Articles | Volume 12, issue 12
https://doi.org/10.5194/amt-12-6635-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-6635-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-scheme chemical ionization inlet (MION) for fast switching of reagent ion chemistry in atmospheric pressure chemical ionization mass spectrometry (CIMS) applications
Department of Physics and Institute for Atmospheric and Earth System
Research, University of Helsinki, Helsinki, Finland
Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and
Natural Sciences, Tampere University, Tampere, Finland
Jyri Mikkilä
Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
Siddharth Iyer
Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and
Natural Sciences, Tampere University, Tampere, Finland
Department of Chemistry and Institute for Atmospheric and Earth System
Research, University of Helsinki, Helsinki, Finland
Jani Hakala
CORRESPONDING AUTHOR
Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
Related authors
Federica Bortolussi, Hilda Sandström, Fariba Partovi, Joona Mikkilä, Patrick Rinke, and Matti Rissanen
Atmos. Chem. Phys., 25, 685–704, https://doi.org/10.5194/acp-25-685-2025, https://doi.org/10.5194/acp-25-685-2025, 2025
Short summary
Short summary
Chemical ionization mass spectrometry (CIMS) is widely used in atmospheric chemistry studies. We still have a limited understanding of the complex functioning of the instrument; therefore, we applied machine learning to provide insights from CIMS analyses. We were able to predict both detection and signal intensity with a fair error, and we found out the most important structural fragments for negative ionization schemes (NH and OH) and positive ones (nitrogen-containing groups).
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024, https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
Short summary
Chemical ionisation mass spectrometry is used in the atmospheric sciences to measure trace gas concentrations. Neutral gases require charging in inlets before the mass-to-charge ratio of the resulting ions can be analysed. This study uses multiphysics modelling to investigate how the MION2 and Eisele type inlets work and shows the effect of tuning parameters and their current limitations. The findings are helpful for inlet users and are expected to aid in developing improved inlets.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Stéphanie Alage, Vincent Michoud, Sergio Harb, Bénédicte Picquet-Varrault, Manuela Cirtog, Avinash Kumar, Matti Rissanen, and Christopher Cantrell
Atmos. Meas. Tech., 17, 4709–4724, https://doi.org/10.5194/amt-17-4709-2024, https://doi.org/10.5194/amt-17-4709-2024, 2024
Short summary
Short summary
Calibration exercises are essential for determining the accuracy of instruments. We performed calibrations on a NO3¯ ToFCIMS instrument to determine its sensitivity and linearity for detecting various organic compounds. Our findings revealed significant variability, over several orders of magnitude, in the calibration factors obtained. The results suggest that relying on a single calibration factor from H2SO4 for the quantification of all compounds detected by this technique is not appropriate.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen
Atmos. Chem. Phys., 23, 10517–10532, https://doi.org/10.5194/acp-23-10517-2023, https://doi.org/10.5194/acp-23-10517-2023, 2023
Short summary
Short summary
This work illustrates how a common volatile hydrocarbon, hexanal, has the potential to undergo atmospheric autoxidation that leads to prompt formation of condensable material that subsequently contributes to aerosol formation, deteriorating the air quality of urban atmospheres. We used the combined state-of-the-art quantum chemical modeling and experimental flow reactor experiments under atmospheric conditions to resolve the autoxidation mechanism of hexanal initiated by a common oxidant.
Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1415, https://doi.org/10.5194/egusphere-2023-1415, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols (SOA) form effectively from gaseous precursors via a process called autoxidation. While key chemical reaction types seem to be known, no general description of autoxidation chemistry exists. In the present work, we present a method to create autoxidation chemistry schemes for any atmospherically relevant hydrocarbon. We exemplarily investigate benzene and its potential to form aerosols. We found that autoxidation, under some conditions, can dominate the SOA formation.
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Meri Räty, Otso Peräkylä, Matthieu Riva, Lauriane Quéléver, Olga Garmash, Matti Rissanen, and Mikael Ehn
Atmos. Chem. Phys., 21, 7357–7372, https://doi.org/10.5194/acp-21-7357-2021, https://doi.org/10.5194/acp-21-7357-2021, 2021
Short summary
Short summary
Cyclohexene resembles certain relatively complex compounds in the atmosphere that through oxidation produce vapours that take part in aerosol formation. We studied the highly oxygenated organic molecules (HOMs) formed in cyclohexene ozonolysis, the relationship between their chemical composition and their tendency to condense onto seed aerosol, as well as the effect of NOx pollutants on their signals. Two existing models were also tested for their ability to predict the volatility of the HOMs.
Clémence Rose, Matti P. Rissanen, Siddharth Iyer, Jonathan Duplissy, Chao Yan, John B. Nowak, Aurélie Colomb, Régis Dupuy, Xu-Cheng He, Janne Lampilahti, Yee Jun Tham, Daniela Wimmer, Jean-Marc Metzger, Pierre Tulet, Jérôme Brioude, Céline Planche, Markku Kulmala, and Karine Sellegri
Atmos. Chem. Phys., 21, 4541–4560, https://doi.org/10.5194/acp-21-4541-2021, https://doi.org/10.5194/acp-21-4541-2021, 2021
Short summary
Short summary
Sulfuric acid (H2SO4) is commonly accepted as a key precursor for atmospheric new particle formation. However, direct measurements of [H2SO4] remain challenging, motivating the development of proxies. Using data collected in two different volcanic plumes, we show, under these specific conditions, the good performance of a proxy from the literature and also highlight the benefit of the newly developed proxies for the prediction of the highest [H2SO4] values.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
Mario Simon, Lubna Dada, Martin Heinritzi, Wiebke Scholz, Dominik Stolzenburg, Lukas Fischer, Andrea C. Wagner, Andreas Kürten, Birte Rörup, Xu-Cheng He, João Almeida, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Lisa Beck, Anton Bergen, Federico Bianchi, Steffen Bräkling, Sophia Brilke, Lucia Caudillo, Dexian Chen, Biwu Chu, António Dias, Danielle C. Draper, Jonathan Duplissy, Imad El-Haddad, Henning Finkenzeller, Carla Frege, Loic Gonzalez-Carracedo, Hamish Gordon, Manuel Granzin, Jani Hakala, Victoria Hofbauer, Christopher R. Hoyle, Changhyuk Kim, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Bernhard Mentler, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Lauriane L. J. Quéléver, Ananth Ranjithkumar, Matti P. Rissanen, Simon Schallhart, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee J. Tham, António R. Tomé, Miguel Vazquez-Pufleau, Alexander L. Vogel, Robert Wagner, Mingyi Wang, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Yusheng Wu, Mao Xiao, Chao Yan, Penglin Ye, Qing Ye, Marcel Zauner-Wieczorek, Xueqin Zhou, Urs Baltensperger, Josef Dommen, Richard C. Flagan, Armin Hansel, Markku Kulmala, Rainer Volkamer, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, https://doi.org/10.5194/acp-20-9183-2020, 2020
Short summary
Short summary
Highly oxygenated organic compounds (HOMs) have been identified as key vapors involved in atmospheric new-particle formation (NPF). The molecular distribution, HOM yield, and NPF from α-pinene oxidation experiments were measured at the CLOUD chamber over a wide tropospheric-temperature range. This study shows on a molecular scale that despite the sharp reduction in HOM yield at lower temperatures, the reduced volatility counteracts this effect and leads to an overall increase in the NPF rate.
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Dean Chen, Putian Zhou, Tuomo Nieminen, Pontus Roldin, Ximeng Qi, Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Markku Kulmala, Pekka Rantala, Juho Aalto, Nina Sarnela, Pasi Kolari, Petri Keronen, Matti P. Rissanen, Metin Baykara, and Michael Boy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-128, https://doi.org/10.5194/acp-2020-128, 2020
Preprint withdrawn
Short summary
Short summary
Atmospheric oxidants OH, O3 and NO3 dominate the atmospheric oxidation capacity, and sulfuric acid (H2SO4) is considered as a main driver for new particle formation events. We studied how the trends of these atmospheric oxidants and H2SO4 changed in southern Finland during the past 12 years and discussed how these trends related to decreasing emissions of air pollutants in Europe. Our results showed that OH increased by 1.56 % yr−1 at daytime and NO3 decreased by 3.92 % yr−1 at nighttime.
Olga Garmash, Matti P. Rissanen, Iida Pullinen, Sebastian Schmitt, Oskari Kausiala, Ralf Tillmann, Defeng Zhao, Carl Percival, Thomas J. Bannan, Michael Priestley, Åsa M. Hallquist, Einhard Kleist, Astrid Kiendler-Scharr, Mattias Hallquist, Torsten Berndt, Gordon McFiggans, Jürgen Wildt, Thomas F. Mentel, and Mikael Ehn
Atmos. Chem. Phys., 20, 515–537, https://doi.org/10.5194/acp-20-515-2020, https://doi.org/10.5194/acp-20-515-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) facilitate aerosol formation in the atmosphere. Using NO3− chemical ionization mass spectrometry we investigated HOM composition and yield in oxidation of aromatic compounds at different reactant concentrations, in the presence of NOx and seed aerosol. Higher OH concentrations increased HOM yield, suggesting multiple oxidation steps, and affected HOM composition, potentially explaining in part discrepancies in published secondary organic aerosol yields.
Ximeng Qi, Aijun Ding, Pontus Roldin, Zhengning Xu, Putian Zhou, Nina Sarnela, Wei Nie, Xin Huang, Anton Rusanen, Mikael Ehn, Matti P. Rissanen, Tuukka Petäjä, Markku Kulmala, and Michael Boy
Atmos. Chem. Phys., 18, 11779–11791, https://doi.org/10.5194/acp-18-11779-2018, https://doi.org/10.5194/acp-18-11779-2018, 2018
Short summary
Short summary
In this study we simulate the HOM concentrations and discuss their roles in NPF at a remote boreal forest site in Finland and a suburban site in eastern China. We found that sulfuric acid and HOM organonitrate concentrations in the gas phase are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower in eastern China. This study highlights the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas.
Nina Sarnela, Tuija Jokinen, Jonathan Duplissy, Chao Yan, Tuomo Nieminen, Mikael Ehn, Siegfried Schobesberger, Martin Heinritzi, Sebastian Ehrhart, Katrianne Lehtipalo, Jasmin Tröstl, Mario Simon, Andreas Kürten, Markus Leiminger, Michael J. Lawler, Matti P. Rissanen, Federico Bianchi, Arnaud P. Praplan, Jani Hakala, Antonio Amorim, Marc Gonin, Armin Hansel, Jasper Kirkby, Josef Dommen, Joachim Curtius, James N. Smith, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Neil M. Donahue, and Mikko Sipilä
Atmos. Chem. Phys., 18, 2363–2380, https://doi.org/10.5194/acp-18-2363-2018, https://doi.org/10.5194/acp-18-2363-2018, 2018
Short summary
Short summary
Atmospheric trace gases can form small molecular clusters, which can grow to larger sizes through the condensation of vapours. This process is called new particle formation. In this paper we studied the formation of sulfuric acid and highly oxygenated molecules, the key compounds in atmospheric new particle formation, in chamber experiments and introduced a way to simulate these ozonolysis products of α-pinene in a simple manner.
Andreas Kürten, Chenxi Li, Federico Bianchi, Joachim Curtius, António Dias, Neil M. Donahue, Jonathan Duplissy, Richard C. Flagan, Jani Hakala, Tuija Jokinen, Jasper Kirkby, Markku Kulmala, Ari Laaksonen, Katrianne Lehtipalo, Vladimir Makhmutov, Antti Onnela, Matti P. Rissanen, Mario Simon, Mikko Sipilä, Yuri Stozhkov, Jasmin Tröstl, Penglin Ye, and Peter H. McMurry
Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, https://doi.org/10.5194/acp-18-845-2018, 2018
Short summary
Short summary
A recent laboratory study (CLOUD) showed that new particles nucleate efficiently from sulfuric acid and dimethylamine (DMA). The reanalysis of previously published data reveals that the nucleation rates are even faster than previously assumed, i.e., nucleation can proceed at rates that are compatible with collision-controlled new particle formation for atmospheric conditions. This indicates that sulfuric acid–DMA nucleation is likely an important source of particles in the boundary layer.
