Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1089–1111, 2020
https://doi.org/10.5194/amt-13-1089-2020
Atmos. Meas. Tech., 13, 1089–1111, 2020
https://doi.org/10.5194/amt-13-1089-2020

Research article 06 Mar 2020

Research article | 06 Mar 2020

Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: evaluation of candidate approaches with MODIS observations

Frank Werner and Hartwig Deneke

Related authors

Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-370,https://doi.org/10.5194/amt-2020-370, 2020
Preprint under review for AMT
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary

Cited articles

Ardanuy, P. A., Han, D., and Salomonson, V. V.: The Moderate Resolution Imaging Spectrometer (MODIS), IEEE T. Geosci. Remote, 30, 2–27, 1992. a
Barker, H. and Liu, D.: Inferring optical depth of broken clouds from Landsat data, J. Climate, 8, 2620–2630, 1995. a
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the 'Moderate Resolution Imaging Spectroradiometer' (MODIS) on EOS–AM1, IEEE T. Geosci. Remote, 36, 1088–1100, 1998. a
Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., and Meirink, J. F.: The MSG-SEVIRI-based cloud property data record CLAAS-2, Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, 2017. a
Benestad, R. E.: Empirical-statistical downscaling in climate modeling, Eos Trans., 85, 417–422, https://doi.org/10.1029/2004EO420002, 2011. a
Download
Short summary
The reliability of remotely sensed cloud variables from space depends on the horizontal resolution of the instrument. This study presents and evaluates several candidate approaches for increasing the spatial resolution of observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) from the native 3 km scale to a horizontal resolution of 1 km. It is shown that uncertainties in the derived cloud products can be significantly mitigated by applying an appropriate downscaling scheme.