Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5595-2020
https://doi.org/10.5194/amt-13-5595-2020
Research article
 | 
22 Oct 2020
Research article |  | 22 Oct 2020

Clouds over Hyytiälä, Finland: an algorithm to classify clouds based on solar radiation and cloud base height measurements

Ilona Ylivinkka, Santeri Kaupinmäki, Meri Virman, Maija Peltola, Ditte Taipale, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Ekaterina Ezhova

Related authors

Long-term PM trends in southern Finland from three different measurement techniques
Ilona Ylivinkka, Helmi-Marja Keskinen, Lauri R. Ahonen, Liine Heikkinen, Pasi P. Aalto, Tuomo Nieminen, Katrianne Lehtipalo, Juho Aalto, Janne Levula, Jutta Kesti, Ekaterina Ezhova, Markku Kulmala, and Tuukka Petäjä
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-16,https://doi.org/10.5194/ar-2025-16, 2025
Preprint under review for AR
Short summary
Measurement Report: Optical properties of supermicron aerosol particles in a boreal environment
Sujai Banerji, Krista Luoma, Ilona Ylivinkka, Lauri Ahonen, Veli-Matti Kerminen, and Tuukka Petäjä
EGUsphere, https://doi.org/10.5194/egusphere-2025-1776,https://doi.org/10.5194/egusphere-2025-1776, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest
Tuija Jokinen, Katrianne Lehtipalo, Roseline Cutting Thakur, Ilona Ylivinkka, Kimmo Neitola, Nina Sarnela, Totti Laitinen, Markku Kulmala, Tuukka Petäjä, and Mikko Sipilä
Atmos. Chem. Phys., 22, 2237–2254, https://doi.org/10.5194/acp-22-2237-2022,https://doi.org/10.5194/acp-22-2237-2022, 2022
Short summary
Occurrence of new particle formation events in Siberian and Finnish boreal forest
Helmi Uusitalo, Jenni Kontkanen, Ilona Ylivinkka, Ekaterina Ezhova, Anastasiia Demakova, Mikhail Arshinov, Boris Denisovich Belan, Denis Davydov, Nan Ma, Tuukka Petäjä, Alfred Wiedensohler, Markku Kulmala, and Tuomo Nieminen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-530,https://doi.org/10.5194/acp-2021-530, 2021
Publication in ACP not foreseen
Short summary
Long-term aerosol mass concentrations in southern Finland: instrument validation, seasonal variation and trends
Helmi-Marja Keskinen, Ilona Ylivinkka, Liine Heikkinen, Pasi P. Aalto, Tuomo Nieminen, Katrianne Lehtipalo, Juho Aalto, Janne Levula, Jutta Kesti, Lauri R. Ahonen, Ekaterina Ezhova, Markku Kulmala, and Tuukka Petäjä
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-447,https://doi.org/10.5194/amt-2020-447, 2020
Publication in AMT not foreseen
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Convolutional neural networks for specific and merged data sets of optical array probe images: compatibility of retrieved morphology-dependent size distributions
Louis Jaffeux, Jan Breiner, Pierre Coutris, and Alfons Schwarzenböck
Atmos. Meas. Tech., 18, 2311–2331, https://doi.org/10.5194/amt-18-2311-2025,https://doi.org/10.5194/amt-18-2311-2025, 2025
Short summary
An analysis of cloud microphysical features over United Arab Emirates using multiple data sources
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
Atmos. Meas. Tech., 18, 1981–2003, https://doi.org/10.5194/amt-18-1981-2025,https://doi.org/10.5194/amt-18-1981-2025, 2025
Short summary
IceDetectNet: a rotated object detection algorithm for classifying components of aggregated ice crystals with a multi-label classification scheme
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024,https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Distribution characteristics of the summer precipitation raindrop spectrum on the Qinghai–Tibet Plateau
Fuzeng Wang, Yuanyu Duan, Yao Huo, Yaxi Cao, Qiusong Wang, Tong Zhang, Junqing Liu, and Guangmin Cao
Atmos. Meas. Tech., 17, 6933–6944, https://doi.org/10.5194/amt-17-6933-2024,https://doi.org/10.5194/amt-17-6933-2024, 2024
Short summary
Exploring the effect of training set size and number of categories on ice crystal classification through a contrastive semi-supervised learning algorithm
Yunpei Chu, Huiying Zhang, Xia Li, and Jan Henneberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3160,https://doi.org/10.5194/egusphere-2024-3160, 2024
Short summary

Cited articles

AERONET: AERONET Data Download Tool, available at: https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_new?stage=3&region=Europe&state=Finland&site=Hyytiala&place_code=10, last access: 21 October 2020. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. a
ARM: ARM Data search, available at: https://adc.arm.gov/discovery/#/results/site_code::tmp, last access: 21 October 2020. a
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, 197–219, 2003. a
Bankert, R. L. and Wade, R. H.: Optimization of an instance-based GOES cloud classification algorithm, J. Appl. Meteorol. Clim., 46, 36–49, 2007. a, b
Download
Short summary
In this study, we developed a new algorithm for cloud classification using solar radiation and cloud base height measurements. Our objective was to develop a simple and inexpensive but effective algorithm for the needs of studies related to ecosystem and atmosphere interactions. In the present study, we used the algorithm for obtaining cloud statistics at a measurement station in southern Finland, and we discuss the advantages and shortcomings of the algorithm.
Share