Articles | Volume 13, issue 5
https://doi.org/10.5194/amt-13-2681-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-2681-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term reliability of the Figaro TGS 2600 solid-state methane sensor under low-Arctic conditions at Toolik Lake, Alaska
ETH Zurich, Department of Environmental Systems Science, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
James Laundre
The Ecosystem Center, Marine Biology Laboratory, Woods Hole, MA 02543, USA
Jon Eugster
University of Zurich, Institute of Mathematics, Winterthurerstrasse 190, 8057 Zurich, Switzerland
now at: School of Mathematics, The University of Edinburgh, Edinburgh, UK
George W. Kling
University of Michigan, Department of Ecology & Evolutionary Biology, Ann Arbor, MI 48109-1085, USA
Related authors
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Yue Wu, Jingyi Chen, M. Bayani Cardenas, and George W. Kling
Hydrol. Earth Syst. Sci., 29, 3481–3502, https://doi.org/10.5194/hess-29-3481-2025, https://doi.org/10.5194/hess-29-3481-2025, 2025
Short summary
Short summary
As the soil thaws in summer, the land subsides, owing to the greater volume of ice than of water. This deformation helps monitor water storage because the subsidence magnitude is proportional to water volume. In this study, the interferometric synthetic aperture radar (InSAR) technique was used to map subsidence around Toolik Lake, Arctic Alaska. Both InSAR and field observations suggest that soil water storage ranges from 0 to 75 cm, with small errors, and that the spatial distribution of soil water correlates strongly with topography and vegetation.
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Cited articles
Aghagoli, Z. and Ardyanian, M.: Synthesis and study of the structure, magnetic,
optical and methane gas sensing properties of cobalt doped zinc oxide
microstructures, J. Mater. Sci., 29,
7130–7141, https://doi.org/10.1007/s10854-018-8701-4, 2018. a
Akritas, M. G., Murphy, S. A., and Lavalley, M. P.: The Theil-Sen estimator
with doubly censored data and applications to astronomy, J.
Am. Stat. Assoc., 90, 170–177,
https://doi.org/10.1080/01621459.1995.10476499, 1995. a
Casey, J. G., Collier-Oxandale, A., and Hannigan, M.: Performance of artificial
neural networks and linear models to quantify 4 trace gas species in an oil
and gas production region with low-cost sensors, Sensor. Actuat. B-Chem., 283, 504–514, https://doi.org/10.1016/j.snb.2018.12.049, 2019. a, b, c
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B.,
Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?, Environ.
Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017. a
Collier-Oxandale, A., Casey, J. G., Piedrahita, R., Ortega, J., Halliday, H., Johnston, J., and Hannigan, M. P.: Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments, Atmos. Meas. Tech., 11, 3569–3594, https://doi.org/10.5194/amt-11-3569-2018, 2018. a, b
Eugster, W. and Eugster, J.: Statistical fits shown in Figs. 5–8, ETH Zürich, https://doi.org/10.3929/ethz-b-000369689, 2020. a
Eugster, W., Kling, G., and Laundre, J.: Climate data from Arctic LTER Toolik Inlet Wet Sedge site, Toolik Field Station, Alaska 2012 to 2018, ver 1, Environmental Data Initiative, https://doi.org/10.6073/pasta/dddeb05b2806e2f5788fadd6fc590ef1, 2020. a
Falabella, A. D., Wallin, D. O., and Lund, J. A.: Application of a customizable
sensor platform to detection of atmospheric gases by UAS, in: 2018
International Conference on Unmanned Aircraft Systems (ICUAS), IEEE,
https://doi.org/10.1109/icuas.2018.8453480, 2018. a, b, c
Figaro: TGS 2611 – for the detection of methane, Online product data sheet,
Rev. 10/13,
available at: http://www.figarosensor.com/products/docs/TGS% 202611C00% 281013% 29.pdf
(last access: 29 September 2019), 2013. a
Godbout, S., Phillips, V. R., and Sneath, R. W.: Passive flux samplers to
measure nitrous oxide and methane emissions from agricultural sources, Part
1: Adsorbent selection, Biosyst. Eng., 94, 587–596,
https://doi.org/10.1016/j.biosystemseng.2006.04.014, 2006a. a
Godbout, S., Phillips, V. R., and Sneath, R. W.: Passive flux samplers to
measure nitrous oxide and methane emissions from agricultural sources, Part
2: Desorption improvements, Biosyst. Eng., 95, 1–6,
https://doi.org/10.1016/j.biosystemseng.2006.05.007, 2006b. a
Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L., Broennimann,
