Articles | Volume 13, issue 9
https://doi.org/10.5194/amt-13-5065-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5065-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating total attenuation using Rayleigh targets at cloud top: applications in multilayer and mixed-phase clouds observed by ground-based multifrequency radars
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Alessandro Battaglia
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
Department of Physics and Astronomy, University of Leicester, Leicester, UK
Stefan Kneifel
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Related authors
Marco Coppola, Alessandro Battaglia, Frederic Tridon, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-416, https://doi.org/10.5194/egusphere-2025-416, 2025
Short summary
Short summary
The WIVERN conically scanning Doppler W-band radar, has the potential, for the first time, to map the mesoscale and synoptic variability of cloud dynamics, and precipitation microphysics. This study shows that the oblique angle of incidence will be advantageous compared to standard nadir-looking radars due to substantial clutter suppression over ocean surface. This feature will enable the detection and quantification of light and moderate precipitation, with improved proximity to the surface.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024, https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Short summary
The WIVERN mission, one of the two candidates to be the ESA's Earth Explorer 11 mission, aims at providing measurements of horizontal winds in cloud and precipitation systems through a conically scanning W-band Doppler radar. This work discusses four methods that can be used to characterize and correct the Doppler velocity error induced by the antenna mispointing. The proposed methodologies can be extended to other Doppler concepts featuring conically scanning or slant viewing Doppler systems.
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023, https://doi.org/10.5194/amt-16-2865-2023, 2023
Short summary
Short summary
We present the theoretical basis of the algorithm that estimates the amount of water and size of particles in clouds and precipitation. The algorithm uses data collected by the Cloud Profiling Radar that was developed for the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission. After the satellite launch, the vertical distribution of cloud and precipitation properties will be delivered as the C-CLD product.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, Davide Ori, and Stefan Kneifel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3910, https://doi.org/10.5194/egusphere-2025-3910, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present a new database of radar-relevant optical properties for a wide range of ice crystal shapes and aggregates, computed using the discrete dipole approximation (DDA) at 5.6, 9.6, 35.6, and 94 GHz. The database is designed to support habit-evolving microphysical schemes, which predict continuous changes in ice particle properties rather than the traditionally assumed fixed categories. It includes over 2,600 individual crystals and 450 aggregates with varying riming and morphology.
Marco Coppola, Alessandro Battaglia, Frederic Tridon, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-416, https://doi.org/10.5194/egusphere-2025-416, 2025
Short summary
Short summary
The WIVERN conically scanning Doppler W-band radar, has the potential, for the first time, to map the mesoscale and synoptic variability of cloud dynamics, and precipitation microphysics. This study shows that the oblique angle of incidence will be advantageous compared to standard nadir-looking radars due to substantial clutter suppression over ocean surface. This feature will enable the detection and quantification of light and moderate precipitation, with improved proximity to the surface.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024, https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Short summary
The WIVERN mission, one of the two candidates to be the ESA's Earth Explorer 11 mission, aims at providing measurements of horizontal winds in cloud and precipitation systems through a conically scanning W-band Doppler radar. This work discusses four methods that can be used to characterize and correct the Doppler velocity error induced by the antenna mispointing. The proposed methodologies can be extended to other Doppler concepts featuring conically scanning or slant viewing Doppler systems.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023, https://doi.org/10.5194/amt-16-2865-2023, 2023
Short summary
Short summary
We present the theoretical basis of the algorithm that estimates the amount of water and size of particles in clouds and precipitation. The algorithm uses data collected by the Cloud Profiling Radar that was developed for the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission. After the satellite launch, the vertical distribution of cloud and precipitation properties will be delivered as the C-CLD product.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Cuong M. Nguyen, Mengistu Wolde, Alessandro Battaglia, Leonid Nichman, Natalia Bliankinshtein, Samuel Haimov, Kenny Bala, and Dirk Schuettemeyer
Atmos. Meas. Tech., 15, 775–795, https://doi.org/10.5194/amt-15-775-2022, https://doi.org/10.5194/amt-15-775-2022, 2022
Short summary
Short summary
An analysis of airborne triple-frequency radar and almost perfectly co-located coincident in situ data from an Arctic storm confirms the main findings of modeling work with radar dual-frequency ratios (DFRs) at different zones of the DFR plane associated with different ice habits. High-resolution CPI images provide accurate identification of rimed particles within the DFR plane. The relationships between the triple-frequency signals and cloud microphysical properties are also presented.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Markus Karrer, Axel Seifert, Davide Ori, and Stefan Kneifel
Atmos. Chem. Phys., 21, 17133–17166, https://doi.org/10.5194/acp-21-17133-2021, https://doi.org/10.5194/acp-21-17133-2021, 2021
Short summary
Short summary
Modeling precipitation is of great relevance, e.g., for mitigating damage caused by extreme weather. A key component in accurate precipitation modeling is aggregation, i.e., sticking together of snowflakes. Simulating aggregation is difficult due to multiple parameters that are not well-known. Knowing how these parameters affect aggregation can help its simulation. We put new parameters in the model and select a combination of parameters with which the model can simulate observations better.
