Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-5799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the reflectivity calibration of W-band radars based on observations in rain
Alexander Myagkov
CORRESPONDING AUTHOR
RPG Radiometer Physics GmbH, Meckenheim, Germany
Stefan Kneifel
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Thomas Rose
RPG Radiometer Physics GmbH, Meckenheim, Germany
Related authors
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-143, https://doi.org/10.5194/amt-2024-143, 2024
Preprint under review for AMT
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (EMS) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022, https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Short summary
This study provides equations to characterize random errors of spectral polarimetric observations from cloud radars. The results can be used for a broad spectrum of applications. For instance, accurate error characterization is essential for advanced retrievals of microphysical properties of clouds and precipitation. Moreover, error characterization allows for the use of measurements from polarimetric cloud radars to potentially improve weather forecasts.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Johannes Bühl, Patric Seifert, Alexander Myagkov, and Albert Ansmann
Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, https://doi.org/10.5194/acp-16-10609-2016, 2016
Short summary
Short summary
We probe thin layered clouds with remote sensing instruments from ground in order to get insight into atmospheric processes like the formation of rain or snow. We think that the findings of our work can be used to improve climate and weather simulations. The present paper presents a new technique that can be used to detect the shape, fall speed and mass of ice particles falling from layered clouds. With such information the impact of cloud ice, e.g., on the lifetime of a cloud, can be estimated.
Alexander Myagkov, Patric Seifert, Ulla Wandinger, Johannes Bühl, and Ronny Engelmann
Atmos. Meas. Tech., 9, 3739–3754, https://doi.org/10.5194/amt-9-3739-2016, https://doi.org/10.5194/amt-9-3739-2016, 2016
Short summary
Short summary
This paper presents first quantitative estimations of ice particle shape at the top of liquid-topped clouds. The estimation is based on polarimetric measurements from a Ka-band cloud radar. 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign were used. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with known shape–temperature dependencies observed in laboratories was found.
A. Myagkov, P. Seifert, M. Bauer-Pfundstein, and U. Wandinger
Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016, https://doi.org/10.5194/amt-9-469-2016, 2016
Short summary
Short summary
In this paper a newly developed scanning 35 GHz cloud radar MIRA-35 is described. The issues concerned with implementation, polarization calibration, and data processing are considered. Also, an algorithm for a characterization of shape and orientation distribution based on polarimetric observations from the cloud radar is presented. For demonstration, the developed retrieval technique is applied to a cloud system containing ice crystals with different habits.
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-143, https://doi.org/10.5194/amt-2024-143, 2024
Preprint under review for AMT
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (EMS) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022, https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Short summary
This study provides equations to characterize random errors of spectral polarimetric observations from cloud radars. The results can be used for a broad spectrum of applications. For instance, accurate error characterization is essential for advanced retrievals of microphysical properties of clouds and precipitation. Moreover, error characterization allows for the use of measurements from polarimetric cloud radars to potentially improve weather forecasts.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Markus Karrer, Axel Seifert, Davide Ori, and Stefan Kneifel
Atmos. Chem. Phys., 21, 17133–17166, https://doi.org/10.5194/acp-21-17133-2021, https://doi.org/10.5194/acp-21-17133-2021, 2021
Short summary
Short summary
Modeling precipitation is of great relevance, e.g., for mitigating damage caused by extreme weather. A key component in accurate precipitation modeling is aggregation, i.e., sticking together of snowflakes. Simulating aggregation is difficult due to multiple parameters that are not well-known. Knowing how these parameters affect aggregation can help its simulation. We put new parameters in the model and select a combination of parameters with which the model can simulate observations better.
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021, https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
Short summary
Snowflakes have very complex shapes, and modeling their properties requires vast computing power. We produced a large number of realistic snowflakes and modeled their average properties by leveraging their fractal structure. Our approach allows modeling the properties of big ensembles of snowflakes, taking into account their natural variability, at a much lower cost. This enables the usage of remote sensing instruments, such as radars, to monitor the evolution of clouds and precipitation.