Carla Frege, Ismael K. Ortega, Matti P. Rissanen, Arnaud P. Praplan, Gerhard Steiner, Martin Heinritzi, Lauri Ahonen, António Amorim, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Martin Breitenlechner, Lubna Dada, António Dias, Jonathan Duplissy, Sebastian Ehrhart, Imad El-Haddad, Lukas Fischer, Claudia Fuchs, Olga Garmash, Marc Gonin, Armin Hansel, Christopher R. Hoyle, Tuija Jokinen, Heikki Junninen, Jasper Kirkby, Andreas Kürten, Katrianne Lehtipalo, Markus Leiminger, Roy Lee Mauldin, Ugo Molteni, Leonid Nichman, Tuukka Petäjä, Nina Sarnela, Siegfried Schobesberger, Mario Simon, Mikko Sipilä, Dominik Stolzenburg, António Tomé, Alexander L. Vogel, Andrea C. Wagner, Robert Wagner, Mao Xiao, Chao Yan, Penglin Ye, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Paul M. Winkler, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 65–79, https://doi.org/10.5194/acp-18-65-2018, https://doi.org/10.5194/acp-18-65-2018, 2018
Short summary
Short summary
It was recently shown that biogenic highly oxygenated molecules (HOMs) form particles in the absence of sulfuric acid and ions enhance the nucleation rate. Here we compare the molecular composition of positive and negative HOM clusters at 25, 5 and −25 °C. At lower temperatures the HOM average oxygen-to-carbon ratio decreases indicating a reduction in the rate of autoxidation due to rather high activation energy. The experimental findings are supported by quantum chemical calculations.
Xuemeng Chen, Lauriane L. J. Quéléver, Pak L. Fung, Jutta Kesti, Matti P. Rissanen, Jaana Bäck, Petri Keronen, Heikki Junninen, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 49–63, https://doi.org/10.5194/acp-18-49-2018, https://doi.org/10.5194/acp-18-49-2018, 2018
Short summary
Short summary
We analysed a 20-year-long dataset collected in a Finnish boreal forest at SMEAR II station to investigate the frequency and strength of ozone depletion events. We could identify a number of ozone depletion events that lasted for more than 3 h, mainly in the autumn and winter months. Their occurrence was likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.
Robert Wagner, Chao Yan, Katrianne Lehtipalo, Jonathan Duplissy, Tuomo Nieminen, Juha Kangasluoma, Lauri R. Ahonen, Lubna Dada, Jenni Kontkanen, Hanna E. Manninen, Antonio Dias, Antonio Amorim, Paulus S. Bauer, Anton Bergen, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Stephany Buenrostro Mazon, Xuemeng Chen, Danielle C. Draper, Lukas Fischer, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Jani Hakala, Liine Heikkinen, Martin Heinritzi, Victoria Hofbauer, Christopher R. Hoyle, Jasper Kirkby, Andreas Kürten, Alexander N. Kvashnin, Tiia Laurila, Michael J. Lawler, Huajun Mai, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Felix Piel, Lauriane L. J. Quéléver, Matti P. Rissanen, Nina Sarnela, Simon Schallhart, Kamalika Sengupta, Mario Simon, Dominik Stolzenburg, Yuri Stozhkov, Jasmin Tröstl, Yrjö Viisanen, Alexander L. Vogel, Andrea C. Wagner, Mao Xiao, Penglin Ye, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Martin Gallagher, Armin Hansel, James N. Smith, António Tomé, Paul M. Winkler, Douglas Worsnop, Mikael Ehn, Mikko Sipilä, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 15181–15197, https://doi.org/10.5194/acp-17-15181-2017, https://doi.org/10.5194/acp-17-15181-2017, 2017
Putian Zhou, Laurens Ganzeveld, Ditte Taipale, Üllar Rannik, Pekka Rantala, Matti Petteri Rissanen, Dean Chen, and Michael Boy
Atmos. Chem. Phys., 17, 14309–14332, https://doi.org/10.5194/acp-17-14309-2017, https://doi.org/10.5194/acp-17-14309-2017, 2017
Short summary
Short summary
In boreal forest, there is a large number of gaseous organic compounds called biogenic volatile organic compounds (BVOCs). Within the canopy, they can be emitted from vegetation and soil, react with each other and other gases, be transported in the air, and be removed from vegetation and soil surfaces. We applied a numerical model to simulate these processes and found that these BVOCs can be divided into five categories according to the significance of their sources and sinks.
Federico Bianchi, Olga Garmash, Xucheng He, Chao Yan, Siddharth Iyer, Ida Rosendahl, Zhengning Xu, Matti P. Rissanen, Matthieu Riva, Risto Taipale, Nina Sarnela, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Mikael Ehn, and Heikki Junninen
Atmos. Chem. Phys., 17, 13819–13831, https://doi.org/10.5194/acp-17-13819-2017, https://doi.org/10.5194/acp-17-13819-2017, 2017
Short summary
Short summary
Naturally charged highly oxidised molecules (HOMs) were characterized using advanced mass spectrometers. Two different classes of compounds, clustered with the nitrate and bisulfate ions, were identified: HOMs containing only carbon, hydrogen and oxygen and nitrogen-containing HOMs or organonitrates (ONs). They exhibit strong diurnal variations where HOMs peak during night and ONs during day. Finally, large clusters containing up to 40 carbon atoms (four oxidized
α-pinene units) were observed.
Emilie Öström, Zhou Putian, Guy Schurgers, Mikhail Mishurov, Niku Kivekäs, Heikki Lihavainen, Mikael Ehn, Matti P. Rissanen, Theo Kurtén, Michael Boy, Erik Swietlicki, and Pontus Roldin
Atmos. Chem. Phys., 17, 8887–8901, https://doi.org/10.5194/acp-17-8887-2017, https://doi.org/10.5194/acp-17-8887-2017, 2017
Short summary
Short summary
We used a model to study how biogenic volatile organic compounds (BVOCs) emitted from the boreal forest contribute to the formation and growth of particles in the atmosphere. Some of these particles are important climate forcers, acting as seeds for cloud droplet fomation. We implemented a new gas chemistry mechanism that describes how the BVOCs are oxidized and form low-volatility highly oxidized organic molecules. With the new mechanism we are able to accurately predict the particle growth.
Michael J. Lawler, Paul M. Winkler, Jaeseok Kim, Lars Ahlm, Jasmin Tröstl, Arnaud P. Praplan, Siegfried Schobesberger, Andreas Kürten, Jasper Kirkby, Federico Bianchi, Jonathan Duplissy, Armin Hansel, Tuija Jokinen, Helmi Keskinen, Katrianne Lehtipalo, Markus Leiminger, Tuukka Petäjä, Matti Rissanen, Linda Rondo, Mario Simon, Mikko Sipilä, Christina Williamson, Daniela Wimmer, Ilona Riipinen, Annele Virtanen, and James N. Smith
Atmos. Chem. Phys., 16, 13601–13618, https://doi.org/10.5194/acp-16-13601-2016, https://doi.org/10.5194/acp-16-13601-2016, 2016
Short summary
Short summary
We present chemical observations of newly formed particles as small as ~ 10 nm from new particle formation experiments using sulfuric acid, dimethylamine, ammonia, and water vapor as gas phase reactants. The nanoparticles were more acidic than expected based on thermodynamic expectations, particularly at the smallest measured sizes. The results suggest rapid surface conversion of SO2 to sulfate and show a marked composition change between 10 and 15 nm, possibly indicating a phase change.
Chao Yan, Wei Nie, Mikko Äijälä, Matti P. Rissanen, Manjula R. Canagaratna, Paola Massoli, Heikki Junninen, Tuija Jokinen, Nina Sarnela, Silja A. K. Häme, Siegfried Schobesberger, Francesco Canonaco, Lei Yao, André S. H. Prévôt, Tuukka Petäjä, Markku Kulmala, Mikko Sipilä, Douglas R. Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 16, 12715–12731, https://doi.org/10.5194/acp-16-12715-2016, https://doi.org/10.5194/acp-16-12715-2016, 2016
Short summary
Short summary
Highly oxidized multifunctional compounds (HOMs) are known to have a significant contribution to secondary aerosol formation, yet their dominating formation pathways remain unclear in the atmosphere. We apply positive matrix factorization (PMF) on HOM data, and successfully retrieve factors representing different formation pathways. The results improve our understanding of HOM formation, and provide new perspectives on using PMF to study the variation of short-lived specie.
J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, and A. Virtanen
Atmos. Chem. Phys., 16, 293–304, https://doi.org/10.5194/acp-16-293-2016, https://doi.org/10.5194/acp-16-293-2016, 2016
Short summary
Short summary
The hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation during CLOUD7 at CERN in 2012. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles.
R. L. Mauldin III, M. P. Rissanen, T. Petäjä, and M. Kulmala
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2015-398, https://doi.org/10.5194/amt-2015-398, 2016
Revised manuscript under review for AMT
Short summary
Short summary
The manuscript describes a novel instrument for the measurement of OH, HO2+RO2, and other atmospheric species. The instrument described combines the chemical ionization techniques of nitrate CIMS, OH conversion to H2SO4, HO2+RO2 conversion to H2SO4, and high resolution time of flight mass spectroscopy into one system. By using one instrument to obtain spectra it is possible to compare spectra from the different modes and gain further chemical information towards peak identification.
M. Sipilä, N. Sarnela, T. Jokinen, H. Junninen, J. Hakala, M. P. Rissanen, A. Praplan, M. Simon, A. Kürten, F. Bianchi, J. Dommen, J. Curtius, T. Petäjä, and D. R. Worsnop
Atmos. Meas. Tech., 8, 4001–4011, https://doi.org/10.5194/amt-8-4001-2015, https://doi.org/10.5194/amt-8-4001-2015, 2015
Short summary
Short summary
Atmospheric concentrations of amines are poorly known mainly due to challenges related to their reliable high-sensitivity detection. We have created a method and instrument that is capable for detecting amines with lowest limit of detection of around 0.01 parts per trillion. Application of the instrument in the field study indicates that concentrations of dimethyl amine in a boreal forest site are below 0.03ppt, not enough to account for the observed new particle formation rates.
T. F. Mentel, M. Springer, M. Ehn, E. Kleist, I. Pullinen, T. Kurtén, M. Rissanen, A. Wahner, and J. Wildt
Atmos. Chem. Phys., 15, 6745–6765, https://doi.org/10.5194/acp-15-6745-2015, https://doi.org/10.5194/acp-15-6745-2015, 2015
Short summary
Short summary
We studied a series of cycloalkenes and methyl-substituted alkenes in order to elucidate the structural pre-requisites and chemical pathways to the recently discovered class of highly oxidized molecules ELVOC (Ehn et al., Nature, 2014). ELVOC may totally change the view on (parts of) the mechanism of SOA formation. We present results which support recent observations of H shifts from C-H to peroxy radicals, highlighting the pivotal role of peroxyradicals in organic atmospheric chemistry.
A. P. Praplan, S. Schobesberger, F. Bianchi, M. P. Rissanen, M. Ehn, T. Jokinen, H. Junninen, A. Adamov, A. Amorim, J. Dommen, J. Duplissy, J. Hakala, A. Hansel, M. Heinritzi, J. Kangasluoma, J. Kirkby, M. Krapf, A. Kürten, K. Lehtipalo, F. Riccobono, L. Rondo, N. Sarnela, M. Simon, A. Tomé, J. Tröstl, P. M. Winkler, C. Williamson, P. Ye, J. Curtius, U. Baltensperger, N. M. Donahue, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 4145–4159, https://doi.org/10.5194/acp-15-4145-2015, https://doi.org/10.5194/acp-15-4145-2015, 2015
Short summary
Short summary
Our study shows, based on data from three atmospheric pressure interface time-of-flight mass spectrometers measuring in parallel charged and neutral molecules and molecular clusters, how oxidised organic compounds bind to inorganic ions (e.g. bisulfate, nitrate, ammonium). This ionisation is selective for compounds with lower molar mass due to their limited amount and variety of functional groups. We also found that extremely low volatile organic compounds (ELVOCs) can be formed immediately.
