Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 12
Atmos. Meas. Tech., 12, 6319–6340, 2019
https://doi.org/10.5194/amt-12-6319-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: TROPOMI on Sentinel-5 Precursor: first year in operation (AMT/ACP...

Atmos. Meas. Tech., 12, 6319–6340, 2019
https://doi.org/10.5194/amt-12-6319-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 Dec 2019

Research article | 02 Dec 2019

The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations

Jiyunting Sun et al.

Related authors

A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020,https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Defining aerosol layer height for UVAI interpretation using aerosol vertical distributions characterized by MERRA-2
Jiyunting Sun, J. Pepijn Veefkind, Peter van Velthoven, L. Gijsbert Tilstra, Julien Chimot, Swadhin Nanda, and Pieternel F. Levelt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-39,https://doi.org/10.5194/acp-2020-39, 2020
Preprint under review for ACP
Short summary
Quantifying the single-scattering albedo for the January 2017 Chile wildfires from simulations of the OMI absorbing aerosol index
Jiyunting Sun, J. Pepijn Veefkind, Peter van Velthoven, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 5261–5277, https://doi.org/10.5194/amt-11-5261-2018,https://doi.org/10.5194/amt-11-5261-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Aerosol optical properties as observed from an ultralight aircraft over the Strait of Gibraltar
Patrick Chazette
Atmos. Meas. Tech., 13, 4461–4477, https://doi.org/10.5194/amt-13-4461-2020,https://doi.org/10.5194/amt-13-4461-2020, 2020
Short summary
Evaluation of a method for converting Stratospheric Aerosol and Gas Experiment (SAGE) extinction coefficients to backscatter coefficients for intercomparison with lidar observations
Travis N. Knepp, Larry Thomason, Marilee Roell, Robert Damadeo, Kevin Leavor, Thierry Leblanc, Fernando Chouza, Sergey Khaykin, Sophie Godin-Beekmann, and David Flittner
Atmos. Meas. Tech., 13, 4261–4276, https://doi.org/10.5194/amt-13-4261-2020,https://doi.org/10.5194/amt-13-4261-2020, 2020
Short summary
Inversion of multiangular polarimetric measurements from the ACEPOL campaign: an application of improving aerosol property and hyperspectral ocean color retrievals
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Kirk Knobelspiesse, Amir Ibrahim, Brian Cairns, Susanne E. Craig, Guangliang Fu, Otto Hasekamp, Yongxiang Hu, and P. Jeremy Werdell
Atmos. Meas. Tech., 13, 3939–3956, https://doi.org/10.5194/amt-13-3939-2020,https://doi.org/10.5194/amt-13-3939-2020, 2020
Improved water vapour retrieval from AMSU-B and MHS in the Arctic
Arantxa M. Triana-Gómez, Georg Heygster, Christian Melsheimer, Gunnar Spreen, Monia Negusini, and Boyan H. Petkov
Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020,https://doi.org/10.5194/amt-13-3697-2020, 2020
Short summary
The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Sergey Korkin, Joel S. Schafer, Alexander Smirnov, Mikhail Sorokin, and Alexei Lyapustin
Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020,https://doi.org/10.5194/amt-13-3375-2020, 2020

Cited articles

Ahn, C., Torres, O., and Jethva, H.: Assessment of OMI near-UV aerosol optical depth over land, J. Geophys. Res.-Atmospheres, 119, 2457–2473, 2014. 
Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J. P., Loyola, D. and Wang, P.: Level 2 Product User Manual KNMI level 2 support products, KNMI, the Netherlands, 118 pp., 2017. 
Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007. 
Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D., and Yu, H.: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies, J. Climate, 30, 6851–6872, https://doi.org/10.1175/JCLI-D-16-0613.1, 2017. 
Cherkassky, V. and Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks, 17, 113–126, https://doi.org/10.1016/S0893-6080(03)00169-2, 2004. 
Publications Copernicus
Download
Short summary
Single scattering albedo (SSA) is critical for reducing uncertainties in radiative forcing assessment. This paper presents two methods to retrieve SSA from satellite observations of the near-UV absorbing aerosol index (UVAI). The first is physically based radiative transfer simulations; the second is a statistically based machine learning algorithm. The result of the latter is encouraging. Both methods show that the ALH is necessary to quantitatively interpret aerosol absorption from UVAI.
Single scattering albedo (SSA) is critical for reducing uncertainties in radiative forcing...
Citation