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Short summary
A method for estimating microphysical properties of ice clouds based on radar measurements is presented. The algorithm exploits the information provided by differences in the radar response at different frequency bands in relation to changes in the snow morphology. The inversion scheme is based on a statistical relation between the radar simulations and the properties of snow calculated from in-cloud sampling.
Mariko Oue, Pavlos Kollias, Sergey Y. Matrosov, Alessandro Battaglia, and Alexander V. Ryzhkov
Atmos. Meas. Tech., 14, 4893–4913, https://doi.org/10.5194/amt-14-4893-2021, https://doi.org/10.5194/amt-14-4893-2021, 2021
Short summary
Short summary
Multi-wavelength radar measurements provide capabilities to identify ice particle types and growth processes in clouds beyond the capabilities of single-frequency radar measurements. This study introduces Doppler velocity and polarimetric radar observables into the multi-wavelength radar reflectivity measurement to improve identification analysis. The analysis clearly discerns snowflake aggregation and riming processes and even early stages of riming.
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021, https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Short summary
Observations collected during the 25 February 2020 deployment of the VIPR at the Stony Brook Radar Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research. The field experiment, which coordinated an X-, Ka-, W- and G-band radar, revealed that the differential reflectivity from Ka–G band pair provides larger signals than the traditional Ka–W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes.
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021, https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
Short summary
Snowflakes have very complex shapes, and modeling their properties requires vast computing power. We produced a large number of realistic snowflakes and modeled their average properties by leveraging their fractal structure. Our approach allows modeling the properties of big ensembles of snowflakes, taking into account their natural variability, at a much lower cost. This enables the usage of remote sensing instruments, such as radars, to monitor the evolution of clouds and precipitation.
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021, https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Short summary
The article examines the relationship between the characteristics of rain and the properties of the ice cloud from which the rain originated. Our results confirm the widely accepted assumption that the mass flux through the melting zone is well preserved with an exception of extreme aggregation and riming conditions. Moreover, it is shown that the mean (mass-weighted) size of particles above and below the melting zone is strongly linked, with the former being on average larger.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Alexander Myagkov, Stefan Kneifel, and Thomas Rose
Atmos. Meas. Tech., 13, 5799–5825, https://doi.org/10.5194/amt-13-5799-2020, https://doi.org/10.5194/amt-13-5799-2020, 2020
Short summary
Short summary
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars. Both methods use natural rain as a reference target. The first method is based on spectral polarimetric observations and requires a polarimetric cloud radar with a scanner. The second method utilizes disdrometer observations and can be applied to scanning and vertically pointed radars. Both methods show consistent results and can be applied for operational monitoring of measurement quality.
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Short summary
The Passive and Active Microwave TRAnsfer tool (PAMTRA) is a public domain software package written in Python and Fortran for the simulation of microwave remote sensing observations. PAMTRA models the interaction of radiation with gases, clouds, precipitation, and the surface using either in situ observations or model output as input parameters. The wide range of applications is demonstrated for passive (radiometer) and active (radar) instruments on ground, airborne, and satellite platforms.