M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M. Donahue, R. L. Mauldin III, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H. Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R. Worsnop, M. Kulmala, V.-M. Kerminen, and T. Petäjä
Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, https://doi.org/10.5194/acp-14-12143-2014, 2014
J. Kangasluoma, C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petäjä
Atmos. Meas. Tech., 7, 689–700, https://doi.org/10.5194/amt-7-689-2014, https://doi.org/10.5194/amt-7-689-2014, 2014
Federica Bortolussi, Hilda Sandström, Fariba Partovi, Joona Mikkilä, Patrick Rinke, and Matti Rissanen
Atmos. Chem. Phys., 25, 685–704, https://doi.org/10.5194/acp-25-685-2025, https://doi.org/10.5194/acp-25-685-2025, 2025
Short summary
Short summary
Chemical ionization mass spectrometry (CIMS) is widely used in atmospheric chemistry studies. We still have a limited understanding of the complex functioning of the instrument; therefore, we applied machine learning to provide insights from CIMS analyses. We were able to predict both detection and signal intensity with a fair error, and we found out the most important structural fragments for negative ionization schemes (NH and OH) and positive ones (nitrogen-containing groups).
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
EGUsphere, https://doi.org/10.5194/egusphere-2024-3464, https://doi.org/10.5194/egusphere-2024-3464, 2024
Short summary
Short summary
We used quantum chemistry methods to investigate the oxidation mechanisms of acyl peroxy radicals (APRs) with various monoterpenes. Our findings reveal unique oxidation pathways for different monoterpenes, leading to either chain-terminating products or highly reactive intermediates that can contribute to particle formation in the atmosphere. This research highlights APRs as potentially significant but underexplored atmospheric oxidants, which may influence future approaches to modeling climate.
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024, https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
Short summary
Chemical ionisation mass spectrometry is used in the atmospheric sciences to measure trace gas concentrations. Neutral gases require charging in inlets before the mass-to-charge ratio of the resulting ions can be analysed. This study uses multiphysics modelling to investigate how the MION2 and Eisele type inlets work and shows the effect of tuning parameters and their current limitations. The findings are helpful for inlet users and are expected to aid in developing improved inlets.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Stéphanie Alage, Vincent Michoud, Sergio Harb, Bénédicte Picquet-Varrault, Manuela Cirtog, Avinash Kumar, Matti Rissanen, and Christopher Cantrell
Atmos. Meas. Tech., 17, 4709–4724, https://doi.org/10.5194/amt-17-4709-2024, https://doi.org/10.5194/amt-17-4709-2024, 2024
Short summary
Short summary
Calibration exercises are essential for determining the accuracy of instruments. We performed calibrations on a NO3¯ ToFCIMS instrument to determine its sensitivity and linearity for detecting various organic compounds. Our findings revealed significant variability, over several orders of magnitude, in the calibration factors obtained. The results suggest that relying on a single calibration factor from H2SO4 for the quantification of all compounds detected by this technique is not appropriate.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen
Atmos. Chem. Phys., 23, 10517–10532, https://doi.org/10.5194/acp-23-10517-2023, https://doi.org/10.5194/acp-23-10517-2023, 2023
Short summary
Short summary
This work illustrates how a common volatile hydrocarbon, hexanal, has the potential to undergo atmospheric autoxidation that leads to prompt formation of condensable material that subsequently contributes to aerosol formation, deteriorating the air quality of urban atmospheres. We used the combined state-of-the-art quantum chemical modeling and experimental flow reactor experiments under atmospheric conditions to resolve the autoxidation mechanism of hexanal initiated by a common oxidant.
Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1415, https://doi.org/10.5194/egusphere-2023-1415, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols (SOA) form effectively from gaseous precursors via a process called autoxidation. While key chemical reaction types seem to be known, no general description of autoxidation chemistry exists. In the present work, we present a method to create autoxidation chemistry schemes for any atmospherically relevant hydrocarbon. We exemplarily investigate benzene and its potential to form aerosols. We found that autoxidation, under some conditions, can dominate the SOA formation.
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Wei Huang, Haiyan Li, Nina Sarnela, Liine Heikkinen, Yee Jun Tham, Jyri Mikkilä, Steven J. Thomas, Neil M. Donahue, Markku Kulmala, and Federico Bianchi
Atmos. Chem. Phys., 21, 8961–8977, https://doi.org/10.5194/acp-21-8961-2021, https://doi.org/10.5194/acp-21-8961-2021, 2021
Short summary
Short summary
We show full characterization of gaseous organic compounds in a boreal forest. Molecular composition and volatility of gaseous organic compounds with different oxidation extents (from volatile organic compounds to highly oxygenated organic molecules) were investigated and discussed. We provide a more comprehensive understanding of atmospheric organic compounds in this boreal forest and new insights into interpreting ambient measurements or testing and improving parameterizations in models.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Meri Räty, Otso Peräkylä, Matthieu Riva, Lauriane Quéléver, Olga Garmash, Matti Rissanen, and Mikael Ehn
Atmos. Chem. Phys., 21, 7357–7372, https://doi.org/10.5194/acp-21-7357-2021, https://doi.org/10.5194/acp-21-7357-2021, 2021
Short summary
Short summary
Cyclohexene resembles certain relatively complex compounds in the atmosphere that through oxidation produce vapours that take part in aerosol formation. We studied the highly oxygenated organic molecules (HOMs) formed in cyclohexene ozonolysis, the relationship between their chemical composition and their tendency to condense onto seed aerosol, as well as the effect of NOx pollutants on their signals. Two existing models were also tested for their ability to predict the volatility of the HOMs.
Clémence Rose, Matti P. Rissanen, Siddharth Iyer, Jonathan Duplissy, Chao Yan, John B. Nowak, Aurélie Colomb, Régis Dupuy, Xu-Cheng He, Janne Lampilahti, Yee Jun Tham, Daniela Wimmer, Jean-Marc Metzger, Pierre Tulet, Jérôme Brioude, Céline Planche, Markku Kulmala, and Karine Sellegri
Atmos. Chem. Phys., 21, 4541–4560, https://doi.org/10.5194/acp-21-4541-2021, https://doi.org/10.5194/acp-21-4541-2021, 2021
Short summary
Short summary
Sulfuric acid (H2SO4) is commonly accepted as a key precursor for atmospheric new particle formation. However, direct measurements of [H2SO4] remain challenging, motivating the development of proxies. Using data collected in two different volcanic plumes, we show, under these specific conditions, the good performance of a proxy from the literature and also highlight the benefit of the newly developed proxies for the prediction of the highest [H2SO4] values.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
Mario Simon, Lubna Dada, Martin Heinritzi, Wiebke Scholz, Dominik Stolzenburg, Lukas Fischer, Andrea C. Wagner, Andreas Kürten, Birte Rörup, Xu-Cheng He, João Almeida, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Lisa Beck, Anton Bergen, Federico Bianchi, Steffen Bräkling, Sophia Brilke, Lucia Caudillo, Dexian Chen, Biwu Chu, António Dias, Danielle C. Draper, Jonathan Duplissy, Imad El-Haddad, Henning Finkenzeller, Carla Frege, Loic Gonzalez-Carracedo, Hamish Gordon, Manuel Granzin, Jani Hakala, Victoria Hofbauer, Christopher R. Hoyle, Changhyuk Kim, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Bernhard Mentler, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Lauriane L. J. Quéléver, Ananth Ranjithkumar, Matti P. Rissanen, Simon Schallhart, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee J. Tham, António R. Tomé, Miguel Vazquez-Pufleau, Alexander L. Vogel, Robert Wagner, Mingyi Wang, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Yusheng Wu, Mao Xiao, Chao Yan, Penglin Ye, Qing Ye, Marcel Zauner-Wieczorek, Xueqin Zhou, Urs Baltensperger, Josef Dommen, Richard C. Flagan, Armin Hansel, Markku Kulmala, Rainer Volkamer, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, https://doi.org/10.5194/acp-20-9183-2020, 2020
Short summary
Short summary
Highly oxygenated organic compounds (HOMs) have been identified as key vapors involved in atmospheric new-particle formation (NPF). The molecular distribution, HOM yield, and NPF from α-pinene oxidation experiments were measured at the CLOUD chamber over a wide tropospheric-temperature range. This study shows on a molecular scale that despite the sharp reduction in HOM yield at lower temperatures, the reduced volatility counteracts this effect and leads to an overall increase in the NPF rate.
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Dean Chen, Putian Zhou, Tuomo Nieminen, Pontus Roldin, Ximeng Qi, Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Markku Kulmala, Pekka Rantala, Juho Aalto, Nina Sarnela, Pasi Kolari, Petri Keronen, Matti P. Rissanen, Metin Baykara, and Michael Boy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-128, https://doi.org/10.5194/acp-2020-128, 2020
Preprint withdrawn
Short summary
Short summary
Atmospheric oxidants OH, O3 and NO3 dominate the atmospheric oxidation capacity, and sulfuric acid (H2SO4) is considered as a main driver for new particle formation events. We studied how the trends of these atmospheric oxidants and H2SO4 changed in southern Finland during the past 12 years and discussed how these trends related to decreasing emissions of air pollutants in Europe. Our results showed that OH increased by 1.56 % yr−1 at daytime and NO3 decreased by 3.92 % yr−1 at nighttime.
Olga Garmash, Matti P. Rissanen, Iida Pullinen, Sebastian Schmitt, Oskari Kausiala, Ralf Tillmann, Defeng Zhao, Carl Percival, Thomas J. Bannan, Michael Priestley, Åsa M. Hallquist, Einhard Kleist, Astrid Kiendler-Scharr, Mattias Hallquist, Torsten Berndt, Gordon McFiggans, Jürgen Wildt, Thomas F. Mentel, and Mikael Ehn
Atmos. Chem. Phys., 20, 515–537, https://doi.org/10.5194/acp-20-515-2020, https://doi.org/10.5194/acp-20-515-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) facilitate aerosol formation in the atmosphere. Using NO3− chemical ionization mass spectrometry we investigated HOM composition and yield in oxidation of aromatic compounds at different reactant concentrations, in the presence of NOx and seed aerosol. Higher OH concentrations increased HOM yield, suggesting multiple oxidation steps, and affected HOM composition, potentially explaining in part discrepancies in published secondary organic aerosol yields.
Ximeng Qi, Aijun Ding, Pontus Roldin, Zhengning Xu, Putian Zhou, Nina Sarnela, Wei Nie, Xin Huang, Anton Rusanen, Mikael Ehn, Matti P. Rissanen, Tuukka Petäjä, Markku Kulmala, and Michael Boy
Atmos. Chem. Phys., 18, 11779–11791, https://doi.org/10.5194/acp-18-11779-2018, https://doi.org/10.5194/acp-18-11779-2018, 2018
Short summary
Short summary
In this study we simulate the HOM concentrations and discuss their roles in NPF at a remote boreal forest site in Finland and a suburban site in eastern China. We found that sulfuric acid and HOM organonitrate concentrations in the gas phase are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower in eastern China. This study highlights the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas.
Nina Sarnela, Tuija Jokinen, Jonathan Duplissy, Chao Yan, Tuomo Nieminen, Mikael Ehn, Siegfried Schobesberger, Martin Heinritzi, Sebastian Ehrhart, Katrianne Lehtipalo, Jasmin Tröstl, Mario Simon, Andreas Kürten, Markus Leiminger, Michael J. Lawler, Matti P. Rissanen, Federico Bianchi, Arnaud P. Praplan, Jani Hakala, Antonio Amorim, Marc Gonin, Armin Hansel, Jasper Kirkby, Josef Dommen, Joachim Curtius, James N. Smith, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Neil M. Donahue, and Mikko Sipilä
Atmos. Chem. Phys., 18, 2363–2380, https://doi.org/10.5194/acp-18-2363-2018, https://doi.org/10.5194/acp-18-2363-2018, 2018
Short summary
Short summary
Atmospheric trace gases can form small molecular clusters, which can grow to larger sizes through the condensation of vapours. This process is called new particle formation. In this paper we studied the formation of sulfuric acid and highly oxygenated molecules, the key compounds in atmospheric new particle formation, in chamber experiments and introduced a way to simulate these ozonolysis products of α-pinene in a simple manner.
Andreas Kürten, Chenxi Li, Federico Bianchi, Joachim Curtius, António Dias, Neil M. Donahue, Jonathan Duplissy, Richard C. Flagan, Jani Hakala, Tuija Jokinen, Jasper Kirkby, Markku Kulmala, Ari Laaksonen, Katrianne Lehtipalo, Vladimir Makhmutov, Antti Onnela, Matti P. Rissanen, Mario Simon, Mikko Sipilä, Yuri Stozhkov, Jasmin Tröstl, Penglin Ye, and Peter H. McMurry
Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, https://doi.org/10.5194/acp-18-845-2018, 2018
Short summary
Short summary
A recent laboratory study (CLOUD) showed that new particles nucleate efficiently from sulfuric acid and dimethylamine (DMA). The reanalysis of previously published data reveals that the nucleation rates are even faster than previously assumed, i.e., nucleation can proceed at rates that are compatible with collision-controlled new particle formation for atmospheric conditions. This indicates that sulfuric acid–DMA nucleation is likely an important source of particles in the boundary layer.