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021, https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Short summary
The article examines the relationship between the characteristics of rain and the properties of the ice cloud from which the rain originated. Our results confirm the widely accepted assumption that the mass flux through the melting zone is well preserved with an exception of extreme aggregation and riming conditions. Moreover, it is shown that the mean (mass-weighted) size of particles above and below the melting zone is strongly linked, with the former being on average larger.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Frédéric Tridon, Alessandro Battaglia, and Stefan Kneifel
Atmos. Meas. Tech., 13, 5065–5085, https://doi.org/10.5194/amt-13-5065-2020, https://doi.org/10.5194/amt-13-5065-2020, 2020
Short summary
Short summary
The droplets and ice crystals composing clouds and precipitation interact with microwaves and can therefore be observed by radars, but they can also attenuate the signal they emit. By combining the observations made by two ground-based radars, this study describes an original approach for estimating such attenuation. As a result, the latter can be not only corrected in the radar observations but also exploited for providing an accurate characterization of droplet and ice crystal properties.
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Short summary
The Passive and Active Microwave TRAnsfer tool (PAMTRA) is a public domain software package written in Python and Fortran for the simulation of microwave remote sensing observations. PAMTRA models the interaction of radiation with gases, clouds, precipitation, and the surface using either in situ observations or model output as input parameters. The wide range of applications is demonstrated for passive (radiometer) and active (radar) instruments on ground, airborne, and satellite platforms.
Darielle Dexheimer, Martin Airey, Erika Roesler, Casey Longbottom, Keri Nicoll, Stefan Kneifel, Fan Mei, R. Giles Harrison, Graeme Marlton, and Paul D. Williams
Atmos. Meas. Tech., 12, 6845–6864, https://doi.org/10.5194/amt-12-6845-2019, https://doi.org/10.5194/amt-12-6845-2019, 2019
Short summary
Short summary
A tethered-balloon system deployed supercooled liquid water content sondes and fiber optic distributed temperature sensing to collect in situ atmospheric measurements within mixed-phase Arctic clouds. These data were validated against collocated surface-based and remote sensing datasets. From these measurements and sensor evaluations, tethered-balloon flights are shown to offer an effective method of collecting data to inform numerical models and calibrate remote sensing instrumentation.
Shannon L. Mason, Robin J. Hogan, Christopher D. Westbrook, Stefan Kneifel, Dmitri Moisseev, and Leonie von Terzi
Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, https://doi.org/10.5194/amt-12-4993-2019, 2019
Short summary
Short summary
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The signatures of snow measured at three radar frequencies can distinguish fluffy, fractal snowflakes from dense and more homogeneous rimed snow. However, we show that the shape of the particle size spectrum also has a significant impact on triple-frequency radar signatures and must be accounted for when making triple-frequency radar estimates of snow that include variations in particle structure and density.
José Dias Neto, Stefan Kneifel, Davide Ori, Silke Trömel, Jan Handwerker, Birger Bohn, Normen Hermes, Kai Mühlbauer, Martin Lenefer, and Clemens Simmer
Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, https://doi.org/10.5194/essd-11-845-2019, 2019
Short summary
Short summary
This study describes a 2-month dataset of ground-based, vertically pointing triple-frequency cloud radar observations recorded during the winter season 2015/2016 in Jülich, Germany. Intensive quality control has been applied to the unique long-term dataset, which allows the multifrequency signatures of ice and snow particles to be statistically analyzed for the first time. The analysis includes, for example, aggregation and its dependence on cloud temperature, riming, and onset of melting.
Claudia Acquistapace, Stefan Kneifel, Ulrich Löhnert, Pavlos Kollias, Maximilian Maahn, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, https://doi.org/10.5194/amt-10-1783-2017, 2017
Short summary
Short summary
The goal of the paper is to understand what the optimal cloud radar settings for drizzle detection are. The number of cloud radars in the world has increased in the last 10 years and it is important to develop strategies to derive optimal settings which can be applied to all radar systems. The study is part of broader research focused on better understanding the microphysical process of drizzle growth using ground-based observations.
