R. K.: Dobson spectrophotometer 83: A
standard for total ozone measurements, 1962–1987, J. Geophys. Res.-Atmos., 94, 9847–9861, https://doi.org/10.1029/JD094iD07p09847, 1989. a
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward,
D. S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res., 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014. a
McArthur, L. J. B., Halliwell, D. H., Niebergall, O. J., O'Neill, N. T.,
Slusser, J. R., and Wehrli, C.: Field comparison of network Sun photometers,
J. Geophys. Res.-Atmos., 108, 4596,
https://doi.org/10.1029/2002JD002964, 2003. a, b, c
McPeters, R. D., Frith, S., and Labow, G. J.: OMI total column ozone: extending the long-term data record, Atmos. Meas. Tech., 8, 4845–4850, https://doi.org/10.5194/amt-8-4845-2015, 2015. a
Mitchell, R. and Forgan, B.: Aerosol measurement in the Australian outback:
Intercomparison of sun photometers, J. Atmos. Ocean.
Tech., 20, 54–66,
https://doi.org/10.1175/1520-0426(2003)020<0054:AMITAO>2.0.CO;2, 2003. a, b
Mitchell, R. M., Forgan, B. W., and Campbell, S. K.: The Climatology of Australian Aerosol, Atmos. Chem. Phys., 17, 5131–5154, https://doi.org/10.5194/acp-17-5131-2017, 2017. a
Nakajima, T., Yoon, S.-C., Ramanathan, V., Shi, G.-Y., Takemura, T., Higurashi,
A., Takamura, T., Aoki, K., Sohn, B.-J., Kim, S.-W., Tsuruta, H., Sugimoto,
N., Shimizu, A., Tanimoto, H., Sawa, Y., Lin, N.-H., Lee, C.-T., Goto, D.,
and Schutgens, N.: Overview of the Atmospheric Brown Cloud East Asian
Regional Experiment 2005 and a study of the aerosol direct radiative forcing
in east Asia, J. Geophys. Res.-Atmos., 112,
D24S91, https://doi.org/10.1029/2007JD009009, 2007. a
Nyeki, S., Halios, C., Baum, W., Eleftheriadis, K., Flentje, H., Gröbner,
J., Vuilleumier, L., and Wehrli, C.: Ground-based aerosol optical depth
trends at three high-altitude sites in Switzerland and southern Germany from
1995 to 2010, J. Geophys. Res.-Atmos., 117,
D18202, https://doi.org/10.1029/2012JD017493, 2012. a
Nyeki, S., Gröbner, J., and Wehrli, C.: Ground-based aerosol optical depth
inter-comparison campaigns at European EUSAAR super-sites, in Radiation Processes in the Atmosphere and Ocean (IRS2012), AIP Conf. Proc., 1531,
584–587, https://doi.org/10.1063/1.4804837, 2013. a
Räisänen, P. and Lindfors, A. V.: On the computation of apparent direct
solar radiation, J. Atmos. Sci.,
https://doi.org/10.1175/JAS-D-19-0030.1, 2019. a
Räisänen, P., Isaac, G. A., Barker, H. W., and Gultepe, I.: Solar
radiative transfer for stratiform clouds with horizontal variations in
liquid-water path and droplet effective radius, Q. J.