Carla Frege, Ismael K. Ortega, Matti P. Rissanen, Arnaud P. Praplan, Gerhard Steiner, Martin Heinritzi, Lauri Ahonen, António Amorim, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Martin Breitenlechner, Lubna Dada, António Dias, Jonathan Duplissy, Sebastian Ehrhart, Imad El-Haddad, Lukas Fischer, Claudia Fuchs, Olga Garmash, Marc Gonin, Armin Hansel, Christopher R. Hoyle, Tuija Jokinen, Heikki Junninen, Jasper Kirkby, Andreas Kürten, Katrianne Lehtipalo, Markus Leiminger, Roy Lee Mauldin, Ugo Molteni, Leonid Nichman, Tuukka Petäjä, Nina Sarnela, Siegfried Schobesberger, Mario Simon, Mikko Sipilä, Dominik Stolzenburg, António Tomé, Alexander L. Vogel, Andrea C. Wagner, Robert Wagner, Mao Xiao, Chao Yan, Penglin Ye, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Paul M. Winkler, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 65–79, https://doi.org/10.5194/acp-18-65-2018, https://doi.org/10.5194/acp-18-65-2018, 2018
Short summary
Short summary
It was recently shown that biogenic highly oxygenated molecules (HOMs) form particles in the absence of sulfuric acid and ions enhance the nucleation rate. Here we compare the molecular composition of positive and negative HOM clusters at 25, 5 and −25 °C. At lower temperatures the HOM average oxygen-to-carbon ratio decreases indicating a reduction in the rate of autoxidation due to rather high activation energy. The experimental findings are supported by quantum chemical calculations.
Xuemeng Chen, Lauriane L. J. Quéléver, Pak L. Fung, Jutta Kesti, Matti P. Rissanen, Jaana Bäck, Petri Keronen, Heikki Junninen, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 49–63, https://doi.org/10.5194/acp-18-49-2018, https://doi.org/10.5194/acp-18-49-2018, 2018
Short summary
Short summary
We analysed a 20-year-long dataset collected in a Finnish boreal forest at SMEAR II station to investigate the frequency and strength of ozone depletion events. We could identify a number of ozone depletion events that lasted for more than 3 h, mainly in the autumn and winter months. Their occurrence was likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.
Robert Wagner, Chao Yan, Katrianne Lehtipalo, Jonathan Duplissy, Tuomo Nieminen, Juha Kangasluoma, Lauri R. Ahonen, Lubna Dada, Jenni Kontkanen, Hanna E. Manninen, Antonio Dias, Antonio Amorim, Paulus S. Bauer, Anton Bergen, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Stephany Buenrostro Mazon, Xuemeng Chen, Danielle C. Draper, Lukas Fischer, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Jani Hakala, Liine Heikkinen, Martin Heinritzi, Victoria Hofbauer, Christopher R. Hoyle, Jasper Kirkby, Andreas Kürten, Alexander N. Kvashnin, Tiia Laurila, Michael J. Lawler, Huajun Mai, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Felix Piel, Lauriane L. J. Quéléver, Matti P. Rissanen, Nina Sarnela, Simon Schallhart, Kamalika Sengupta, Mario Simon, Dominik Stolzenburg, Yuri Stozhkov, Jasmin Tröstl, Yrjö Viisanen, Alexander L. Vogel, Andrea C. Wagner, Mao Xiao, Penglin Ye, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Martin Gallagher, Armin Hansel, James N. Smith, António Tomé, Paul M. Winkler, Douglas Worsnop, Mikael Ehn, Mikko Sipilä, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 15181–15197, https://doi.org/10.5194/acp-17-15181-2017, https://doi.org/10.5194/acp-17-15181-2017, 2017
Putian Zhou, Laurens Ganzeveld, Ditte Taipale, Üllar Rannik, Pekka Rantala, Matti Petteri Rissanen, Dean Chen, and Michael Boy
Atmos. Chem. Phys., 17, 14309–14332, https://doi.org/10.5194/acp-17-14309-2017, https://doi.org/10.5194/acp-17-14309-2017, 2017
Short summary
Short summary
In boreal forest, there is a large number of gaseous organic compounds called biogenic volatile organic compounds (BVOCs). Within the canopy, they can be emitted from vegetation and soil, react with each other and other gases, be transported in the air, and be removed from vegetation and soil surfaces. We applied a numerical model to simulate these processes and found that these BVOCs can be divided into five categories according to the significance of their sources and sinks.
Federico Bianchi, Olga Garmash, Xucheng He, Chao Yan, Siddharth Iyer, Ida Rosendahl, Zhengning Xu, Matti P. Rissanen, Matthieu Riva, Risto Taipale, Nina Sarnela, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Mikael Ehn, and Heikki Junninen
Atmos. Chem. Phys., 17, 13819–13831, https://doi.org/10.5194/acp-17-13819-2017, https://doi.org/10.5194/acp-17-13819-2017, 2017
Short summary
Short summary
Naturally charged highly oxidised molecules (HOMs) were characterized using advanced mass spectrometers. Two different classes of compounds, clustered with the nitrate and bisulfate ions, were identified: HOMs containing only carbon, hydrogen and oxygen and nitrogen-containing HOMs or organonitrates (ONs). They exhibit strong diurnal variations where HOMs peak during night and ONs during day. Finally, large clusters containing up to 40 carbon atoms (four oxidized
α-pinene units) were observed.
Emilie Öström, Zhou Putian, Guy Schurgers, Mikhail Mishurov, Niku Kivekäs, Heikki Lihavainen, Mikael Ehn, Matti P. Rissanen, Theo Kurtén, Michael Boy, Erik Swietlicki, and Pontus Roldin
Atmos. Chem. Phys., 17, 8887–8901, https://doi.org/10.5194/acp-17-8887-2017, https://doi.org/10.5194/acp-17-8887-2017, 2017
Short summary
Short summary
We used a model to study how biogenic volatile organic compounds (BVOCs) emitted from the boreal forest contribute to the formation and growth of particles in the atmosphere. Some of these particles are important climate forcers, acting as seeds for cloud droplet fomation. We implemented a new gas chemistry mechanism that describes how the BVOCs are oxidized and form low-volatility highly oxidized organic molecules. With the new mechanism we are able to accurately predict the particle growth.
Michael J. Lawler, Paul M. Winkler, Jaeseok Kim, Lars Ahlm, Jasmin Tröstl, Arnaud P. Praplan, Siegfried Schobesberger, Andreas Kürten, Jasper Kirkby, Federico Bianchi, Jonathan Duplissy, Armin Hansel, Tuija Jokinen, Helmi Keskinen, Katrianne Lehtipalo, Markus Leiminger, Tuukka Petäjä, Matti Rissanen, Linda Rondo, Mario Simon, Mikko Sipilä, Christina Williamson, Daniela Wimmer, Ilona Riipinen, Annele Virtanen, and James N. Smith
Atmos. Chem. Phys., 16, 13601–13618, https://doi.org/10.5194/acp-16-13601-2016, https://doi.org/10.5194/acp-16-13601-2016, 2016
Short summary
Short summary
We present chemical observations of newly formed particles as small as ~ 10 nm from new particle formation experiments using sulfuric acid, dimethylamine, ammonia, and water vapor as gas phase reactants. The nanoparticles were more acidic than expected based on thermodynamic expectations, particularly at the smallest measured sizes. The results suggest rapid surface conversion of SO2 to sulfate and show a marked composition change between 10 and 15 nm, possibly indicating a phase change.
Chao Yan, Wei Nie, Mikko Äijälä, Matti P. Rissanen, Manjula R. Canagaratna, Paola Massoli, Heikki Junninen, Tuija Jokinen, Nina Sarnela, Silja A. K. Häme, Siegfried Schobesberger, Francesco Canonaco, Lei Yao, André S. H. Prévôt, Tuukka Petäjä, Markku Kulmala, Mikko Sipilä, Douglas R. Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 16, 12715–12731, https://doi.org/10.5194/acp-16-12715-2016, https://doi.org/10.5194/acp-16-12715-2016, 2016
Short summary
Short summary
Highly oxidized multifunctional compounds (HOMs) are known to have a significant contribution to secondary aerosol formation, yet their dominating formation pathways remain unclear in the atmosphere. We apply positive matrix factorization (PMF) on HOM data, and successfully retrieve factors representing different formation pathways. The results improve our understanding of HOM formation, and provide new perspectives on using PMF to study the variation of short-lived specie.
Felipe D. Lopez-Hilfiker, Siddarth Iyer, Claudia Mohr, Ben H. Lee, Emma L. D'Ambro, Theo Kurtén, and Joel A. Thornton
Atmos. Meas. Tech., 9, 1505–1512, https://doi.org/10.5194/amt-9-1505-2016, https://doi.org/10.5194/amt-9-1505-2016, 2016
Short summary
Short summary
We present the maximum sensitivity of a TOF-CIMS using the collision limit and iodide adducts. We also present an ion adduct declustering scanning procedure which determines the effective binding energies of the detected ion adducts and therefore their approximate sensitivity. The combination of declustering scanning and the collision limit provides an approximate calibration for many compounds in the mass spectrum which would otherwise be impossible to obtain by traditional methods.
J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, and A. Virtanen
Atmos. Chem. Phys., 16, 293–304, https://doi.org/10.5194/acp-16-293-2016, https://doi.org/10.5194/acp-16-293-2016, 2016
Short summary
Short summary
The hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation during CLOUD7 at CERN in 2012. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles.
R. L. Mauldin III, M. P. Rissanen, T. Petäjä, and M. Kulmala
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2015-398, https://doi.org/10.5194/amt-2015-398, 2016
Revised manuscript under review for AMT
Short summary
Short summary
The manuscript describes a novel instrument for the measurement of OH, HO2+RO2, and other atmospheric species. The instrument described combines the chemical ionization techniques of nitrate CIMS, OH conversion to H2SO4, HO2+RO2 conversion to H2SO4, and high resolution time of flight mass spectroscopy into one system. By using one instrument to obtain spectra it is possible to compare spectra from the different modes and gain further chemical information towards peak identification.
M. Sipilä, N. Sarnela, T. Jokinen, H. Junninen, J. Hakala, M. P. Rissanen, A. Praplan, M. Simon, A. Kürten, F. Bianchi, J. Dommen, J. Curtius, T. Petäjä, and D. R. Worsnop
Atmos. Meas. Tech., 8, 4001–4011, https://doi.org/10.5194/amt-8-4001-2015, https://doi.org/10.5194/amt-8-4001-2015, 2015
Short summary
Short summary
Atmospheric concentrations of amines are poorly known mainly due to challenges related to their reliable high-sensitivity detection. We have created a method and instrument that is capable for detecting amines with lowest limit of detection of around 0.01 parts per trillion. Application of the instrument in the field study indicates that concentrations of dimethyl amine in a boreal forest site are below 0.03ppt, not enough to account for the observed new particle formation rates.
T. F. Mentel, M. Springer, M. Ehn, E. Kleist, I. Pullinen, T. Kurtén, M. Rissanen, A. Wahner, and J. Wildt
Atmos. Chem. Phys., 15, 6745–6765, https://doi.org/10.5194/acp-15-6745-2015, https://doi.org/10.5194/acp-15-6745-2015, 2015
Short summary
Short summary
We studied a series of cycloalkenes and methyl-substituted alkenes in order to elucidate the structural pre-requisites and chemical pathways to the recently discovered class of highly oxidized molecules ELVOC (Ehn et al., Nature, 2014). ELVOC may totally change the view on (parts of) the mechanism of SOA formation. We present results which support recent observations of H shifts from C-H to peroxy radicals, highlighting the pivotal role of peroxyradicals in organic atmospheric chemistry.