Johannes Bühl, Patric Seifert, Alexander Myagkov, and Albert Ansmann
Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, https://doi.org/10.5194/acp-16-10609-2016, 2016
Short summary
Short summary
We probe thin layered clouds with remote sensing instruments from ground in order to get insight into atmospheric processes like the formation of rain or snow. We think that the findings of our work can be used to improve climate and weather simulations. The present paper presents a new technique that can be used to detect the shape, fall speed and mass of ice particles falling from layered clouds. With such information the impact of cloud ice, e.g., on the lifetime of a cloud, can be estimated.
Francesco De Angelis, Domenico Cimini, James Hocking, Pauline Martinet, and Stefan Kneifel
Geosci. Model Dev., 9, 2721–2739, https://doi.org/10.5194/gmd-9-2721-2016, https://doi.org/10.5194/gmd-9-2721-2016, 2016
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer to bridge the observational gap in the atmospheric boundary layer. Currently MWRs are operational at many sites worldwide. However, their potential is largely under-exploited, partly due to the lack of a fast radiative transfer model (RTM) suited for data assimilation into numerical weather prediction models. Here we propose and test an RTM, building on satellite heritage and adapting for ground-based MWRs, which addresses this shortage.
Alexander Myagkov, Patric Seifert, Ulla Wandinger, Johannes Bühl, and Ronny Engelmann
Atmos. Meas. Tech., 9, 3739–3754, https://doi.org/10.5194/amt-9-3739-2016, https://doi.org/10.5194/amt-9-3739-2016, 2016
Short summary
Short summary
This paper presents first quantitative estimations of ice particle shape at the top of liquid-topped clouds. The estimation is based on polarimetric measurements from a Ka-band cloud radar. 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign were used. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with known shape–temperature dependencies observed in laboratories was found.
Heike Kalesse, Wanda Szyrmer, Stefan Kneifel, Pavlos Kollias, and Edward Luke
Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, https://doi.org/10.5194/acp-16-2997-2016, 2016
Short summary
Short summary
Mixed-phase clouds are ubiquitous. Process-level understanding is needed to address the complexity of mixed-phase clouds and to improve their representation in models. This study illustrates steps to identify the impact of a microphysical process (riming) on cloud Doppler radar observations. It suggests that in situ observations of key ice properties are needed to complement radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations in models.
A. Myagkov, P. Seifert, M. Bauer-Pfundstein, and U. Wandinger
Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016, https://doi.org/10.5194/amt-9-469-2016, 2016
Short summary
Short summary
In this paper a newly developed scanning 35 GHz cloud radar MIRA-35 is described. The issues concerned with implementation, polarization calibration, and data processing are considered. Also, an algorithm for a characterization of shape and orientation distribution based on polarimetric observations from the cloud radar is presented. For demonstration, the developed retrieval technique is applied to a cloud system containing ice crystals with different habits.
I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig
The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, https://doi.org/10.5194/tc-9-285-2015, 2015
Short summary
Short summary
Our paper presents a new cloud-precipitation-meteorological observatory established in the escarpment zone of Dronning Maud Land, East Antarctica. The site is characterised by bimodal cloud occurrence (clear sky or overcast) with liquid-containing clouds occurring 20% of the cloudy periods. Local surface mass balance strongly depends on rare intense snowfall events. A substantial part of the accumulated snow is removed by surface and drifting snow sublimation and wind-driven snow erosion.
