Articles | Volume 13, issue 4
https://doi.org/10.5194/amt-13-2099-2020
https://doi.org/10.5194/amt-13-2099-2020
Research article
 | 
23 Apr 2020
Research article |  | 23 Apr 2020

Shallow cumuli cover and its uncertainties from ground-based lidar–radar data and sky images

Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov

Related authors

A 1 km soil moisture data over eastern CONUS generated through assimilating SMAP data into the Noah-MP land surface model
Sheng-Lun Tai, Zhao Yang, Brian Gaudet, Koichi Sakaguchi, Larry Berg, Colleen Kaul, Yun Qian, Ye Liu, and Jerome Fast
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-599,https://doi.org/10.5194/essd-2024-599, 2025
Preprint under review for ESSD
Short summary
Performance of wind assessment datasets in United States coastal areas
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, and Ethan Young
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-115,https://doi.org/10.5194/wes-2024-115, 2024
Revised manuscript under review for WES
Short summary
Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation
Evgueni Kassianov, Connor J. Flynn, James C. Barnard, Brian D. Ermold, and Jennifer M. Comstock
Atmos. Meas. Tech., 17, 4997–5013, https://doi.org/10.5194/amt-17-4997-2024,https://doi.org/10.5194/amt-17-4997-2024, 2024
Short summary
Tracking precipitation features and associated large-scale environments over southeastern Texas
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024,https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
Atmos. Meas. Tech., 18, 1115–1134, https://doi.org/10.5194/amt-18-1115-2025,https://doi.org/10.5194/amt-18-1115-2025, 2025
Short summary
Evaluating spectral cloud effective radius retrievals from the Enhanced MODIS Airborne Simulator (eMAS) during ORACLES
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
Atmos. Meas. Tech., 18, 981–1011, https://doi.org/10.5194/amt-18-981-2025,https://doi.org/10.5194/amt-18-981-2025, 2025
Short summary
A method to retrieve mixed phase cloud vertical structure from airborne lidar
Ewan Crosbie, Johnathan Hair, Amin Nehrir, Richard Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3844,https://doi.org/10.5194/egusphere-2024-3844, 2024
Short summary
Consideration of the cloud motion for aircraft-based stereographically derived cloud geometry and cloud top heights
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024,https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary

Cited articles

Angevine, W. M., Olson, J., Kenyon, J., Gustafson, W. I., Endo, S., Suselj, K., and Turner, D. D.: Shallow Cumulus in WRF Parameterizations Evaluated against LASSO Large-Eddy Simulations, Mon. Weather Rev., 146, 4303–4322, https://doi.org/10.1175/MWR-D-18-0115.1, 2018. 
Arakawa, A.: The Cumulus Parameterization Problem: Past, Present, and Future, J. Climate, 17, 2493–2525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2, 2004. 
ARM: ARM Best Estimate Data Pproducts (ARMBE) at Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) user facility, available at: https://www.arm.gov/capabilities/vaps/armbe (last access: 25 February 2019), 1994. 
Astin, I., Girolamo, L. D., and van de Poll, H. M.: Bayesian confidence intervals for true fractional coverage from finite transect measurements: Implications for cloud studies from space, J. Geophys. Res.-Atmos., 106, 17303–17310, https://doi.org/10.1029/2001JD900168, 2001. 
Atkinson, B. W. and Zhang, J. W.: Mesoscale shallow convection in the atmosphere, Rev. Geophys., 34, 403–431, https://doi.org/10.1029/96RG02623, 1996. 
Download
Short summary
Discrepancies in hourly shallow cumuli cover estimates can be substantial. Instrument detection differences contribute to long-term bias in shallow cumuli cover estimates, whereas narrow field-of-view configurations impact measurement uncertainty as averaging time decreases. A new tool is introduced to visually assess both impacts on sub-hourly cloud cover estimates. Accurate shallow cumuli cover estimation is needed for model–observation comparisons and studying cloud-surface interactions.
Share