A. P. Praplan, S. Schobesberger, F. Bianchi, M. P. Rissanen, M. Ehn, T. Jokinen, H. Junninen, A. Adamov, A. Amorim, J. Dommen, J. Duplissy, J. Hakala, A. Hansel, M. Heinritzi, J. Kangasluoma, J. Kirkby, M. Krapf, A. Kürten, K. Lehtipalo, F. Riccobono, L. Rondo, N. Sarnela, M. Simon, A. Tomé, J. Tröstl, P. M. Winkler, C. Williamson, P. Ye, J. Curtius, U. Baltensperger, N. M. Donahue, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 4145–4159, https://doi.org/10.5194/acp-15-4145-2015, https://doi.org/10.5194/acp-15-4145-2015, 2015
Short summary
Short summary
Our study shows, based on data from three atmospheric pressure interface time-of-flight mass spectrometers measuring in parallel charged and neutral molecules and molecular clusters, how oxidised organic compounds bind to inorganic ions (e.g. bisulfate, nitrate, ammonium). This ionisation is selective for compounds with lower molar mass due to their limited amount and variety of functional groups. We also found that extremely low volatile organic compounds (ELVOCs) can be formed immediately.
M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M. Donahue, R. L. Mauldin III, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H. Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R. Worsnop, M. Kulmala, V.-M. Kerminen, and T. Petäjä
Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, https://doi.org/10.5194/acp-14-12143-2014, 2014
J. Kangasluoma, C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petäjä
Atmos. Meas. Tech., 7, 689–700, https://doi.org/10.5194/amt-7-689-2014, https://doi.org/10.5194/amt-7-689-2014, 2014
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Deployment and evaluation of an NH4+∕ H3O+ reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
An economical tunable diode laser spectrometer for fast-response measurements of water vapor in the atmospheric boundary layer
Eddy covariance with slow-response greenhouse gas analysers on tall towers: bridging atmospheric and ecosystem greenhouse gas networks
Development of a portable laser-flash photolysis Faraday rotation spectrometer for measuring atmospheric total OH reactivity
An overview of outdoor low-cost gas-phase air quality sensor deployments: current efforts, trends, and limitations
Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets
A portable nitrogen dioxide instrument using cavity-enhanced absorption spectroscopy
Development and deployment of a mid-cost CO2 sensor monitoring network to support atmospheric inverse modeling for quantifying urban CO2 emissions in Paris
UAV-based in situ measurements of CO2 and CH4 fluxes over complex natural ecosystems
Advances in OH reactivity instruments for airborne field measurements
A new aerial approach for quantifying and attributing methane emissions: implementation and validation
Vertical profiles and surface distributions of trace gases (CO, O3, NO, NO2) in the Arctic wintertime boundary layer using low-cost sensors during ALPACA-2022
Drone CO2 measurements during the Tajogaite volcanic eruption
Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe
Reliable water vapour isotopic composition measurements at low humidity using frequency-stabilised cavity ring-down spectroscopy
A measurement system for CO2 and CH4 emissions quantification of industrial sites using a new in situ concentration sensor operated on board uncrewed aircraft vehicles
Using metal oxide gas sensors to estimate the emission rates and locations of methane leaks in an industrial site: assessment with controlled methane releases
The ASK-16 Motorized Glider: An Airborne Eddy Covariance Platform to measure Turbulence, Energy and Matter Fluxes
Toward on-demand measurements of greenhouse gas emissions using an uncrewed aircraft AirCore system
Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study
In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer
Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Observing low-altitude features in ozone concentrations in a shoreline environment via uncrewed aerial systems
Development of a Peltier-based chilled-mirror hygrometer for tropospheric and lower stratospheric water vapor measurements
An integrated uncrewed aerial vehicle platform with sensing and sampling systems for the measurement of air pollutant concentrations
Design and evaluation of a low-cost sensor node for near-background methane measurement
Development of a Multichannel Organics In situ enviRonmental Analyzer (MOIRA) for mobile measurements of volatile organic compounds
Evaluation of Aeris mid-infrared absorption (MIRA), Picarro CRDS (cavity ring-down spectroscopy) G2307, and dinitrophenylhydrazine (DNPH)-based sampling for long-term formaldehyde monitoring efforts
Performance characterization of a laminar gas inlet
Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes
Identifying and correcting interferences to PTR-ToF-MS measurements of isoprene and other urban volatile organic compounds
Development of a continuous UAV-mounted air sampler and application to the quantification of CO2 and CH4 emissions from a major coking plant
Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Effect of land–sea air mass transport on spatiotemporal distributions of atmospheric CO2 and CH4 mixing ratios over the southern Yellow Sea
HYPHOP: a tool for high-altitude, long-range monitoring of hydrogen peroxide and higher organic peroxides in the atmosphere
Portable, low-cost samplers for distributed sampling of atmospheric gases
SI-traceable validation of a laser spectrometer for balloon-borne measurements of water vapor in the upper atmosphere
Field evaluation of low-cost electrochemical air quality gas sensors under extreme temperature and relative humidity conditions
A novel, cost-effective analytical method for measuring high-resolution vertical profiles of stratospheric trace gases using a gas chromatograph coupled with an electron capture detector
Ethylene oxide monitor with part-per-trillion precision for in situ measurements
Development of an automated pump-efficiency measuring system for ozonesondes utilizing an airbag-type flowmeter
Short-term variability of atmospheric helium revealed through a cryo-enrichment method
Using tunable infrared laser direct absorption spectroscopy for ambient hydrogen chloride detection: HCl-TILDAS
New methods for the calibration of optical resonators: integrated calibration by means of optical modulation (ICOM) and narrow-band cavity ring-down (NB-CRD)
A modular field system for near-surface, vertical profiling of the atmospheric composition in harsh environments using cavity ring-down spectroscopy
Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods
Development of multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle for investigating volatile organic compounds' vertical distribution in the planetary boundary layer
Electrochemical sensors on board a Zeppelin NT: in-flight evaluation of low-cost trace gas measurements
Evaluating the performance of a Picarro G2207-i analyser for high-precision atmospheric O2 measurements
Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry
Cort L. Zang and Megan D. Willis
Atmos. Meas. Tech., 18, 17–35, https://doi.org/10.5194/amt-18-17-2025, https://doi.org/10.5194/amt-18-17-2025, 2025
Short summary
Short summary
Atmospheric chemistry of the diverse pool of reactive organic carbon (ROC; all organic species excluding methane) controls air quality, both indoors and outdoors, and influences Earth's climate. However, many important ROC compounds in the atmosphere are difficult to measure. We demonstrate measurement of diverse ROC compounds in a single instrument at a forested site. This approach can improve our ability to measure a broad range of atmospheric ROC.
Emily D. Wein, Lars E. Kalnajs, and Darin W. Toohey
Atmos. Meas. Tech., 17, 7097–7107, https://doi.org/10.5194/amt-17-7097-2024, https://doi.org/10.5194/amt-17-7097-2024, 2024
Short summary
Short summary
We describe a low-cost and small research-grade spectrometer for measurements of water vapor in the boundary layer. The instrument uses small Arduino microcontrollers and inexpensive laser diodes to reduce cost while maintaining high performance comparable to more expensive instruments. Performance was assessed with intercomparisons between commercially available instruments outdoors. The design's simplicity, performance, and price point allow it to be accessible to a variety of users.
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024, https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
Short summary
This study presents direct flux measurements in tall towers using existing slow-response analysers and adding 3D sonic anemometers. This way, we can significantly improve greenhouse gas monitoring with little extra instrumental effort. Slow-response analysers may be used here as the relevant frequency ranges depend on measuring height. Tall towers offer a large footprint, amplifying spatial coverage. The presented concept is a valuable bridge between atmospheric and ecosystem communities.
Bo Fang, Nana Wei, Weixiong Zhao, Nana Yang, Hao Zhou, Heng Zhang, Jiarong Li, Weijun Zhang, Yanyu Lu, Zhu Zhu, and Yue Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-184, https://doi.org/10.5194/amt-2024-184, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
A portable LP-FRS instrument with dimensions of 130 cm × 40 cm × 35 cm was developed. A specific pump-probe MPC was designed to offer a high overlapping factor of 75.4 %. The precision and uncertainty of the LP-FRS instrument for measuring kOH' were 1.0 s-1 (1σ, 300 s) and within 2 s-1, respectively. The developed portable LP-FRS instrument expands the measurement capabilities for atmospheric total OH reactivity and will be employed in more field observations.
Kristen Okorn and Laura T. Iraci
Atmos. Meas. Tech., 17, 6425–6457, https://doi.org/10.5194/amt-17-6425-2024, https://doi.org/10.5194/amt-17-6425-2024, 2024
Short summary
Short summary
We reviewed 60 sensor networks and 17 related efforts (sensor review papers and data accessibility projects) to better understand the landscape of stationary low-cost gas-phase sensor networks deployed in outdoor environments worldwide. Gaps in monitoring efforts include the availability of gas-phase measurements compared to particulate matter (PM) and geographic coverage gaps (the Global South, rural areas). We conclude with a summary of cross-network unification and quality control efforts.
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024, https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
Short summary
Chemical ionisation mass spectrometry is used in the atmospheric sciences to measure trace gas concentrations. Neutral gases require charging in inlets before the mass-to-charge ratio of the resulting ions can be analysed. This study uses multiphysics modelling to investigate how the MION2 and Eisele type inlets work and shows the effect of tuning parameters and their current limitations. The findings are helpful for inlet users and are expected to aid in developing improved inlets.
Steven A. Bailey, Reem A. Hannun, Andrew K. Swanson, and Thomas F. Hanisco
Atmos. Meas. Tech., 17, 5903–5910, https://doi.org/10.5194/amt-17-5903-2024, https://doi.org/10.5194/amt-17-5903-2024, 2024
Short summary
Short summary
We have developed a portable, optically based instrument that measures NO2. It consumes less than 6 W of power, so it can easily run off a small battery. This instrument has made both balloon and UAV flights. NO2 measurement results compare favorably with other known NO2 instruments. We find this instrument to be stable with repeatable results compared with calibration sources. Material cost to build a single instrument is around USD 4000. This could be lowered with economies of scale.
Jinghui Lian, Olivier Laurent, Mali Chariot, Luc Lienhardt, Michel Ramonet, Hervé Utard, Thomas Lauvaux, François-Marie Bréon, Grégoire Broquet, Karina Cucchi, Laurent Millair, and Philippe Ciais
Atmos. Meas. Tech., 17, 5821–5839, https://doi.org/10.5194/amt-17-5821-2024, https://doi.org/10.5194/amt-17-5821-2024, 2024
Short summary
Short summary
We have designed and deployed a mid-cost medium-precision CO2 sensor monitoring network in Paris since July 2020. The data are automatically calibrated by a newly implemented data processing system. The accuracies of the mid-cost instruments vary from 1.0 to 2.4 ppm for hourly afternoon measurements. Our model–data analyses highlight prospects for integrating mid-cost instrument data with high-precision measurements to improve fine-scale CO2 emission quantification in urban areas.
Abdullah Bolek, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 17, 5619–5636, https://doi.org/10.5194/amt-17-5619-2024, https://doi.org/10.5194/amt-17-5619-2024, 2024
Short summary
Short summary
This study describes the development of a new UAV platform to measure atmospheric greenhouse gas (GHG) mole fractions, 2D wind speed, air temperature, humidity, and pressure. Understanding GHG flux processes and controls across various ecosystems is essential for estimating the current and future state of climate change. It was shown that using the UAV platform for such measurements is beneficial for improving our understanding of GHG processes over complex landscapes.
Hendrik Fuchs, Aaron Stainsby, Florian Berg, René Dubus, Michelle Färber, Andreas Hofzumahaus, Frank Holland, Kelvin H. Bates, Steven S. Brown, Matthew M. Coggon, Glenn S. Diskin, Georgios I. Gkatzelis, Christopher M. Jernigan, Jeff Peischl, Michael A. Robinson, Andrew W. Rollins, Nell B. Schafer, Rebecca H. Schwantes, Chelsea E. Stockwell, Patrick R. Veres, Carsten Warneke, Eleanor M. Waxman, Lu Xu, Kristen Zuraski, Andreas Wahner, and Anna Novelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2752, https://doi.org/10.5194/egusphere-2024-2752, 2024
Short summary
Short summary
Significant improvements have been made to the instruments used to measure OH reactivity, which is equivalent to the sum of air pollutant concentrations. Accurate and precise measurements with a high time resolution have been achieved, allowing use on aircraft, as demonstrated during flights in the USA.