A. Battaglia, C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty
Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, https://doi.org/10.5194/amt-7-1527-2014, 2014
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
The first microwave and submillimetre closure study using particle models of oriented ice hydrometeors to simulate polarimetric measurements of ice clouds
Polarization upgrade of specMACS: calibration and characterization of the 2D RGB polarization-resolving cameras
Advantages of G-band radar in multi-frequency, liquid phase microphysical retrievals
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
W-band S–Z relationships for rimed snow particles: observational evidence from combined airborne and ground-based observations
The generation of EarthCARE L1 test data sets using atmospheric model data sets
The EarthCARE mission – science and system overview
Processing reflectivity and Doppler velocity from EarthCARE's cloud-profiling radar: the C-FMR, C-CD and C-APC products
3D cloud envelope and cloud development velocity from simulated CLOUD (C3IEL) stereo images
Passive ground-based remote sensing of radiation fog
Locations for the best lidar view of mid-level and high clouds
VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties
Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer
Impact of second-trip echoes for space-borne high-pulse-repetition-frequency nadir-looking W-band cloud radars
Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes
Multifrequency radar observations of clouds and precipitation including the G-band
Can machine learning correct microwave humidity radiances for the influence of clouds?
McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements
Absolute calibration method for frequency-modulated continuous wave (FMCW) cloud radars based on corner reflectors
A technical description of the Balloon Lidar Experiment (BOLIDE)
Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106
Mind the gap – Part 2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars
Ice crystal characterization in cirrus clouds II: radiometric characterization of HaloCam for the quantitative analysis of halo displays
Mind the gap – Part 1: Accurately locating warm marine boundary layer clouds and precipitation using spaceborne radars
Free-fall experiments of volcanic ash particles using a 2-D video disdrometer
Microwave Radar/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign
A robust automated technique for operational calibration of ceilometers using the integrated backscatter from totally attenuating liquid clouds
Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds
Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking
Improvement of airborne retrievals of cloud droplet number concentration of trade wind cumulus using a synergetic approach
Halo ratio from ground-based all-sky imaging
Aircraft-based stereographic reconstruction of 3-D cloud geometry
Polarization lidar: an extended three-signal calibration approach
The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol)
Initial report on polar mesospheric cloud observations by Himawari-8
Combining cloud radar and radar wind profiler for a value added estimate of vertical air motion and particle terminal velocity within clouds
A simple biota removal algorithm for 35 GHz cloud radar measurements
Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar
All-sky photogrammetry techniques to georeference a cloud field
Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada
Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays
ISMAR: an airborne submillimetre radiometer
Sky camera geometric calibration using solar observations
Application of oxygen A-band equivalent width to disambiguate downwelling radiances for cloud optical depth measurement
Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals
How big is an OMI pixel?
Differential absorption radar techniques: water vapor retrievals
Design and characterization of specMACS, a multipurpose hyperspectral cloud and sky imager
A microbolometer-based far infrared radiometer to study thin ice clouds in the Arctic
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Short summary
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
Anna Weber, Tobias Kölling, Veronika Pörtge, Andreas Baumgartner, Clemens Rammeloo, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1419–1439, https://doi.org/10.5194/amt-17-1419-2024, https://doi.org/10.5194/amt-17-1419-2024, 2024
Short summary
Short summary
In this work, we introduce the 2D RGB polarization-resolving cameras of the airborne hyperspectral and polarized imaging system specMACS. A full characterization and calibration of the cameras including a geometric calibration as well as a radiometric characterization is provided, allowing for the computation of absolute calibrated, georeferenced Stokes vectors rotated into the scattering plane. We validate the calibration by comparing sunglint measurements to radiative transfer simulations.
Benjamin Michael Courtier, Alessandro Battaglia, and Kamil Mroz
EGUsphere, https://doi.org/10.5194/egusphere-2024-205, https://doi.org/10.5194/egusphere-2024-205, 2024
Short summary
Short summary
A new millimetre wavelength radar is used to improve methods of retrieving information about the smallest droplets that exist within clouds. The radar is shown to be able to retrieve the vertical wind speed more to, to retrieve the cloud liquid water content for thinner clouds and can retrieve information about the droplet sizes and the average drop size in lighter rainfall than would be possible by using longer wavelength radars.
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024, https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
Short summary
In this article, we demonstrate the feasibility of applying advanced radar technology to detect liquid droplets generated in the cloud chamber. Specifically, we show that using radar with centimeter-scale resolution, single drizzle drops with a diameter larger than 40 µm can be detected. This study demonstrates the applicability of remote sensing instruments in laboratory experiments and suggests new applications of ultrahigh-resolution radar for atmospheric sensing.