Roy. Meteor. Soc., 129, 2135–2149,
https://doi.org/10.1256/qj.02.149, 2003. a
Rodríguez, S., González, Y., Cuevas, E., Ramos, R., Romero, P. M., Abreu-Afonso, J., and Redondas, A.: Atmospheric nanoparticle observations in the low free troposphere during upward orographic flows at Izaña Mountain Observatory, Atmos. Chem. Phys., 9, 6319–6335, https://doi.org/10.5194/acp-9-6319-2009, 2009. a
Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., and de la Rosa, J.: Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer, Atmos. Chem. Phys., 11, 6663–6685, https://doi.org/10.5194/acp-11-6663-2011, 2011. a
Rodríguez, S., Cuevas, E., Prospero, J. M., Alastuey, A., Querol, X., López-Solano, J., García, M. I., and Alonso-Pérez, S.: Modulation of Saharan dust export by the North African dipole, Atmos. Chem. Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, 2015. a
Rodriguez-Franco, J. J. and Cuevas, E.: Characteristics of the subtropical
tropopause region based on long-term highly resolved sonde records over
Tenerife, J. Geophys. Res.-Atmos., 118, 10–754,
https://doi.org/10.1002/jgrd.50839, 2013. a
Romero, P. M. and Cuevas, E.: Variación diurna del espesor óptico de
aerosoles: ?`ficción o realidad?, 3 Asamblea Hispano Portuguesa de
Geofísica y Geodesia, Valencia, 2002. a
Romero-Campos, P., Cuevas, A., Kazadzis, S., Kouremeti, N., García, R., and
Guirado-Fuentes, C.: Análisis de la trazabilidad en los valores del AOD
obtenidos a partir de las medidas de las redes AERONET-CIMEL y GAW-PFR
durante el período 2005–2015 en el Observatorio Atmosférico de
Izaña, 2017. a
Russell, P., Livingston, J., Dubovik, O., Ramirez, S., Wang, J., Redemann, J.,
Schmid, B., Box, M., and Holben, B.: Sunlight transmission through desert
dust and marine aerosols: Diffuse light corrections to Sun photometry and
pyrheliometry, J. Geophys. Res.-Atmos., 109, D08207,
https://doi.org/10.1029/2003JD004292, 2004. a, b
Sakerin, S. M., Kabanov, D., Panchenk, M., Pol'kin, V., Holben, B., Smirnov,
A., Beresnev, S., Gorda, S., Kornienko, G., Nikolashkin, S., Poddubnyi, V.,
and Tashchilin, M.: Monitoring of atmospheric aerosol in the Asian part of
Russia in 2004 within the framework of AEROSIBNET program, Atmos.
Ocean. Opt., 18, 871–878, 2005. a
Sayer, A. M., Hsu, N. C., Bettenhausen, C., Jeong, M.-J., Holben, B. N., and Zhang, J.: Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS, Atmos. Meas. Tech., 5, 1761–1778, https://doi.org/10.5194/amt-5-1761-2012, 2012. a
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.: Validation and
uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data,
J. Geophys. Res.-Atmos., 118, 7864–7872,
https://doi.org/10.1002/jgrd.50600,
2013. a
Schmid, B. and Wehrli, C.: Comparison of Sun photometer calibration by use of
the Langley technique and the standard lamp, Appl. Opt., 34, 4500–4512,
https://doi.org/10.1364/AO.34.004500,
1995. a
Schmid, B., Michalsky, J., Halthore, R., Beauharnois, M., Harrison, L.,
Livingston, J., Russell, P., Holben, B., Eck, T., and Smirnov, A.: Comparison
of aerosol optical depth from four solar radiometers during the fall 1997 ARM
intensive observation period, Geophys. Res. Lett., 26, 2725–2728,
https://doi.org/10.1029/1999GL900513,
1999. a, b
Sinyuk, A., Holben, B. N., Smirnov, A., Eck, T. F., Slutsker, I., Schafer,
J. S., Giles, D. M., and Sorokin, M.: Assessment of error in aerosol optical
depth measured by AERONET due to aerosol forward scattering, Geophys.
Res. Lett., 39, L25806, https://doi.org/10.1029/2012GL053894, 2012. a
Smirnov, A., Holben, B., Eck, T., Dubovik, O., and Slutsker, I.:
Cloud-screening and quality control algorithms for the AERONET database,
Remote Sens. Environ., 73, 337–349,
https://doi.org/10.1016/S0034-4257(00)00109-7,
2000. a
Takamura, T. and Nakajima, T.: Overview of SKYNET and its activities, Opt. Pura
Apl., 37, 3303–3308, 2004. a
Thomason, L., Herman, B. M., Schotland, R. M., and Reagan, J. A.:
Extraterrestrial solar flux measurement limitations due to a Beer’s law
assumption and uncertainty in local time, Appl. Opt., 21, 1191–1195,
https://doi.org/10.1364/AO.21.001191, 1982. a
Todd, M. C., Washington, R., Martins, J. V., Dubovik, O., Lizcano, G.,
M'bainayel, S., and Engelstaedter, S.: Mineral dust emission from the
Bodélé Depression, northern Chad, during BoDEx 2005, J. Geophys. Res.-Atmos., 112, D06207,
https://doi.org/10.1029/2006JD007170, 2007. a
Toledano, C., Cachorro, V. E., Berjón, A., de Frutos, A. M., Sorribas, M.,
de la Morena, B. A., and Goloub, P.: Aerosol optical depth and
Ångström exponent climatology at El Arenosillo AERONET site (Huelva,
Spain), Q. J. Roy. Meteor. Soc., 133, 795–807,
https://doi.org/10.1002/qj.54,
2007. a
Toledano, C., Cachorro, V. E., Berjón, A., de Frutos, A. M., Fuertes, D., González, R., Torres, B., Rodrigo, R., Bennouna, Y., Martin, L., and Guirado, C.:
RIMA-AERONET network: long term monitoring of aerosol properties, Opt. Pura
Apl., 44, 629–633, 2011. a
Toledano, C., Cachorro, V., Gausa, M., Stebel, K., Aaltonen, V., Berjón, A.,
de Galisteo, J. P. O., de Frutos, A. M., Bennouna, . Y., Blindheim, S.,
Myhre, C. L., Zibordi, G., Wehrli, C., Kratzer, S., Hakansson, B., Carlund,
T., de Leeuw, G., Herber, A., and Torres, B.: Overview of Sun Photometer
Measurements of Aerosol Properties in Scandinavia and Svalbard, Atmos.