Cited articles
Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis, Atmos. Chem. Phys., 19, 5753–5769, https://doi.org/10.5194/acp-19-5753-2019, 2019. a
Battaglia, A., Kummerow, C., Shin, D.-B., and Williams, C.: Toward
characterizing the effect of radar bright bands on microwave brightness
temperatures, J. Atmos. Ocean. Technol., 20, 856–871,
https://doi.org/10.1175/1520-0426(2003)020<0856:CMBTBR>2.0.CO;2, 2003. a
Battaglia, A., Westbrook, C. D., Kneifel, S., Kollias, P., Humpage, N., Löhnert, U., Tyynelä, J., and Petty, G. W.: G band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, 2014. a, b, c
Battaglia, A., Mroz, K., Lang, T., Tridon, F., Tanelli, S., Tian, L., and
Heymsfield, G. M.: Using a multiwavelength suite of microwave instruments to
investigate the microphysical structure of deep convective cores, J. Geophys. Res.-Atmos., 121,
9356–9381, https://doi.org/10.1002/2016JD025269, 2016. a, b, c
Battaglia, A., Kollias, P., Dhillon, R., Roy, R., Tanelli, S., Lamer, K.,
Grecu, M., Lebsock, M., Watters, D., Mroz, K., Heymsfield, G., Li, L., and
Furukawa, K.: Spaceborne Cloud and Precipitation Radars: Status, Challenges,
and Ways Forward, Rev. Geophys., 58, e2019RG000686,
https://doi.org/10.1029/2019RG000686, 2020a. a, b, c, d, e, f, g
Cadeddu, M. and Ghate, V.: Microwave Radiometer, 3 Channel (MWR3C),
2014-02-21 to 2014-03-22, ARM Mobile Facility (TMP) University of Helsinki Research
Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), Atmospheric Radiation
Measurement (ARM) user facility, https://doi.org/10.5439/1025248, 2014a. a, b
Cadeddu, M. and Ghate, V.: Microwave Radiometer (MWRLOS), 2014-02-21 to 2014-03-22, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), Atmospheric Radiation Measurement (ARM) user facility, https://doi.org/10.5439/1046211,
2014b. a, b
Chase, R. J., Finlon, J. A., Borque, P., McFarquhar, G. M., Nesbitt, S. W.,
Tanelli, S., Sy, O. O., Durden, S. L., and Poellot, M. R.: Evaluation of
Triple-Frequency Radar Retrieval of Snowfall Properties Using Coincident
Airborne In Situ Observations During OLYMPEX, Geophys. Res. Lett., 45,
5752–5760, https://doi.org/10.1029/2018GL077997, 2018. a
Cooper, K. B., Rodriguez Monje, R., Millán, L., Lebsock, M.,
Tanelli, S., Siles, J. V., Lee, C., and Brown, A.: Atmospheric
Humidity Sounding Using Differential Absorption Radar Near 183 GHz, IEEE
Geosci. Remote Sens. Lett., 15, 163–167,
https://doi.org/10.1109/LGRS.2017.2776078, 2018. a
Delrieu, G., Caoudal, S., and Creutin, J. D.: Feasibility of Using Mountain
Return for the Correction of Ground-Based X-Band Weather Radar Data, J.
Atmos. Ocean. Technol., 14, 368–385,
https://doi.org/10.1175/1520-0426(1997)014<0368:FOUMRF>2.0.CO;2, 1997. a
Dias Neto, J., Kneifel, S., Ori, D., Trömel, S., Handwerker, J., Bohn, B., Hermes, N., Mühlbauer, K., Lenefer, M., and Simmer, C.: The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation, Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, 2019. a, b, c, d, e, f
Duncan, D. I. and Eriksson, P.: An update on global atmospheric ice estimates from satellite observations and reanalyses, Atmos. Chem. Phys., 18, 11205–11219, https://doi.org/10.5194/acp-18-11205-2018, 2018. a, b
Ellison, W. J.: Permittivity of Pure Water, at Standard Atmospheric Pressure,
over the Frequency Range 0–25THz and the Temperature Range 0–100 ∘C, J. Phys. Chem. Ref. Data, 36, 1–18,
https://doi.org/10.1063/1.2360986, 2007. a, b, c, d
Firda, J. M., Sekelsky, S. M., and McIntosh, R. E.: Application of
Dual-Frequency Millimeter-Wave Doppler Spectra for the Retrieval of Drop Size
Distributions and Vertical Air Motion in Rain, J. Atmos.
Ocean. Technol., 16, 216–236,
https://doi.org/10.1175/1520-0426(1999)016<0216:AODFMW>2.0.CO;2, 1999. a
Grecu, M., Tian, L., Heymsfield, G. M., Tokay, A., Olson, W. S., Heymsfield,
A. J., and Bansemer, A.: Nonparametric Methodology to Estimate Precipitating
Ice from Multiple-Frequency Radar Reflectivity Observations, J.
Appl. Meteorol. Climatol., 57, 2605–2622,
https://doi.org/10.1175/JAMC-D-18-0036.1, 2018. a
Haynes, J. M., L'Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C.,
Wood, N. B., and Tanelli, S.: Rainfall retrieval over the ocean with
spaceborne W-band radar, J. Geophys. Res.-Atmos., 114, D00A22, https://doi.org/10.1029/2008JD009973, 2009. a, b
Hitschfeld, W. and Bordan, J.: Errors Inherent in the Radar Measurement of
Rainfall at Attenuating Wavelengths, J. Meteorology, 11, 58–67,
https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2, 1954. a
Hogan, R. J. and Illingworth, A. J.: The Potential of Spaceborne
Dual-Wavelength Radar to Make Global Measurements of Cirrus Clouds, J. Atmos. Ocean. Technol., 16, 518–531,
https://doi.org/10.1175/1520-0426(1999)016<0518:TPOSDW>2.0.CO;2, 1999. a
Hogan, R. J., Illingworth, A. J., and Sauvageot, H.: Measuring Crystal Size in Cirrus Using 35- and 94-GHz Radars, J. Atmos. Ocean.