Shelby Fuller, Samuel A. Marlow, Samuel Haimov, Matthew Burkhart, Kevin Shaffer, Austin Morgan, and Jefferson R. Snider
Atmos. Meas. Tech., 16, 6123–6142, https://doi.org/10.5194/amt-16-6123-2023, https://doi.org/10.5194/amt-16-6123-2023, 2023
Short summary
Short summary
Snowfall rate and radar reflectivity measurements were analyzed. We confirmed that the relationship between snowfall rate and reflectivity is dependent on snow particle type. It is likely that the measured snowfall was produced by solid (ice) particles colliding with liquid cloud droplets, forming rimed snow particles. This analysis is expected to improve snowfall rate estimation based on measurements made using W-band radars.
David P. Donovan, Pavlos Kollias, Almudena Velázquez Blázquez, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5327–5356, https://doi.org/10.5194/amt-16-5327-2023, https://doi.org/10.5194/amt-16-5327-2023, 2023
Short summary
Short summary
The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) is a multi-instrument cloud–aerosol–radiation-oriented satellite for climate and weather applications. For this satellite mission to be successful, the development and implementation of new techniques for turning the measured raw signals into useful data is required. This paper describes how atmospheric model data were used as the basis for creating realistic high-resolution simulated data sets to facilitate this process.
Tobias Wehr, Takuji Kubota, Georgios Tzeremes, Kotska Wallace, Hirotaka Nakatsuka, Yuichi Ohno, Rob Koopman, Stephanie Rusli, Maki Kikuchi, Michael Eisinger, Toshiyuki Tanaka, Masatoshi Taga, Patrick Deghaye, Eichi Tomita, and Dirk Bernaerts
Atmos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023, https://doi.org/10.5194/amt-16-3581-2023, 2023
Short summary
Short summary
The EarthCARE satellite is due for launch in 2024. It includes four scientific instruments to measure global vertical profiles of aerosols, clouds and precipitation properties together with radiative fluxes and derived heating rates. The mission's scientific requirements, the satellite and the ground segment are described. In particular, the four scientific instruments and their performance are described at the level of detail required by mission data users.
Pavlos Kollias, Bernat Puidgomènech Treserras, Alessandro Battaglia, Paloma C. Borque, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 1901–1914, https://doi.org/10.5194/amt-16-1901-2023, https://doi.org/10.5194/amt-16-1901-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission developed by the European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) features the first spaceborne 94 GHz Doppler cloud-profiling radar (CPR) with Doppler capability. Here, we describe the post-processing algorithms that apply quality control and corrections to CPR measurements and derive key geophysical variables such as hydrometeor locations and best estimates of particle sedimentation fall velocities.
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022, https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary
Short summary
3D cloud envelope and development velocity are retrieved from realistic simulations of multi-view
CLOUD (C3IEL) images. Cloud development velocity is derived by finding matching features
between acquisitions separated by 20 s. The tie points are then mapped from image to space via 3D
reconstruction of the cloud envelope obtained from 2 simultaneous images. The retrieved cloud
topography as well as the velocities are in good agreement with the estimates obtained from the
physical models.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022, https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
Short summary
Mid-level and high clouds can be considered natural laboratories for studying cloud glaciation in the atmosphere. While they can be conveniently observed from ground with lidar, such measurements require a clear line of sight between the instrument and the target cloud. Here, observations of clouds with two spaceborne lidars are used to assess where ground-based lidar measurements of mid- and upper-level clouds are least affected by the light-attenuating effect of low-level clouds.
