Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1089–1111, 2020
https://doi.org/10.5194/amt-13-1089-2020
Atmos. Meas. Tech., 13, 1089–1111, 2020
https://doi.org/10.5194/amt-13-1089-2020
Research article
06 Mar 2020
Research article | 06 Mar 2020

Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: evaluation of candidate approaches with MODIS observations

Frank Werner and Hartwig Deneke

Related authors

Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021,https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021,https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022,https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
An all-sky camera image classification method using cloud cover features
Xiaotong Li, Baozhu Wang, Bo Qiu, and Chao Wu
Atmos. Meas. Tech., 15, 3629–3639, https://doi.org/10.5194/amt-15-3629-2022,https://doi.org/10.5194/amt-15-3629-2022, 2022
Short summary
Determination of atmospheric column condensate using active and passive remote sensing technology
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022,https://doi.org/10.5194/amt-15-3555-2022, 2022
Short summary
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022,https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Towards the use of conservative thermodynamic variables in data assimilation: a case study using ground-based microwave radiometer measurements
Pascal Marquet, Pauline Martinet, Jean-François Mahfouf, Alina Lavinia Barbu, and Benjamin Ménétrier
Atmos. Meas. Tech., 15, 2021–2035, https://doi.org/10.5194/amt-15-2021-2022,https://doi.org/10.5194/amt-15-2021-2022, 2022
Short summary

Cited articles

Ardanuy, P. A., Han, D., and Salomonson, V. V.: The Moderate Resolution Imaging Spectrometer (MODIS), IEEE T. Geosci. Remote, 30, 2–27, 1992. a
Barker, H. and Liu, D.: Inferring optical depth of broken clouds from Landsat data, J. Climate, 8, 2620–2630, 1995. a
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the 'Moderate Resolution Imaging Spectroradiometer' (MODIS) on EOS–AM1, IEEE T. Geosci. Remote, 36, 1088–1100, 1998. a
Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., and Meirink, J. F.: The MSG-SEVIRI-based cloud property data record CLAAS-2, Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, 2017. a
Benestad, R. E.: Empirical-statistical downscaling in climate modeling, Eos Trans., 85, 417–422, https://doi.org/10.1029/2004EO420002, 2011. a
Short summary
The reliability of remotely sensed cloud variables from space depends on the horizontal resolution of the instrument. This study presents and evaluates several candidate approaches for increasing the spatial resolution of observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) from the native 3 km scale to a horizontal resolution of 1 km. It is shown that uncertainties in the derived cloud products can be significantly mitigated by applying an appropriate downscaling scheme.