Technol., 17, 27–37,
https://doi.org/10.1175/1520-0426(2000)017<0027:MCSICU>2.0.CO;2, 2000. a
Hogan, R. J., Mittermaier, M. P., and Illingworth, A. J.: The retrieval of ice
water content from radar reflectivity factor and temperature and its use in
the evaluation of a mesoscale model, J. Appl. Meteorol., 45, 301–317,
https://doi.org/10.1175/JAM2340.1, 2006. a
Houze, R. A.: Cloud Dynamics, International Geophysics Series, Academic
Press, 2014. a
Huang, D., Johnson, K., Liu, Y., and Wiscombe, W.: High resolution retrieval of
liquid water vertical distributions using collocated Ka-band and W-band cloud
radars, Geophys. Res. Lett., 36, L24807, https://doi.org/10.1029/2009GL041364, 2009. a, b
Iguchi, T. and Matsui, T.: Remote Sensing of Clouds and Precipitation, chap.
Advances in Clouds and Precipitation Modeling Supported by Remote Sensing
Measurements, Springer Remote Sensing/Photogrammetry, Springer, Cham, 2018. a
Iguchi, T. and Meneghini, R.: Intercomparison of Single-Frequency Methods for
Retrieving a Vertical Rain Profile from Airborne or Spaceborne Radar Data,
J. Atmos. Ocean. Technol., 11, 1507–1516,
https://doi.org/10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2, 1994. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013. a
Isom, B., Lindenmaier, I., and Matthews, A.: Marine W-Band (95 GHz) ARM Cloud Radar (MWACR), 2014-02-21 to 2014-03-22, ARM Mobile Facility (TMP) University of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), Atmospheric Radiation Measurement (ARM) user facility, https://doi.org/10.5439/1150242, 2014a. a, b
Isom, B., Lindenmaier, I., Nelson, D., and Matthews, A.: Ka ARM Zenith
Radar (KAZR), 2014-02-21 to 2014-03-22, ARM Mobile Facility (TMP), Univrsity of
Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1),
Atmospheric Radiation Measurement (ARM) user facility, https://doi.org/10.5439/1095601, 2014b. a, b
Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P., and Luke, E.: Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling, Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, 2016. a, b, c
Kneifel, S., Löhnert, U., Battaglia, A., Crewell, S., and Siebler, D.: Snow
scattering signals in ground-based passive microwave radiometer measurements,
J. Geophys. Res., 115, D16214, https://doi.org/10.1029/2010JD013856, 2010. a
Kneifel, S., von Lerber, A., Tiira, J., Moisseev, D., Kollias, P.,
and Leinonen, J.: Observed relations between snowfall microphysics and
triple-frequency radar measurements, J. Geophys. Res., 120, 6034–6055,
https://doi.org/10.1002/2015JD023156, 2015. a, b
Kneifel, S., Kollias, P., Battaglia, A., Leinonen, J., Maahn, M., Kalesse, H.,
and Tridon, F.: First observations of triple-frequency radar Doppler spectra
in snowfall: Interpretation and applications, Geophys. Res. Lett., 43,
2225–2233, https://doi.org/10.1002/2015GL067618, 2016. a
Kneifel, S., Leinonen, J., Tyynelä, J., Ori, D., and Battaglia, A.: Scattering of Hydrometeors, in: Satellite Precipitation Measurement, Advances in Global Change Research, edited by: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., and Turk, F., Vol 67. Springer, Cham., https://doi.org/10.1007/978-3-030-24568-9_15, 2020. a, b
Kollias, P., Clothiaux, E. E., Miller, M. A., Albrecht, B. A., Stephens, G. L.,
and Ackerman, T. P.: Millimeter-Wavelength Radars: New Frontier in
Atmospheric Cloud and Precipitation Research, B. Am. Meteorol. Soc.,
88, 1608–1624, https://doi.org/10.1175/BAMS-88-10-1608, 2007. a
Kollias, P., Bharadwaj, N., Clothiaux, E. E., Lamer, K., Oue, M., Hardin, J.,
Isom, B., Lindenmaier, I., Matthews, A., Luke, E. P., Giangrande, S. E.,
Johnson, K., Collis, S., Comstock, J., and Mather, J. H.: The ARM Radar
Network: At the Leading Edge of Cloud and Precipitation Observations,
B. Am. Meteorol. Soc., 101, E588–E607,