Environ., 52, 18–28, https://doi.org/10.1016/j.atmosenv.2011.10.022, 2012. a
Toledano, C., González, R., Fuertes, D., Cuevas, E., Eck, T. F., Kazadzis, S., Kouremeti, N., Gröbner, J., Goloub, P., Blarel, L., Román, R., Barreto, Á., Berjón, A., Holben, B. N., and Cachorro, V. E.: Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña, Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, 2018. a, b, c, d, e, f, g, h, i
Torres, B., Toledano, C., Berjón, A., Fuertes, D., Molina, V., Gonzalez, R., Canini, M., Cachorro, V. E., Goloub, P., Podvin, T., Blarel, L., Dubovik, O., Bennouna, Y., and de Frutos, A. M.: Measurements on pointing error and field of view of Cimel-318 Sun photometers in the scope of AERONET, Atmos. Meas. Tech., 6, 2207–2220, https://doi.org/10.5194/amt-6-2207-2013, 2013. a, b, c
Wagner, F. and Silva, A. M.: Some considerations about Ångström exponent distributions, Atmos. Chem. Phys., 8, 481–489, https://doi.org/10.5194/acp-8-481-2008, 2008. a, b, c
Wang, J., Xia, X., Wang, P., and Christopher, S.: Diurnal variability of dust
aerosol optical thickness and Ångström exponent over dust source
regions in China, Geophys. Res. Lett., 31,
L08107, https://doi.org/10.1029/2004GL019580,
2004. a
Weinzierl, B., Sauer, D., Esselborn, M., Petzold, A., Veira, A., Rose, M., Mund, S., Wirth, M., Ansmann, A., Tesche, M., Gross, S., and Freudenthaler, V.: Microphysical and
optical properties of dust and tropical biomass burning aerosol layers in the
Cape Verde region – an overview of the airborne in situ and lidar
measurements during SAMUM-2, Tellus B, 63,
589–618, https://doi.org/10.1111/j.1600-0889.2011.00566.x, 2011. a
WMO: Recent Progress in Sunphotometry, Determination of the aerosol optical
depth, Environmental Pollution Monitoring and Research Programme, No. 43,
21 pp., November, 1986. a
WMO: Abridged final report with resolutions and recommendations, GAW Report WMO
TD No. 1019, WMO-CIMO Fourteenth session Geneva 7–14 December 2006, 2007. a
WMO: Commission for Instruments and Methods of Observation, Sixteenth session
WMO no.1138, Saint Petersburg, Secretariat of the World Meteorological
Organization, 2014. a
WMO: Aerosol Measurement Procedures, Guidelines and Recommendations, 2nd
Edition, WMO No 1177, 2016. a
Young, A. T.: Revised depolarization corrections for atmospheric extinction,
Appl. Opt., 19, 3427–3428, https://doi.org/10.1364/AO.19.003427, 1980. a
Short summary
A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from 3 Global Atmosphere Watch precision filter radiometers (GAW-PFR) and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel) was performed for the four
nearwavelengths (380, 440, 500 and 870 nm) in the period 2005–2015. The goal of this study is to assess whether their long term AOD data are comparable and consistent.
A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD)...