Articles | Volume 13, issue 5
https://doi.org/10.5194/amt-13-2681-2020
https://doi.org/10.5194/amt-13-2681-2020
Research article
 | 
27 May 2020
Research article |  | 27 May 2020

Long-term reliability of the Figaro TGS 2600 solid-state methane sensor under low-Arctic conditions at Toolik Lake, Alaska

Werner Eugster, James Laundre, Jon Eugster, and George W. Kling

Related authors

Technical note: High-accuracy weighing micro-lysimeter system for long-term measurements of non-rainfall water inputs to grasslands
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022,https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021,https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021,https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Cereal-legume mixtures increase net CO2 uptake in a forage system of the Eastern Pyrenees
Mercedes Ibañez, Núria Altimir, Àngela Ribas, Werner Eugster, and Maria-Teresa Sebastià
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-173,https://doi.org/10.5194/bg-2020-173, 2020
Manuscript not accepted for further review
Short summary
Eddy covariance flux measurements of gaseous elemental mercury over a grassland
Stefan Osterwalder, Werner Eugster, Iris Feigenwinter, and Martin Jiskra
Atmos. Meas. Tech., 13, 2057–2074, https://doi.org/10.5194/amt-13-2057-2020,https://doi.org/10.5194/amt-13-2057-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Deployment and evaluation of an NH4+∕ H3O+ reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
Cort L. Zang and Megan D. Willis
Atmos. Meas. Tech., 18, 17–35, https://doi.org/10.5194/amt-18-17-2025,https://doi.org/10.5194/amt-18-17-2025, 2025
Short summary
An economical tunable diode laser spectrometer for fast-response measurements of water vapor in the atmospheric boundary layer
Emily D. Wein, Lars E. Kalnajs, and Darin W. Toohey
Atmos. Meas. Tech., 17, 7097–7107, https://doi.org/10.5194/amt-17-7097-2024,https://doi.org/10.5194/amt-17-7097-2024, 2024
Short summary
Eddy covariance with slow-response greenhouse gas analysers on tall towers: bridging atmospheric and ecosystem greenhouse gas networks
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024,https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
An overview of outdoor low-cost gas-phase air quality sensor deployments: current efforts, trends, and limitations
Kristen Okorn and Laura T. Iraci
Atmos. Meas. Tech., 17, 6425–6457, https://doi.org/10.5194/amt-17-6425-2024,https://doi.org/10.5194/amt-17-6425-2024, 2024
Short summary
Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024,https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary

Cited articles

Aghagoli, Z. and Ardyanian, M.: Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures, J. Mater. Sci., 29, 7130–7141, https://doi.org/10.1007/s10854-018-8701-4, 2018. a
Akritas, M. G., Murphy, S. A., and Lavalley, M. P.: The Theil-Sen estimator with doubly censored data and applications to astronomy, J. Am. Stat. Assoc., 90, 170–177, https://doi.org/10.1080/01621459.1995.10476499, 1995. a
Casey, J. G., Collier-Oxandale, A., and Hannigan, M.: Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil and gas production region with low-cost sensors, Sensor. Actuat. B-Chem., 283, 504–514, https://doi.org/10.1016/j.snb.2018.12.049, 2019. a, b, c
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017. a
Collier-Oxandale, A., Casey, J. G., Piedrahita, R., Ortega, J., Halliday, H., Johnston, J., and Hannigan, M. P.: Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments, Atmos. Meas. Tech., 11, 3569–3594, https://doi.org/10.5194/amt-11-3569-2018, 2018. a, b
Download
Short summary
Measuring ambient methane concentrations requires expensive optical sensors. The first electrochemical analyzer that shows a response to ambient levels of methane is now available. We present the first long-term deployment of such sensors in an arctic environment (temperatures from −41 to 27 °C). We present a method based on these measurements to convert the signal to methane concentrations (corrected for the effects of air temperature and relative humidity) and ensure long-term stability.