https://doi.org/10.1175/BAMS-D-18-0288.1, 2020. a
Küchler, N., Kneifel, S., Löhnert, U., Kollias, P., Czekala, H., and Rose,
T.: A W-Band Radar-Radiometer System for Accurate and Continuous
Monitoring of Clouds and Precipitation, J. Atmos. Ocean. Technol., 34,
2375–2392, https://doi.org/10.1175/JTECH-D-17-0019.1, 2017. a
Kulie, M. S., Hiley, M. J., Bennartz, R., Kneifel, S., and Tanelli, S.:
Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and
Comparisons with Theoretical Ice Particle Scattering Models, J. Appl. Meteor. Climatol., 53, 1080–1098,
https://doi.org/10.1175/JAMC-D-13-066.1, 2014. a
Kumjian, M. R., Rutledge, S. A., Rasmussen, R. M., Kennedy, P. C., and Dixon,
M.: High-Resolution Polarimetric Radar Observations of Snow-Generating Cells, J. Appl. Meteor. Climatol.,
53, 1636–1658, https://doi.org/10.1175/JAMC-D-13-0312.1, 2014. a, b
L'Ecuyer, T. S. and Stephens, G. L.: An Estimation-Based Precipitation
Retrieval Algorithm for Attenuating Radars, J. Appl. Meteorol., 41,
272–285, https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2, 2002. a, b
L’Ecuyer, T. S., Beaudoing, H. K., Rodell, M., Olson, W., Lin, B., Kato, S.,
Clayson, C. A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich,
M., Gu, G., Robertson, F., Houser, P. R., Chambers, D., Famiglietti, J. S.,
Fetzer, E., Liu, W. T., Gao, X., Schlosser, C. A., Clark, E., Lettenmaier,
D. P., and Hilburn, K.: The Observed State of the Energy Budget in the Early
Twenty-First Century, J. Climate, 28, 8319–8346, https://doi.org/10.1175/JCLI-D-14-00556.1, 2015. a
Leinonen, J., Lebsock, M. D., Tanelli, S., Sy, O. O., Dolan, B., Chase, R. J., Finlon, J. A., von Lerber, A., and Moisseev, D.: Retrieval of snowflake microphysical properties from multifrequency radar observations, Atmos. Meas. Tech., 11, 5471–5488, https://doi.org/10.5194/amt-11-5471-2018, 2018. a, b
Lhermitte, R.: Attenuation and Scattering of Millimeter Wavelength Radiation
by Clouds and Precipitation, J. Atmos. Ocean. Technol., 7, 464–479,
https://doi.org/10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2, 1990. a, b
Li, H. and Moisseev, D.: Melting Layer Attenuation at Ka- and W-Bands as
Derived From Multifrequency Radar Doppler Spectra Observations, J.
Geophys. Res.-Atmos., 124, 9520–9533,
https://doi.org/10.1029/2019JD030316, 2019. a, b, c, d
Liao, L. and Meneghini, R.: A Study on the Feasibility of Dual-Wavelength
Radar for Identification of Hydrometeor Phases, 50, 449–456,
https://doi.org/10.1175/2010JAMC2499.1, 2011. a
Liao, L. and Meneghini, R.: Physical Evaluation of GPM DPR Single- and
Dual-Wavelength Algorithms, J. Atmos. Ocean. Technol., 36, 883–902,
https://doi.org/10.1175/JTECH-D-18-0210.1, 2019. a, b
Löhnert, U. and Crewell, S.: Accuracy of cloud liquid water path from
ground-based microwave radiometry 1. Dependency on cloud model statistics,
Radio Sci., 38, 8041, https://doi.org/10.1029/2002RS002654, 2003. a
Löhnert, U., Schween, J. H., Acquistapace, C., Ebell, K., Maahn, M.,
Barrera-Verdejo, M., Hirsikko, A., Bohn, B., Knaps, A., O'Connor, E., Simmer,
C., Wahner, A., and Crewell, S.: JOYCE: Jülich Observatory for Cloud
Evolution, B. Am. Meteorol. Soc., 96, 1157–1174,
https://doi.org/10.1175/BAMS-D-14-00105.1, 2015. a, b
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A.,
Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A.,
Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H.,
Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and
Vogelmann, A. M.: AWARE: The Atmospheric Radiation Measurement (ARM) West
Antarctic Radiation Experiment, B. Am. Meteorol.
Soc., B. Am. Meteorol. Soc., 101, E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1, 2020. a
Luke, E. P., Kollias, P., and Shupe, M. D.: Detection of supercooled liquid in
mixed-phase clouds using radar Doppler spectra, J. Geophys.