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024, https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary
Short summary
Methane is a powerful greenhouse gas originating from both natural and human activities. We describe a new uncrewed aerial system (UAS) designed to measure methane emission rates over a wide range of scales. This system has been used for direct quantification of point sources and distributed emitters over scales of up to 1 km. The system uses simultaneous measurements of methane and ethane to distinguish between different kinds of natural and human-related emission sources.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve Arnold, Andrea Baccarini, Mauricio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2421, https://doi.org/10.5194/egusphere-2024-2421, 2024
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed onboard a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, NOx) in Fairbanks during the winter of 2022. Data calibration with reference measurements and machine learning methods enabled to document pollution at the surface and power plant plumes aloft.
John Ericksen, Tobias P. Fischer, G. Matthew Fricke, Scott Nowicki, Nemesio M. Pérez, Pedro Hernández Pérez, Eleazar Padrón González, and Melanie E. Moses
Atmos. Meas. Tech., 17, 4725–4736, https://doi.org/10.5194/amt-17-4725-2024, https://doi.org/10.5194/amt-17-4725-2024, 2024
Short summary
Short summary
Volcanic eruptions emit significant quantities of carbon dioxide (CO2) to the atmosphere. We present a new method for directly determining the CO2 emission from a volcanic eruption on the island of La Palma, Spain, using an unpiloted aerial vehicle (UAV). We also collected samples of the emitted CO2 and analyzed their isotopic composition. Together with the emission rate the isotopic data provide valuable information on the state of volcanic activity and the potential evolution of the eruption.
László Haszpra
Atmos. Meas. Tech., 17, 4629–4647, https://doi.org/10.5194/amt-17-4629-2024, https://doi.org/10.5194/amt-17-4629-2024, 2024
Short summary
Short summary
The paper evaluates a 30-year-long atmospheric CO2 data series from a mid-continental central European site, Hegyhátsál (HUN). It presents the site-specific features observed in the long-term evolution of the atmospheric CO2 concentration. Since the measurement data are widely used in atmospheric inverse models and budget calculations all around the world, the paper provides potentially valuable information for model tuning and interpretation of the model results.
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, and Samir Kassi
Atmos. Meas. Tech., 17, 4599–4612, https://doi.org/10.5194/amt-17-4599-2024, https://doi.org/10.5194/amt-17-4599-2024, 2024
Short summary
Short summary
Measuring water isotopic composition in Antarctica is difficult because of the extremely cold temperature in winter. Here, we designed a new infrared spectrometer able to measure the vapour isotopic composition during more than 95 % of the year in the coldest locations of Antarctica, whereas current commercial instruments are only able to measure during the warm summer months in the interior.
Jean-Louis Bonne, Ludovic Donnat, Grégory Albora, Jérémie Burgalat, Nicolas Chauvin, Delphine Combaz, Julien Cousin, Thomas Decarpenterie, Olivier Duclaux, Nicolas Dumelié, Nicolas Galas, Catherine Juery, Florian Parent, Florent Pineau, Abel Maunoury, Olivier Ventre, Marie-France Bénassy, and Lilian Joly
Atmos. Meas. Tech., 17, 4471–4491, https://doi.org/10.5194/amt-17-4471-2024, https://doi.org/10.5194/amt-17-4471-2024, 2024
Short summary
Short summary
We present a top-down approach to quantify CO2 and CH4 emissions at the scale of an industrial site, based on a mass balance model relying on atmospheric concentrations measurements from a new sensor embarked on board uncrewed aircraft vehicles (UAVs). We present a laboratory characterization of our sensor and a field validation of our quantification method, together with field application to the monitoring of two real-world offshore oil and gas platforms.
Rodrigo Rivera-Martinez, Pramod Kumar, Olivier Laurent, Gregoire Broquet, Christopher Caldow, Ford Cropley, Diego Santaren, Adil Shah, Cécile Mallet, Michel Ramonet, Leonard Rivier, Catherine Juery, Olivier Duclaux, Caroline Bouchet, Elisa Allegrini, Hervé Utard, and Philippe Ciais
Atmos. Meas. Tech., 17, 4257–4290, https://doi.org/10.5194/amt-17-4257-2024, https://doi.org/10.5194/amt-17-4257-2024, 2024
Short summary
Short summary
We explore the use of metal oxide semiconductors (MOSs) as a low-cost alternative for detecting and measuring CH4 emissions from industrial facilities. MOSs were exposed to several controlled releases to test their accuracy in detecting and quantifying emissions. Two reconstruction models were compared, and emission estimates were computed using a Gaussian dispersion model. Findings show that MOSs can provide accurate emission estimates with a 25 % emission rate error and a 9.5 m location error.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2024-1586, https://doi.org/10.5194/egusphere-2024-1586, 2024
Short summary
Short summary
Airborne eddy covariance platforms are crucial, as they measure the three-dimension wind, and turbulent transport of matter and energy between the surface and the atmosphere at larger scales. In this study we introduce the new ASK-16 eddy covariance platform that is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and regional remote sensing fluxes or inversion products.
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024, https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Short summary
Increases in agriculture, oil and gas, and waste management activities have contributed to the increase in atmospheric methane levels and resultant climate warming. In this paper, we explore the use of small uncrewed aircraft systems (sUASs) and AirCore technology to detect and quantify methane emissions. Results from field experiments demonstrate that sUASs and AirCore technology can be effective for detecting and quantifying methane emissions in near real time.
Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, and Pete M. Edwards
Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024, https://doi.org/10.5194/amt-17-3809-2024, 2024
Short summary
Short summary
In this paper we present an overview of the QUANT project, which to our knowledge is one of the largest evaluations of commercial sensors to date. The objective was to evaluate the performance of a range of commercial products and also to nourish the different applications in which these technologies can offer relevant information.
Linda Ort, Lenard Lukas Röder, Uwe Parchatka, Rainer Königstedt, Daniel Crowley, Frank Kunz, Ralf Wittkowski, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 17, 3553–3565, https://doi.org/10.5194/amt-17-3553-2024, https://doi.org/10.5194/amt-17-3553-2024, 2024
Short summary
Short summary
Airborne in situ measurements are of great importance to collect valuable data to improve our knowledge of the atmosphere but also present challenges which demand specific designs. This study presents an IR spectrometer for airborne trace-gas measurements with high data efficiency and a simple, compact design. Its in-flight performance is characterized with the help of a test flight and a comparison with another spectrometer. Moreover, results from its first campaign highlight its benefits.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Josie K. Radtke, Benjamin N. Kies, Whitney A. Mottishaw, Sydney M. Zeuli, Aidan T. H. Voon, Kelly L. Koerber, Grant W. Petty, Michael P. Vermeuel, Timothy H. Bertram, Ankur R. Desai, Joseph P. Hupy, R. Bradley Pierce, Timothy J. Wagner, and Patricia A. Cleary
Atmos. Meas. Tech., 17, 2833–2847, https://doi.org/10.5194/amt-17-2833-2024, https://doi.org/10.5194/amt-17-2833-2024, 2024
Short summary
Short summary
The use of uncrewed aircraft systems (UASs) to conduct a vertical profiling of ozone and meteorological variables was evaluated using comparisons between tower or ground observations and UAS-based measurements. Changes to the UAS profiler showed an improvement in performance. The profiler was used to see the impact of Chicago pollution plumes on a shoreline area near Lake Michigan.
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-635, https://doi.org/10.5194/egusphere-2024-635, 2024
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and mid-latitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Chen-Wei Liang and Chang-Hung Shen
Atmos. Meas. Tech., 17, 2671–2686, https://doi.org/10.5194/amt-17-2671-2024, https://doi.org/10.5194/amt-17-2671-2024, 2024
Short summary
Short summary
In the present study, a UAV platform with sensing and sampling systems was developed for 3D air pollutant concentration measurements. The sensing system of this platform contains multiple microsensors and IoT technologies for obtaining the real-time 3D distributions of critical air pollutants. The sampling system contains gas sampling sets and a 1 L Tedlar bag instead of a canister for the 3D measurement of VOC concentrations in accordance with the TO-15 method of the US EPA.
Daniel Furuta, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 17, 2103–2121, https://doi.org/10.5194/amt-17-2103-2024, https://doi.org/10.5194/amt-17-2103-2024, 2024
Short summary
Short summary
Methane is an important driver of climate change and is challenging to inexpensively sense in low atmospheric concentrations. We developed a low-cost sensor to monitor methane and tested it in indoor and outdoor settings. Our device shows promise for monitoring low levels of methane. We characterize its limitations and suggest future research directions for further development.
Audrey J. Dang, Nathan M. Kreisberg, Tyler L. Cargill, Jhao-Hong Chen, Sydney Hornitschek, Remy Hutheesing, Jay R. Turner, and Brent J. Williams
Atmos. Meas. Tech., 17, 2067–2087, https://doi.org/10.5194/amt-17-2067-2024, https://doi.org/10.5194/amt-17-2067-2024, 2024
Short summary
Short summary
The Multichannel Organics In situ enviRonmental Analyzer (MOIRA) is a new instrument for measuring speciated volatile organic compounds (VOCs) in the air and has been developed for mapping concentrations from a hybrid car. MOIRA is characterized in the lab and pilot field studies of indoor air in a single-family residence and outdoor air during a mobile deployment. Future applications include indoor, outdoor, and lab measurements to grasp the impact of VOCs on air quality, health, and climate.
Asher P. Mouat, Zelda A. Siegel, and Jennifer Kaiser
Atmos. Meas. Tech., 17, 1979–1994, https://doi.org/10.5194/amt-17-1979-2024, https://doi.org/10.5194/amt-17-1979-2024, 2024
Short summary
Short summary
Three fast-measurement formaldehyde monitors were deployed at two field sites in Atlanta, GA, over 1 year. Four different zeroing methods were tested to develop an optimal field setup as well as procedures for instrument calibration. Observations agreed well after calibration but were much higher compared to the TO-11A monitoring method, which is the golden standard. Historical HCHO concentrations were compared with measurements in this work, showing a 22 % reduction in midday HCHO since 1999.
Da Yang, Margarita Reza, Roy Mauldin, Rainer Volkamer, and Suresh Dhaniyala
Atmos. Meas. Tech., 17, 1463–1474, https://doi.org/10.5194/amt-17-1463-2024, https://doi.org/10.5194/amt-17-1463-2024, 2024
Short summary
Short summary
This paper evaluates the performance of an aircraft gas inlet. Here, we use computational fluid dynamics (CFD) and experiments to demonstrate the role of turbulence in determining sampling performance of a gas inlet and identify ideal conditions for inlet operation to minimize gas loss. Experiments conducted in a high-speed wind tunnel under near-aircraft speeds validated numerical results. We believe that the results obtained from this work will greatly inform future gas inlet studies.
Reena Macagga, Michael Asante, Geoffroy Sossa, Danica Antonijević, Maren Dubbert, and Mathias Hoffmann
Atmos. Meas. Tech., 17, 1317–1332, https://doi.org/10.5194/amt-17-1317-2024, https://doi.org/10.5194/amt-17-1317-2024, 2024
Short summary
Short summary
Using only low-cost microcontrollers and sensors, we constructed a measurement device to accurately and precisely obtain atmospheric carbon dioxide and water fluxes. The device was tested against known concentration increases and high-cost, commercial sensors during a laboratory and field experiment. We additionally tested the device over a longer period in a field study in Ghana during which the net ecosystem carbon balance and water use efficiency of maize cultivation were studied.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Tianran Han, Conghui Xie, Yayong Liu, Yanrong Yang, Yuheng Zhang, Yufei Huang, Xiangyu Gao, Xiaohua Zhang, Fangmin Bao, and Shao-Meng Li
Atmos. Meas. Tech., 17, 677–691, https://doi.org/10.5194/amt-17-677-2024, https://doi.org/10.5194/amt-17-677-2024, 2024
Short summary
Short summary
This study reported an integrated UAV measurement platform for GHG monitoring and its application for emission quantification from a coking plant. The key element of this system is a newly designed air sampler, consisting of a 150 m long tube with remote-controlled time stamping. When comparing the top-down results to those derived from the bottom-up inventory method, the present findings indicate that the use of IPCC emission factors for emission calculations can lead to overestimation.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Jiaxin Li, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Shanshan Qiu, Kai Jiang, Xuemei Qing, Haoyu Xiong, Haixiang Hong, Shuangxi Fang, Honghui Xu, and Yujun Jiang
Atmos. Meas. Tech., 16, 4757–4768, https://doi.org/10.5194/amt-16-4757-2023, https://doi.org/10.5194/amt-16-4757-2023, 2023
Short summary
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
Zaneta Hamryszczak, Antonia Hartmann, Dirk Dienhart, Sascha Hafermann, Bettina Brendel, Rainer Königstedt, Uwe Parchatka, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 4741–4756, https://doi.org/10.5194/amt-16-4741-2023, https://doi.org/10.5194/amt-16-4741-2023, 2023
Short summary
Short summary
Hydroperoxide measurements improve the understanding of atmospheric oxidation processes. We introduce an instrumental setup for airborne measurements. The aim of the work is the characterization of the measurement method with emphasis on interferences impacting instrumental uncertainty. Technical and physical challenges do not critically impact the instrumental performance. The instrument resolves dynamic processes, such as convective transport, as shown based on the CAFE-Brazil campaign.
