Articles | Volume 13, issue 7
https://doi.org/10.5194/amt-13-3661-2020
https://doi.org/10.5194/amt-13-3661-2020
Research article
 | 
08 Jul 2020
Research article |  | 08 Jul 2020

Exploration of machine learning methods for the classification of infrared limb spectra of polar stratospheric clouds

Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel

Related authors

Version 8 IMK–IAA MIPAS ozone profiles: nominal observation mode
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 1443–1460, https://doi.org/10.5194/amt-16-1443-2023,https://doi.org/10.5194/amt-16-1443-2023, 2023
Short summary
Lagrangian transport simulations using the extreme convection parametrization: an assessment for the ECMWF reanalyses
Lars Hoffmann, Paul Konopka, Jan Clemens, and Bärbel Vogel
EGUsphere, https://doi.org/10.5194/egusphere-2023-72,https://doi.org/10.5194/egusphere-2023-72, 2023
Short summary
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
EGUsphere, https://doi.org/10.5194/egusphere-2022-1480,https://doi.org/10.5194/egusphere-2022-1480, 2023
Short summary
Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model
Jennifer Schallock, Christoph Brühl, Christine Bingen, Michael Höpfner, Landon Rieger, and Jos Lelieveld
Atmos. Chem. Phys., 23, 1169–1207, https://doi.org/10.5194/acp-23-1169-2023,https://doi.org/10.5194/acp-23-1169-2023, 2023
Short summary
The Mission Support System (MSS v7.0.4) and its use in planning for the SouthTRAC aircraft campaign
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev., 15, 8983–8997, https://doi.org/10.5194/gmd-15-8983-2022,https://doi.org/10.5194/gmd-15-8983-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023,https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary
The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023,https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023,https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Climatology of estimated liquid water content and scaling factor for warm clouds using radar–microwave radiometer synergy
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023,https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Optimizing cloud motion estimation on the edge with phase correlation and optical flow
Bhupendra A. Raut, Paytsar Muradyan, Rajesh Sankaran, Robert C. Jackson, Seongha Park, Sean A. Shahkarami, Dario Dematties, Yongho Kim, Joseph Swantek, Neal Conrad, Wolfgang Gerlach, Sergey Shemyakin, Pete Beckman, Nicola J. Ferrier, and Scott M. Collis
Atmos. Meas. Tech., 16, 1195–1209, https://doi.org/10.5194/amt-16-1195-2023,https://doi.org/10.5194/amt-16-1195-2023, 2023
Short summary

Cited articles

Achtert, P. and Tesche, M.: Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden, J. Geophys. Res.-Atmos., 119, 1386–1405, https://doi.org/10.1002/2013jd020355, 2014. a
Adriani, A.: Climatology of polar stratospheric clouds based on lidar observations from 1993 to 2001 over McMurdo Station, Antarctica, J. Geophys. Res., 109, D24, https://doi.org/10.1029/2004jd004800, 2004. a
Arnone, E., Castelli, E., Papandrea, E., Carlotti, M., and Dinelli, B. M.: Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach, Atmos. Chem. Phys., 12, 9149–9165, https://doi.org/10.5194/acp-12-9149-2012, 2012. a
Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281–305, 2012. a
Biele, J., Tsias, A., Luo, B. P., Carslaw, K. S., Neuber, R., Beyerle, G., and Peter, T.: Nonequilibrium coexistence of solid and liquid particles in Arctic stratospheric clouds, J. Geophys. Res.-Atmos., 106, 22991–23007, https://doi.org/10.1029/2001jd900188, 2001. a
Download
Short summary
Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion in the stratosphere. In this paper, we explore the potential of applying machine learning (ML) methods to classify PSC observations of infrared spectra to classify PSC types. ML methods have proved to reach results in line with those obtained using well-established approaches. Among the considered ML methods, random forest (RF) seems to be the most promising one, being able to produce explainable classification results.