Res.-Atmos., 115, D19201, https://doi.org/10.1029/2009JD012884, 2010. a
Marzoug, M. and Amayenc, P.: A Class of Single- and Dual-Frequency Algorithms
for Rain-Rate Profiling from a Spaceborne Radar. Pad I: Principle and Tests
from Numerical Simulations, J. Atmos. Ocean. Technol., 11, 1480–1506,
https://doi.org/10.1175/1520-0426(1994)011<1480:ACOSAD>2.0.CO;2, 1994. a
Mason, S. L., Chiu, J. C., Hogan, R. J., and Tian, L.: Improved rain rate and drop size retrievals from airborne Doppler radar, Atmos. Chem. Phys., 17, 11567–11589, https://doi.org/10.5194/acp-17-11567-2017, 2017. a
Mason, S. L., Hogan, R. J., Westbrook, C. D., Kneifel, S., Moisseev, D., and von Terzi, L.: The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow, Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, 2019. a
Matrosov, S.: Attenuation-Based Estimates of Rainfall Rates Aloft with
Vertically Pointing Ka-Band Radars, J. Atmos. Ocean. Technol., 22, 43–54,
https://doi.org/10.1175/JTECH-1677.1, 2005. a, b
Matrosov, S.: Assessment of Radar Signal Attenuation Caused by the Melting
Hydrometeor Layer, IEEE Trans. Geosci. Remote Sens., 46, 1039–1047, https://doi.org/10.1109/TGRS.2008.915757, 2008. a
Matrosov, S., May, P., and Shupe, M.: Rainfall Profiling Using Atmospheric
Radiation Measurement Program Vertically Pointing 8-mm Wavelength Radars, J.
Atmos. Ocean. Technol., 23, 1478–1491, https://doi.org/10.1175/JTECH1957.1, 2006. a, b
Matrosov, S. Y.: Modeling Backscatter Properties of Snowfall at Millimeter
Wavelengths, J. Atmos. Sci., 64, 1727–1736,
https://doi.org/10.1175/JAS3904.1, 2007. a
Matrosov, S. Y.: Feasibility of using radar differential Doppler velocity and
dual-frequency ratio for sizing particles in thick ice clouds, J.
Geophys. Res.-Atmos., 116, D17202, https://doi.org/10.1029/2011JD015857, 2011. a
Matrosov, S. Y.: Characteristic Raindrop Size Retrievals from Measurements of
Differences in Vertical Doppler Velocities at Ka- and W-Band Radar
Frequencies, J. Atmos. Ocean. Technol., 34, 65–71,
https://doi.org/10.1175/JTECH-D-16-0181.1, 2017. a
Matrosov, S. Y. and Turner, D. D.: Retrieving Mean Temperature of Atmospheric
Liquid Water Layers Using Microwave Radiometer Measurements, J. Atmos.
Ocean. Technol., 35, 1091–1102, https://doi.org/10.1175/JTECH-D-17-0179.1, 2018. a
Matrosov, S. Y., Maahn, M., and de Boer, G.: Observational and Modeling Study
of Ice Hydrometeor Radar Dual-Wavelength Ratios, J. Appl. Meteor. Climatol., 58, 2005–2017,
https://doi.org/10.1175/JAMC-D-19-0018.1, 2019. a
Meneghini, R., Iguchi, T., Kozu, T., Liao, L., Okamoto, K., Jones, J. A., and
Kwiatkowski, J.: Use of the Surface Reference Technique for Path Attenuation
Estimates from the TRMM Precipitation Radar, J. Appl. Meteorol., 39,
2053–2070, https://doi.org/10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2, 2000. a
Meneghini, R., Kim, H., Liao, L., Jones, J. A., and Kwiatkowski, J. M.: An
Initial Assessment of the Surface Reference Technique Applied to Data from
the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite, J. Atmos.