James F. Hurley, Alejandra Caceres, Deborah F. McGlynn, Mary E. Tovillo, Suzanne Pinar, Roger Schürch, Ksenia Onufrieva, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4681–4692, https://doi.org/10.5194/amt-16-4681-2023, https://doi.org/10.5194/amt-16-4681-2023, 2023
Short summary
Short summary
Volatile organic compounds (VOCs) have a wide range of sources and impacts on environments and human health that make them spatially, temporally, and chemically varied. Current methods lack the ability to collect samples in ways that provide spatial and chemical resolution without complex, costly instrumentation. We describe and validate a low-cost, portable VOC sampler and demonstrate its utility in collecting distributed coordinated samples.
Simone Brunamonti, Manuel Graf, Tobias Bühlmann, Céline Pascale, Ivan Ilak, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 16, 4391–4407, https://doi.org/10.5194/amt-16-4391-2023, https://doi.org/10.5194/amt-16-4391-2023, 2023
Short summary
Short summary
The abundance of water vapor (H2O) in the upper atmosphere has a significant impact on the rate of global warming. We developed a new lightweight spectrometer (ALBATROSS) for H2O measurements aboard meteorological balloons. Here, we assess the accuracy and precision of ALBATROSS using metrology-grade reference gases. The results demonstrate the exceptional potential of mid-infrared laser absorption spectroscopy as a new reference method for in situ measurements of H2O in the upper atmosphere.
Roubina Papaconstantinou, Marios Demosthenous, Spyros Bezantakos, Neoclis Hadjigeorgiou, Marinos Costi, Melina Stylianou, Elli Symeou, Chrysanthos Savvides, and George Biskos
Atmos. Meas. Tech., 16, 3313–3329, https://doi.org/10.5194/amt-16-3313-2023, https://doi.org/10.5194/amt-16-3313-2023, 2023
Short summary
Short summary
In this paper, we investigate the performance of low-cost electrochemical gas sensors. We carried out yearlong measurements at a traffic air quality monitoring station, where the low-cost sensors were collocated with reference instruments and exposed to highly variable environmental conditions with extremely high temperatures and low relative humidity (RH). Sensors provide measurements that exhibit increasing errors and decreasing correlations as temperature increases and RH decreases.
Jianghanyang Li, Bianca C. Baier, Fred Moore, Tim Newberger, Sonja Wolter, Jack Higgs, Geoff Dutton, Eric Hintsa, Bradley Hall, and Colm Sweeney
Atmos. Meas. Tech., 16, 2851–2863, https://doi.org/10.5194/amt-16-2851-2023, https://doi.org/10.5194/amt-16-2851-2023, 2023
Short summary
Short summary
Monitoring a suite of trace gases in the stratosphere will help us better understand the stratospheric circulation and its impact on the earth's radiation balance. However, such measurements are rare and usually expensive. We developed an instrument that can measure stratospheric trace gases using a low-cost sampling platform (AirCore). The results showed expected agreement with aircraft measurements, demonstrating this technique provides a low-cost and robust way to observe the stratosphere.
Tara I. Yacovitch, Christoph Dyroff, Joseph R. Roscioli, Conner Daube, J. Barry McManus, and Scott C. Herndon
Atmos. Meas. Tech., 16, 1915–1921, https://doi.org/10.5194/amt-16-1915-2023, https://doi.org/10.5194/amt-16-1915-2023, 2023
Short summary
Short summary
Ethylene oxide is a toxic, carcinogenic compound used in the medical and bulk sterilization industry. Here we describe a precise and fast laser-based ethylene oxide monitor. We report months-long concentrations at a Massachusetts site, and we show how they suggest a potential emission source 35 km away. This source, and another, is confirmed by driving the instrument downwind of the sites, where concentrations were tens to tens of thousands of times greater than background levels.
Tatsumi Nakano and Takashi Morofuji
Atmos. Meas. Tech., 16, 1583–1595, https://doi.org/10.5194/amt-16-1583-2023, https://doi.org/10.5194/amt-16-1583-2023, 2023
Short summary
Short summary
We have developed a system that can automatically measure the pump efficiency of the ECC-type ozonesonde. Operational measurement for 13 years by this system revealed that the efficiency fluctuates in each and slightly increases over time. Those can affect the estimation of total ozone amount by up to 4 %. This result indicates that it is necessary to understand the tendency of the pump correction factor of each ozonesonde in order to detect the actual atmospheric change with high accuracy.
Benjamin Birner, Eric Morgan, and Ralph F. Keeling
Atmos. Meas. Tech., 16, 1551–1561, https://doi.org/10.5194/amt-16-1551-2023, https://doi.org/10.5194/amt-16-1551-2023, 2023
Short summary
Short summary
Atmospheric variations of helium (He) and CO2 are strongly linked due to the co-release of both gases from natural-gas burning. This implies that atmospheric He measurements may be a potentially powerful tool for verifying reported anthropogenic natural-gas usage. Here, we present the development and initial results of a novel measurement system of atmospheric He that paves the way for establishing a global monitoring network in the future.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Henning Finkenzeller, Denis Pöhler, Martin Horbanski, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 16, 1343–1356, https://doi.org/10.5194/amt-16-1343-2023, https://doi.org/10.5194/amt-16-1343-2023, 2023
Short summary
Short summary
Optical resonators enhance the light path in compact instruments, thereby improving their sensitivity. Determining the established path length in the instrument is a prerequisite for the accurate determination of trace gas concentrations but can be a significant complication in the use of such resonators. Here we show two calibration techniques which are relatively simple and free of consumables but still provide accurate calibrations. This facilitates the use of optical resonators.
Andrew W. Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 16, 769–790, https://doi.org/10.5194/amt-16-769-2023, https://doi.org/10.5194/amt-16-769-2023, 2023
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable-water-isotope analyzer profiling system. The system operated for a 2-week field campaign on Svalbard during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements and the system's ability to resolve isotope gradients in the lowermost layer of the atmosphere.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Suding Yang, Xin Li, Limin Zeng, Xuena Yu, Ying Liu, Sihua Lu, Xiaofeng Huang, Dongmei Zhang, Haibin Xu, Shuchen Lin, Hefan Liu, Miao Feng, Danlin Song, Qinwen Tan, Jinhui Cui, Lifan Wang, Ying Chen, Wenjie Wang, Haijiong Sun, Mengdi Song, Liuwei Kong, Yi Liu, Linhui Wei, Xianwu Zhu, and Yuanhang Zhang
Atmos. Meas. Tech., 16, 501–512, https://doi.org/10.5194/amt-16-501-2023, https://doi.org/10.5194/amt-16-501-2023, 2023
Short summary
Short summary
Vertical observation of volatile organic compounds (VOCs) is essential to study the spatial distribution and evolution patterns of VOCs in the planetary boundary layer (PBL). This paper describes multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle (UAV) for near-continuous VOC vertical observation. Vertical profiles of VOCs and trace gases during the evolution of the PBL in south-western China have been successfully obtained by deploying the newly developed UAV system.
Tobias Schuldt, Georgios I. Gkatzelis, Christian Wesolek, Franz Rohrer, Benjamin Winter, Thomas A. J. Kuhlbusch, Astrid Kiendler-Scharr, and Ralf Tillmann
Atmos. Meas. Tech., 16, 373–386, https://doi.org/10.5194/amt-16-373-2023, https://doi.org/10.5194/amt-16-373-2023, 2023
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin NT in Germany. We highlight the in-flight evaluation of electrochemical sensors that were installed inside a hatch box located on the bottom of the Zeppelin. Results from this work emphasize the potential of these sensors for other in situ airborne applications, e.g., on board unmanned aerial vehicles (UAVs).
Leigh S. Fleming, Andrew C. Manning, Penelope A. Pickers, Grant L. Forster, and Alex J. Etchells
Atmos. Meas. Tech., 16, 387–401, https://doi.org/10.5194/amt-16-387-2023, https://doi.org/10.5194/amt-16-387-2023, 2023
Short summary
Short summary
Measurements of atmospheric O2 can help constrain the carbon cycle processes and quantify fossil fuel CO2 emissions; however, measurement of atmospheric O2 is very challenging, and existing analysers are complex systems to build and maintain. We have tested a new O2 analyser (Picarro Inc. G2207-i) in the laboratory and at Weybourne Atmospheric Observatory. We have found that the G2207-i does not perform as well as an existing O2 analyser from Sable Systems Inc.
Siegfried Schobesberger, Emma L. D'Ambro, Lejish Vettikkat, Ben H. Lee, Qiaoyun Peng, David M. Bell, John E. Shilling, Manish Shrivastava, Mikhail Pekour, Jerome Fast, and Joel A. Thornton
Atmos. Meas. Tech., 16, 247–271, https://doi.org/10.5194/amt-16-247-2023, https://doi.org/10.5194/amt-16-247-2023, 2023
Short summary
Short summary
We present a new, highly sensitive technique for measuring atmospheric ammonia, an important trace gas that is emitted mainly by agriculture. We deployed the instrument on an aircraft during research flights over rural Oklahoma. Due to its fast response, we could analyze correlations with turbulent winds and calculate ammonia emissions from nearby areas at 1 to 2 km resolution. We observed high spatial variability and point sources that are not resolved in the US National Emissions Inventory.
Cited articles
Agarwal, B., Méndéz, R. G., Lanza, M., Sulzer, P., Märk, T. D.,
Thomas, N., and Mayhew, C. A.: Sensitivity and Selectivity of Switchable
Reagent Ion Soft Chemical Ionization Mass Spectrometry for the Detection of
Picric Acid, J. Phys. Chem. A, 118, 8229–8236, 2014.
Albrecht, S. R., Novelli, A., Hofzumahaus, A., Kang, S., Baker, Y., Mentel, T., Wahner, A., and Fuchs, H.: Measurements of hydroperoxy radicals (HO2) at atmospheric concentrations using bromide chemical ionisation mass spectrometry, Atmos. Meas. Tech., 12, 891–902, https://doi.org/10.5194/amt-12-891-2019, 2019.
Baeza-Romero, M. T., Blitz, M. A., Goddard, A., and Seakins, P. W.:
Time-of-flight mass spectrometry for time-resolved measurements: Some
developments and applications, Int J. Chem. Kin., 44, 532–545, 2011.
Berndt, T., Richters, S., Kaethner, R., Voigtländer, J., Stratmann, F.,
Sipilä, M., Kulmala, M., and Herrmann, H.: Gas-Phase Ozonolysis of
Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their
Reactions with NO, NO2, SO2, and Other RO2 Radicals, J. Phys.
Chem. A, 119, 10336–10348, 2015.
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, Chem. Rev., 119, 3472–3509, 2019.
Blake, R. S., Monks, P. S., and Ellis, A. M.: Proton-Transfer Reaction Mass
Spectrometry, Chem. Rev., 109, 861–896, 2009.
Breitenlechner, M., Fischer, L., Hainer, M., Heinritzi, M., Curtius, J., and
Hansel, A.: PTR3: An Instrument for Studying the Lifecycle of Reactive
Organic Carbon in the Atmosphere, Anal. Chem., 89, 5824–5831, 2017.
Brophy, P. and Farmer, D. K.: A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study, Atmos. Meas. Tech., 8, 2945–2959, https://doi.org/10.5194/amt-8-2945-2015, 2015.
Crounse, J. D., McKinney, K. A., Kwan, A. J., and Wennberg, P. O.:
Measurement of Gas-Phase Hydroperoxides by Chemical Ionization Mass
Spectrometry, Anal. Chem., 78, 6726–6732, 2006.
Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of Organic Compounds in the Atmosphere, J.
Phys. Chem. Lett., 4, 3513–3520, 2013.
de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in
the earth's atmosphere using proton-transfer-reaction mass spectrometry,
Mass. Spectrom. Rev., 26, 223-257, 2007.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.:
Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics,
Environ. Sci. Technol., 40, 2635–2643, 2006.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T.,
Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén,
T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M.,
Dal Maso, M., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.-M.,
Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of
low-volatility secondary organic aerosol, Nature, 506, 476–479, 2014.
Eisele, F. L. and Tanner, D. J.: Measurement of the gas phase concentration
of H2SO4 and methane sulfonic acid and estimates of
H2SO4 production and loss in the atmosphere, J. Geophys. Res.-Atmos., 98, 9001–9010, 1993.
Frege, C., Ortega, I. K., Rissanen, M. P., Praplan, A. P., Steiner, G., Heinritzi, M., Ahonen, L., Amorim, A., Bernhammer, A.-K., Bianchi, F., Brilke, S., Breitenlechner, M., Dada, L., Dias, A., Duplissy, J., Ehrhart, S., El-Haddad, I., Fischer, L., Fuchs, C., Garmash, O., Gonin, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kirkby, J., Kürten, A., Lehtipalo, K., Leiminger, M., Mauldin, R. L., Molteni, U., Nichman, L., Petäjä, T., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Stolzenburg, D., Tomé, A., Vogel, A. L., Wagner, A. C., Wagner, R., Xiao, M., Yan, C., Ye, P., Curtius, J., Donahue, N. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Winkler, P. M., Dommen, J., and Baltensperger, U.: Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation, Atmos. Chem. Phys., 18, 65–79, https://doi.org/10.5194/acp-18-65-2018, 2018.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., and
Lindinger, W.: Proton transfer reaction mass spectrometry: on-line trace gas
analysis at the ppb level, Int. J. Mass Spectrom. Ion Process., 149,
609–619, 1995.
Hatakeyama, S., Tanonaka, T., Weng, J.-H., Bandow, H., Takagi, H., and
Akimoto, H.: Ozone-Cyclohexene Reaction in Air: Quantitative Analysis of
Particulate Products and the Reaction Mechanism, Environ. Sci. Technol., 19,
935–942, 1985.
Hearn, J. D. and Smith, G. D.: A Chemical Ionization Mass Spectrometry
Method for the Online Analysis of Organic Aerosols, Anal. Chem., 76,
2820–2826, 2004.
Heinritzi, M., Simon, M., Steiner, G., Wagner, A. C., Kürten, A., Hansel, A., and Curtius, J.: Characterization of the mass-dependent transmission efficiency of a CIMS, Atmos. Meas. Tech., 9, 1449–1460, https://doi.org/10.5194/amt-9-1449-2016, 2016.
Huey, L. G.: Measurement of trace atmospheric species by chemical ionization
mass spectrometry: Speciation of reactive nitrogen and future directions,
Mass Spectrom. Rev., 26, 166–184, 2007.
Hyttinen, N., Kupiainen-Määttä, O., Rissanen, M. P., Muuronen,
M., Ehn, M., and Kurtén, T.: Modeling the Detection of Highly Oxidized
Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization, J.
Phys. Chem. A, 119, 6339–6345, 2015.
Hyttinen, N., Rissanen, M. P., and Kurtén, T.: Computational Comparison
of Acetate and Nitrate Chemical Ionization of Highly Oxidized Cyclohexene
Ozonolysis Intermediates and Products, J. Phys. Chem. A, 121, 2172–2179,
2017.
Hyttinen, N., Otkjær, R. V., Iyer, S., Kjaergaard, H. G., Rissanen, M.
P., Wennberg, P. O., and Kurtenì, T.: Computational Comparison of Different
Reagent Ions in the Chemical Ionization of Oxidized Multifunctional
Compounds, J. Phys. Chem. A, 122, 269–279, 2018.
Iyer, S., He, X., Hyttinen, N., Kurtén, T., and Rissanen, M. P.:
Computational and Experimental Investigation of the Detection of HO2
Radical and the Products of Its Reaction with Cyclohexene Ozonolysis Derived
RO2 Radicals by an Iodide-Based Chemical Ionization Mass Spectrometer,
J. Phys. Chem. A, 121, 6778–6789, 2017.
Johnson, D. and Marston, G.: The gas-phase ozonolysis of unsaturated
volatile organic compounds in the troposphere, Chem. Soc. Rev., 37, 699–716,
2008.
Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H.,
Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R.,
Kulmala, M., Ehn, M., and Sipilä, M.: Production of extremely low
volatile organic compounds from biogenic emissions: Measured yields and
atmospheric implications, P. Natl. Acad. Sci. USA, 112, 7123–7128, 2015.
Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Herbig, J., Märk,
L., Schottkowsky, R., Seehauser, H., Sulzer, P., and Märk, T. D.: An
online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer
combined with switchable reagent ion capability (PTR + SRI − MS), Int.
J. Mass Spectrom., 286, 32–38, 2009.
Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M., Fuhrer, K., Kulmala, M., and Worsnop, D. R.: A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039–1053, https://doi.org/10.5194/amt-3-1039-2010, 2010.
Krechmer, J., Lopez-Hilfiker, F., Koss, A., Hutterli, M., Stoermer, C.,
Deming, B., Kimmel, J., Warneke, C., Holzinger, R., Jayne, J., Worsnop, D.,
Fuhrer, K., Gonin, M., and de Gouw, J.: Evaluation of a New Reagent-Ion
Source and Focusing Ion–Molecule Reactor for Use in
Proton-Transfer-Reaction Mass Spectrometry, Anal. Chem., 90,
12011–12018, 2018.
Kürten, A., Rondo, L., Ehrhart, S., and Curtius, J.: Calibration of a
Chemical Ionization Mass Spectrometer for the Measurement of Gaseous
Sulfuric Acid, J. Phys. Chem. A, 116, 6375–6386, 2012.
Laskin, J., Laskin, A., and Nizkorodov, S. A.: Mass Spectrometry Analysis in
Atmospheric Chemistry, Anal. Chem., 90, 166–189, 2018.
Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee,
L., Romer, P., Cohen, R. C., Iyer, S., Kurtén, T., Hu, W., Day, D. A.,
Campuzano-Joste, P., Jimenez, J. L., Xu, L., Ng, N. L., Guo, H. Weber, R.
J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J., Olson, K., Goldstein,
A. H., Seco, R., Kim, S., McAvey, K., Shepson, P. B., Starn, T., Baumann,
K., Edgerton, E. S., Liu, J., Shilling, J. E., Miller, D. O., Brune, W.,
Schobesberger, S., D'Ambro, E. L., and Thornton, J. A.: Highly
functionalized organic nitrates in the southeast United States: Contribution
to secondary organic aerosol and reactive nitrogen budgets, P. Natl.
Acad. Sci. USA, 113, 1516–1521, 2016.
Ma, Y., Willcox, T. R.; Russell, A. T., and Marston, G.: Pinic and pinonic
acid formation in the reaction of ozone with a-pinene, Chem. Comm., 13,
1328–1330, 2007.
Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P.,
Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V.-M.,
and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide,
Nature, 488, 193–196, 2012.
McLafferty, F. D.: A Century of Progress in Molecular Mass Spectrometry,
Annu. Rev. Anal. Chem., 4, 1–22, 2011.
Mentel, T. F., Springer, M., Ehn, M., Kleist, E., Pullinen, I., Kurtén, T., Rissanen, M., Wahner, A., and Wildt, J.: Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships, Atmos. Chem. Phys., 15, 6745–6765, https://doi.org/10.5194/acp-15-6745-2015, 2015.
Mielke, L. H. and Osthoff, H. D.: On quantitative measurements of
peroxycarboxylic nitric anhydride mixing ratios by thermal dissociation
chemical ionization mass spectrometry, Int. J. Mass Spectrom., 310, 1–9,
2012.
Munson, B.: Chemical Ionization Mass Spectrometry, Anal. Chem., 49,
772A–778A, 1977.
Munson, M. S. B. and Field, F. H.: Chemical Ionization Mass Spectrometry I:
General Introduction, J. Am. Chem. Soc., 88, 2621–2630, 1966.
Pan, Y., Zhang, Q., Zhou, W., Zou, X., Wang, H., Huang, C., Shen, C., and
Chu, Y.: Detection of Ketones by a Novel Technology: Dipolar Proton Transfer
Reaction Mass Spectrometry (DP-PTR-MS), J. Am. Soc. Mass Spectrom., 28,
873–879, 2017.
Passananti, M., Zapadinsky, E., Zanca, T., Kangasluoma, J., Myllys, N.,
Rissanen, M P., Kurtén, T., Ehn, M., Attoui, M., and Vehkamäki, H.: How
well can we predict cluster fragmentation inside a mass spectrometer?,
Chem. Commun., 55, 5946–5949, 2019.
Rissanen, M. P., Kurtén, T., Sipilä, M., Thornton, J. A.,
Kangasluoma, J., Sarnela, N., Junninen, H., Jørgensen, S., Schallhart,
S., Kajos, M. K., Taipale, R., Springer, M., Mentel, T. F., Ruuskanen, T.,
Petäjä, T., Worsnop, D. R., Kjaergaard, H. G., and Ehn, M.: The
formation of highly oxidized multifunctional products in the ozonolysis of
cyclohexene, J. Am. Chem. Soc., 136, 15596–15606, 2014.
Rissanen, M. P., Kurtén, T., Sipilä, M., Thornton, J.
A., Kausiala, O., Garmash, O., Kjaergaard, H. G., Petä
jä, T., Worsnop, D. R., Ehn, M., and Kulmala, M.: Effects
of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene
Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene, J. Phys. Chem. A, 119, 4633–4650, 2015.
Sanchez, J., Tanner, D. J., Chen, D., Huey, L. G., and Ng, N. L.: A new technique for the direct detection of HO2 radicals using bromide chemical ionization mass spectrometry (Br-CIMS): initial characterization, Atmos. Meas. Tech., 9, 3851–3861, https://doi.org/10.5194/amt-9-3851-2016, 2016.
Sipilä, M., Sarnela, N., Jokinen, T., Junninen, H., Hakala, J., Rissanen, M. P., Praplan, A., Simon, M., Kürten, A., Bianchi, F., Dommen, J., Curtius, J., Petäjä, T., and Worsnop, D. R.: Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (<100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest, Atmos. Meas. Tech., 8, 4001–4011, https://doi.org/10.5194/amt-8-4001-2015, 2015.
Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J.,
Stratmann, F., Patokoski, J., and Mauldin III, R. L., Hyvärinen, A.
P., Lihavainen, H., and Kulmala, M.: The role of sulfuric acid in
atmospheric nucleation, Science, 327, 1243–1246, 2010.
Smith, D. and Španel, P.: Selected ion ?ow tube mass spectrometry
(SIFT-MS) for on-line trace gas analysis, Mass Spectrom. Rev., 24, 661–700,
2005.
Yokouchi, Y. and Ambe Y.: Aerosols formed from the chemical reaction of
monoterpenes and ozone, Atmos. Environ., 19, 1271–1276, 1985.
Yu, H. and Lee, S-H.: Chemical ionisation mass spectrometry for the
measurement of atmospheric amines, Environ. Chem., 9, 190–201, 2012.
Zapadinsky, E., Passananti, M., Myllys, N., Kurtén, T., and Vehkamäki
H.: Modeling on Fragmentation of Clusters inside a Mass Spectrometer, J.
Phys. Chem. A., 123, 611–624, 2019.
Zhang, Q., Zou, X., Liang, Q., Wang, H., Huang, C., Shen, C., and Chu, Y.:
Ammonia-Assisted Proton Transfer Reaction Mass Spectrometry for Detecting
Triacetone Triperoxide (TATP) Explosive, J. Am. Soc. Mass Spectrom., 30,
501–508, 2019.
Short summary
A novel chemical ionization methodology for rapid gas–phase environmental monitoring is presented. The usefulness of the new inlet design is demonstrated by measuring various aerosol precursor compounds that are present at very low concentrations by using two consecutive ionization schemes. This new inlet enables the detection of a wide range of compounds of interest with a minimum of effort and at a fast repetition rate.
A novel chemical ionization methodology for rapid gas–phase environmental monitoring is...