Articles | Volume 13, issue 5
Atmos. Meas. Tech., 13, 2865–2886, 2020
https://doi.org/10.5194/amt-13-2865-2020
Atmos. Meas. Tech., 13, 2865–2886, 2020
https://doi.org/10.5194/amt-13-2865-2020

Research article 29 May 2020

Research article | 29 May 2020

Development of a new correction algorithm applicable to any filter-based absorption photometer

Hanyang Li et al.

Related authors

Characterizing the evolution of physical properties and mixing state of black carbon particles: from near a major highway to the broader urban plume in Los Angeles
Trevor S. Krasowsky, Gavin R. McMeeking, Constantinos Sioutas, and George Ban-Weiss
Atmos. Chem. Phys., 18, 11991–12010, https://doi.org/10.5194/acp-18-11991-2018,https://doi.org/10.5194/acp-18-11991-2018, 2018
Short summary
Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes
Qijing Bian, Shantanu H. Jathar, John K. Kodros, Kelley C. Barsanti, Lindsay E. Hatch, Andrew A. May, Sonia M. Kreidenweis, and Jeffrey R. Pierce
Atmos. Chem. Phys., 17, 5459–5475, https://doi.org/10.5194/acp-17-5459-2017,https://doi.org/10.5194/acp-17-5459-2017, 2017
Short summary
Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds
Cynthia H. Twohy, Gavin R. McMeeking, Paul J. DeMott, Christina S. McCluskey, Thomas C. J. Hill, Susannah M. Burrows, Gourihar R. Kulkarni, Meryem Tanarhte, Durga N. Kafle, and Darin W. Toohey
Atmos. Chem. Phys., 16, 8205–8225, https://doi.org/10.5194/acp-16-8205-2016,https://doi.org/10.5194/acp-16-8205-2016, 2016
Short summary
Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments
Q. Bian, A. A. May, S. M. Kreidenweis, and J. R. Pierce
Atmos. Chem. Phys., 15, 11027–11045, https://doi.org/10.5194/acp-15-11027-2015,https://doi.org/10.5194/acp-15-11027-2015, 2015
Short summary
Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City
A. Retama, D. Baumgardner, G. B. Raga, G. R. McMeeking, and J. W. Walker
Atmos. Chem. Phys., 15, 9693–9709, https://doi.org/10.5194/acp-15-9693-2015,https://doi.org/10.5194/acp-15-9693-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Assessing the accuracy of low-cost optical particle sensors using a physics-based approach
David H. Hagan and Jesse H. Kroll
Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020,https://doi.org/10.5194/amt-13-6343-2020, 2020
Short summary
High-resolution optical constants of crystalline ammonium nitrate for infrared remote sensing of the Asian Tropopause Aerosol Layer
Robert Wagner, Baptiste Testa, Michael Höpfner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, Jörn Ungermann, and Thomas Leisner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-262,https://doi.org/10.5194/amt-2020-262, 2020
Revised manuscript accepted for AMT
Short summary
Comparison of dimension reduction techniques in the analysis of mass spectrometry data
Sini Isokääntä, Eetu Kari, Angela Buchholz, Liqing Hao, Siegfried Schobesberger, Annele Virtanen, and Santtu Mikkonen
Atmos. Meas. Tech., 13, 2995–3022, https://doi.org/10.5194/amt-13-2995-2020,https://doi.org/10.5194/amt-13-2995-2020, 2020
Short summary
Chemical discrimination of the particulate and gas phases of miniCAST exhausts using a two-filter collection method
Linh Dan Ngo, Dumitru Duca, Yvain Carpentier, Jennifer A. Noble, Raouf Ikhenazene, Marin Vojkovic, Cornelia Irimiea, Ismael K. Ortega, Guillaume Lefevre, Jérôme Yon, Alessandro Faccinetto, Eric Therssen, Michael Ziskind, Bertrand Chazallon, Claire Pirim, and Cristian Focsa
Atmos. Meas. Tech., 13, 951–967, https://doi.org/10.5194/amt-13-951-2020,https://doi.org/10.5194/amt-13-951-2020, 2020
Short summary
External and internal cloud condensation nuclei (CCN) mixtures: controlled laboratory studies of varying mixing states
Diep Vu, Shaokai Gao, Tyler Berte, Mary Kacarab, Qi Yao, Kambiz Vafai, and Akua Asa-Awuku
Atmos. Meas. Tech., 12, 4277–4289, https://doi.org/10.5194/amt-12-4277-2019,https://doi.org/10.5194/amt-12-4277-2019, 2019
Short summary

Cited articles

Allan, D. W.: Statistics of atomic frequency standards, P. IEEE, 54, 221–230, https://doi.org/10.1109/PROC.1966.4634, 1966. 
Alvarado, M. J., Lonsdale, C. R., Macintyre, H. L., Bian, H., Chin, M., Ridley, D. A., Heald, C. L., Thornhill, K. L., Anderson, B. E., Cubison, M. J., Jimenez, J. L., Kondo, Y., Sahu, L. K., Dibb, J. E., and Wang, C.: Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008, Atmos. Chem. Phys., 16, 9435–9455, https://doi.org/10.5194/acp-16-9435-2016, 2016. 
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2, 1996. 
Andrews, E., Sheridan, P. J., and Ogren, J. A.: Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma, Atmos. Chem. Phys., 11, 10661–10676, https://doi.org/10.5194/acp-11-10661-2011, 2011. 
Download
Short summary
We present a new correction algorithm that addresses biases in measurements of aerosol light absorption by filter-based photometers, incorporating the transmission of light through the filter and some aerosol optical properties. It was developed using biomass burning aerosols and tested using rural ambient aerosols. This new algorithm is applicable to any filter-based photometer, resulting in good agreement between different colocated instruments in both the laboratory and the field.