Ocean. Technol., 32, 2281–2296, https://doi.org/10.1175/JTECH-D-15-0044.1, 2015. a
Mróz, K., Battaglia, A., Kneifel, S., D'Adderio, L. P., and Dias Neto, J.:
Triple-Frequency Doppler Retrieval of Characteristic Raindrop Size, Earth
Space Sci., 7, e2019EA000789, https://doi.org/10.1029/2019EA000789, 2020. a
Nemarich, J., Wellman, R. J., and Lacombe, J.: Backscatter and
attenuation by falling snow and rain at 96, 140, and 225 GHz, IEEE Trans. Geosci. Remote Sens., 26, 319–329,
https://doi.org/10.1109/36.3034, 1988. a, b
Petäjä, T., O’Connor, E. J., Moisseev, D., Sinclair, V. A., Manninen,
A. J., Väänänen, R., von Lerber, A., Thornton, J. A., Nicoll, K.,
Petersen, W., Chandrasekar, V., Smith, J. N., Winkler, P. M., Krüger, O.,
Hakola, H., Timonen, H., Brus, D., Laurila, T., Asmi, E., Riekkola, M.-L.,
Mona, L., Massoli, P., Engelmann, R., Komppula, M., Wang, J., Kuang, C.,
Bäck, J., Virtanen, A., Levula, J., Ritsche, M., and Hickmon, N.: BAECC: A
Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and
Climate, B. Am. Meteorol. Soc., 97, 1909–1928,
https://doi.org/10.1175/BAMS-D-14-00199.1, 2016. a
Protat, A., Delanoë, J., Bouniol, D., Heymsfield, A. J.,
Bansemer, A., and Brown, P.: Evaluation of Ice Water Content Retrievals
from Cloud Radar Reflectivity and Temperature Using a Large Airborne In Situ
Microphysical Database, J. Appl. Meteorol. Climatol., 46,
557–572, https://doi.org/10.1175/JAM2488.1, 2007. a, b
Protat, A., Rauniyar, S., Delanoë, J., Fontaine, E., and Schwarzenboeck, A.:
W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils, J.
Atmos. Ocean. Technol., 36, 1463–1476, https://doi.org/10.1175/JTECH-D-18-0154.1,
2019. a, b
Rose, T., Crewell, S., Löhnert, U., and Simmer, C.: A network
suitable microwave radiometer for operational monitoring of the cloudy
atmosphere, Atmos. Res., 75, 183–200,
https://doi.org/10.1016/j.atmosres.2004.12.005, 2005. a
Rosenkranz, P. W.: A Model for the Complex Dielectric Constant of
Supercooled Liquid Water at Microwave Frequencies, IEEE Trans.
Geosci. Remote Sens., 53, 1387–1393,
https://doi.org/10.1109/TGRS.2014.2339015, 2015. a, b, c
Roy, R. J., Lebsock, M., Millán, L., Dengler, R., Rodriguez Monje, R., Siles, J. V., and Cooper, K. B.: Boundary-layer water vapor profiling using differential absorption radar, Atmos. Meas. Tech., 11, 6511–6523, https://doi.org/10.5194/amt-11-6511-2018, 2018. a
Serrar, S., Delrieu, G., Creutin, J.-D., and Uijlenhoet, R.: Mountain
reference technique: Use of mountain returns to calibrate weather radars
operating at attenuating wavelengths, J. Geophys. Res.-Atmos., 105, 2281–2290,
https://doi.org/10.1029/1999JD901025, 2000. a
Shupe, M. D., Kollias, P., Matrosov, S. Y., and Schneider, T. L.: Deriving
Mixed-Phase Cloud Properties from Doppler Radar Spectra, J.
Atmos. Ocean. Technol., 21, 660–670,
https://doi.org/10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2, 2004. a
Shupe, M. D., Daniel, J. S., de Boer, G., Eloranta, E. W., Kollias, P., Long,
C. N., Luke, E. P., Turner, D. D., and Verlinde, J.: A Focus On Mixed-Phase
Clouds, B. Am. Meteorol. Soc., 89, 1549–1562,
https://doi.org/10.1175/2008BAMS2378.1, 2008. a
Simmer, C., Thiele-Eich, I., Masbou, M., Amelung, W., Bogena, H., Crewell, S.,
Diekkrüger, B., Ewert, F., Hendricks Franssen, H.-J., Huisman, J. A., Kemna,
A., Klitzsch, N., Kollet, S., Langensiepen, M., Löhnert, U., Rahman, A. S.
M. M., Rascher, U., Schneider, K., Schween, J., Shao, Y., Shrestha, P.,
Stiebler, M., Sulis, M., Vanderborght, J., Vereecken, H., van der Kruk, J.,
Waldhoff, G., and Zerenner, T.: Monitoring and Modeling the Terrestrial
System from Pores to Catchments: The Transregional Collaborative Research
Center on Patterns in the Soil–Vegetation–Atmosphere System, B.