S., Charabi, Y. A.-R., Dentener, F., Dlugokencky, E., Easterling, D., Kaplan,
A., Soden, B., Thorne, P., Wild, M., and Zhai, P.: Observations: Atmosphere
and Surface, chap. 2, IPCC AR5, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2014. a
Hobbie, J. E. and Kling, G. W. (Eds.): Alaska's Changing Arctic: Ecological
Consequences for Tundra, Streams, and Lakes, Long-Term Ecological Research
(LTER) Network Series, Oxford University Press, New York, USA, 331 pp., 2014. a
Hu, J., Gao, F., Zhao, Z., Sang, S., Li, P., Zhang, W., Zhou, X., and Chen, Y.:
Synthesis and characterization of Cobalt-doped ZnO microstructures for
methane gas sensing, Appl. Surf. Sci., 363, 181–188,
https://doi.org/10.1016/j.apsusc.2015.12.024, 2016. a, b, c
Kirsch, O.: Entwicklung, Bau und Einsatz einer autonomen Drohne zur Messung von
Gaskonzentrationen in der Luft, Maturarbeit mit beteiligung am wettbewerb
schweizer jugend forscht, Kantonsschule Chur, Chur, Switzerland, 17 pp., 2012. a
Kneer, J., Eberhardt, A., Walden, P., Pérez, A. O., Wöllenstein, J.,
and Palzer, S.: Apparatus to characterize gas sensor response under
real-world conditions in the lab, Rev. Sci. Instr., 85,
055006, https://doi.org/10.1063/1.4878717, 2014. a
Lewis, A. C., von Schneidemesser, E., and Peltier, R.: Low-cost sensors for the
measurement of atmospheric composition: overview of topic and future
applications, Tech. Rep. WMO-No. 1215, WMO, Geneva, Switzerland,
available at: http://www.wmo.int/pages/prog/arep/gaw/documents/Low_cost_sensors_post_review_final.pdf
(last access: 24 February 2019), 2018. a, b, c
Marchetto, A., Rogora, M., and Arisci, S.: Trend analysis of atmospheric
deposition data: A comparison of statistical approaches, Atmos.
Environ., 64, 95–102, https://doi.org/10.1016/j.atmosenv.2012.08.020, 2013. a
Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the rise –
again, Science, 343, 493–495, https://doi.org/10.1126/science.1247828, 2014. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.:
Scikit-learn: machine learning in Python, J. Mach. Learning
Res., 12, 2825–2830,
2011. a
Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, Y., Li, K., Dick, R. P., Lv, Q., Hannigan, M., and Shang, L.: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring, Atmos. Meas. Tech., 7, 3325–3336, https://doi.org/10.5194/amt-7-3325-2014, 2014. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: 14 May 2020), 2018. a
Sekhar, P. K., Kysar, J., Brosha, E. L., and Kreller, C. R.: Development and
testing of an electrochemical methane sensor, Sensor. Actuat. B-Chem., 228, 162–167, https://doi.org/10.1016/j.snb.2015.12.100, 2016.
a
Shamasunder, B., Collier-Oxandale, A., Blickley, J., Sadd, J., Chan, M.,
Navarro, S., Hannigan, M., and Wong, N.: Community-Based Health and Exposure
Study around Urban Oil Developments in South Los Angeles, Int. J. Env. Res. Pub. He., 15, 138,
https://doi.org/10.3390/ijerph15010138, 2018. a
Thanh Duc, N., Silverstein, S., Wik, M., Crill, P., Bastviken, D., and Varner, R. K.: Greenhouse gas flux studies: An automated online system for gas emission measurements in aquatic environments, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-83, in review, 2019. a
van den Bossche, M., Rose, N. T., and De Wekker, S. F. J.: Potential of a
low-cost gas sensor for atmospheric methane monitoring, Sensor. Actuat.
B-Chem., 238, 501–509, https://doi.org/10.1016/j.snb.2016.07.092, 2017. a, b
Walker, D. A. and Everett, K. R.: Loess Ecosystems of Northern Alaska: Regional
Gradient and Toposequence at Prudhoe Bay, Ecol. Monogr., 61,
437–464, 1991. a
WMO: Global Atmosphere Watch Measurements Guide, Tech. Rep. TD No. 1073, World
Meteorological Organisation,
available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.4587&rep=rep1&type=pdf (last access: 14 May 2020),
87 pp., 2001. a
Short summary
Measuring ambient methane concentrations requires expensive optical sensors. The first electrochemical analyzer that shows a response to ambient levels of methane is now available. We present the first long-term deployment of such sensors in an arctic environment (temperatures from −41 to 27 °C). We present a method based on these measurements to convert the signal to methane concentrations (corrected for the effects of air temperature and relative humidity) and ensure long-term stability.
Measuring ambient methane concentrations requires expensive optical sensors. The first...