Am. Meteorol. Soc., 96, 1765–1787,
https://doi.org/10.1175/BAMS-D-13-00134.1, 2015. a
Stephens, G. L., Li, J., Wild, M., Clayson, C., Loeb, N., Kato, S., L'Ecuyer,
T., Stackhouse, P., Lebsock, M., and Andrews, T.: An update on Earth's
energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012. a
Tridon, F. and Battaglia, A.: Dual-frequency radar Doppler spectral retrieval
of rain drop size distributions and entangled dynamics variables, J. Geophys. Res.-Atmos., 120,
5585–5601, https://doi.org/10.1002/2014JD023023, 2015. a, b
Tridon, F., Battaglia, A., and Kollias, P.: Disentangling Mie and attenuation
effects in rain using a Ka-W dual-wavelength Doppler spectral ratio
technique, Geophys. Res. Lett., 40, 5548–5552, https://doi.org/10.1002/2013GL057454,
2013a. a, b
Tridon, F., Battaglia, A., Kollias, P., Luke, E., and Williams, C. R.: Signal
Postprocessing and Reflectivity Calibration of the Atmospheric Radiation
Measurement Program 915-MHz Wind Profilers, J. Atmos. Ocean. Technol., 30,
1038–1054, https://doi.org/10.1175/JTECH-D-12-00146.1, 2013b. a
Tridon, F., Battaglia, A., Luke, E., and Kollias, P.: Rain retrieval from
dual-frequency radar Doppler spectra: validation and potential for a
midlatitude precipitating case-study, Q. J. Roy. Meteorol. Soc., 143,
1364–1380, https://doi.org/10.1002/qj.3010, 2017a. a, b, c, d
Tridon, F., Battaglia, A., and Watters, D.: Evaporation in action sensed by
multiwavelength Doppler radars, J. Geophys. Res.-Atmos., 122, 9379–9390, https://doi.org/10.1002/2016JD025998,
2017b. a
Tridon, F., Battaglia, A., Chase, R. J., Turk, F. J., Leinonen, J., Kneifel,
S., Mroz, K., Finlon, J., Bansemer, A., Tanelli, S., Heymsfield, A. J., and
Nesbitt, S. W.: The Microphysics of Stratiform Precipitation During OLYMPEX:
Compatibility Between Triple-Frequency Radar and Airborne In Situ
Observations, J. Geophys. Res.-Atmos., 124, 8764–8792, https://doi.org/10.1029/2018JD029858,
2019a. a
Tridon, F., Planche, C., Mroz, K., Banson, S., Battaglia, A., Van Baelen, J.,
and Wobrock, W.: On the Realism of the Rain Microphysics Representation of a
Squall Line in the WRF Model. Part I: Evaluation with Multifrequency Cloud
Radar Doppler Spectra Observations, Mon. Weather Rev., 147, 2787–2810,
https://doi.org/10.1175/MWR-D-18-0018.1, 2019b.
a
von Lerber, A., Moisseev, D., Bliven, L. F., Petersen, W., Harri, A.-M., and
Chandrasekar, V.: Microphysical Properties of Snow and Their Link to Ze–S
Relations during BAECC 2014, J. Appl. Meteorol. Climatol.,
56, 1561–1582, https://doi.org/10.1175/JAMC-D-16-0379.1, 2017. a, b, c
Wallace, H. B.: Millimeter-wave propagation measurements at the Ballistic
Research Laboratory, IEEE Trans. Geosci. Remote Sens., 26, 253–258, https://doi.org/10.1109/36.3028, 1988. a
Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., and
König-Langlo, G.: The global energy balance from a surface perspective,
Clim. Dynam., 40, 3107–3134, https://doi.org/10.1007/s00382-012-1569-8, 2013. a
Williams, C. R., Beauchamp, R. M., and Chandrasekar, V.: Vertical Air
Motions and Raindrop Size Distributions Estimated Using Mean Doppler Velocity
Difference From 3- and 35-GHz Vertically Pointing Radars, IEEE Trans. Geosci. Remote Sens., 54, 6048–6060,
https://doi.org/10.1109/TGRS.2016.2580526, 2016. a
Zelinka, M. D., Randall, D. A., Webb, M. J., and Klein, S. A.: Clearing clouds
of uncertainty, Nat. Clim. Change, 7, 674–678,
https://doi.org/10.1038/nclimate3402, 2017. a
Zhu, Z., Lamer, K., Kollias, P., and Clothiaux, E. E.: The Vertical Structure
of Liquid Water Content in Shallow Clouds as Retrieved From Dual-Wavelength
Radar Observations, J. Geophys. Res.-Atmos., 124, 14184–14197, https://doi.org/10.1029/2019JD031188, 2019. a, b
Short summary
The droplets and ice crystals composing clouds and precipitation interact with microwaves and can therefore be observed by radars, but they can also attenuate the signal they emit. By combining the observations made by two ground-based radars, this study describes an original approach for estimating such attenuation. As a result, the latter can be not only corrected in the radar observations but also exploited for providing an accurate characterization of droplet and ice crystal properties.
The droplets and ice crystals composing clouds and precipitation interact with microwaves and...