Michael Schäfer, Kevin Wolf, André Ehrlich, Christoph Hallbauer, Evelyn Jäkel, Friedhelm Jansen, Anna Elizabeth Luebke, Joshua Müller, Jakob Thoböll, Timo Röschenthaler, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022, https://doi.org/10.5194/amt-15-1491-2022, 2022
Short summary
Short summary
The new airborne thermal infrared imager VELOX is introduced. It measures two-dimensional fields of spectral thermal infrared radiance or brightness temperature within the large atmospheric window. The technical specifications as well as necessary calibration and correction procedures are presented. Example measurements from the first field deployment are analysed with respect to cloud coverage and cloud top altitude.
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Short summary
A new spectral instrument (SPN-S), with the ability to partition solar radiation into direct and diffuse components, is used in airborne settings to study the optical properties of aerosols and cirrus. It is a low-cost and mechanically simple system but has higher measurement uncertainty than existing standards. This challenge is overcome by utilizing the unique measurement capabilities to develop new retrieval techniques. Validation is done with data from two NASA airborne research campaigns.
Alessandro Battaglia
Atmos. Meas. Tech., 14, 7809–7820, https://doi.org/10.5194/amt-14-7809-2021, https://doi.org/10.5194/amt-14-7809-2021, 2021
Short summary
Short summary
Space-borne radar returns can be contaminated by artefacts caused by radiation that undergoes multiple scattering events and appears to originate from ranges well below the surface range. While such artefacts have been rarely observed from the currently deployed systems, they may become a concern in future cloud radar systems, potentially enhancing cloud cover high up in the troposphere via ghost returns.
Richard J. Roy, Matthew Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-6443-2021, https://doi.org/10.5194/amt-14-6443-2021, 2021
Short summary
Short summary
This study describes the potential capabilities of a hypothetical spaceborne radar to observe water vapor within clouds.
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021, https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Short summary
Observations collected during the 25 February 2020 deployment of the VIPR at the Stony Brook Radar Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research. The field experiment, which coordinated an X-, Ka-, W- and G-band radar, revealed that the differential reflectivity from Ka–G band pair provides larger signals than the traditional Ka–W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes.
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021, https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
Short summary
Currently, cloud contamination in microwave humidity channels is addressed using filtering schemes. We present an approach to correct the cloud-affected microwave humidity radiances using a Bayesian machine learning technique. The technique combines orthogonal information from microwave channels to obtain a probabilistic prediction of the clear-sky radiances. With this approach, we are able to predict bias-free clear-sky radiances with well-represented case-specific uncertainty estimates.
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021, https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary
Short summary
Spaceborne lidar and radar are suitable tools to investigate cloud vertical properties on a global scale. This paper presents the McRALI code that provides simulations of lidar and radar signals from the EarthCARE mission. Regarding radar signals, cloud heterogeneity induces a severe bias in velocity estimates. Regarding lidar signals, multiple scattering is not negligible. Our results also give some insight into the reliability of lidar signal modeling using independent column approximation.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Felipe Toledo, Julien Delanoë, Martial Haeffelin, Jean-Charles Dupont, Susana Jorquera, and Christophe Le Gac
Atmos. Meas. Tech., 13, 6853–6875, https://doi.org/10.5194/amt-13-6853-2020, https://doi.org/10.5194/amt-13-6853-2020, 2020
Short summary
Short summary
Cloud observations are essential to rainfall, fog and climate change forecasts. One key instrument for these observations is cloud radar. Yet, discrepancies are found when comparing radars from different ground stations or satellites. Our work presents a calibration methodology for cloud radars based on reference targets, including an analysis of the uncertainty sources. The method enables the calibration of reference instruments to improve the quality and value of the cloud radar network data.
Bernd Kaifler, Dimitry Rempel, Philipp Roßi, Christian Büdenbender, Natalie Kaifler, and Volodymyr Baturkin
Atmos. Meas. Tech., 13, 5681–5695, https://doi.org/10.5194/amt-13-5681-2020, https://doi.org/10.5194/amt-13-5681-2020, 2020
Short summary
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
Hannes J. Griesche, Patric Seifert, Albert Ansmann, Holger Baars, Carola Barrientos Velasco, Johannes Bühl, Ronny Engelmann, Martin Radenz, Yin Zhenping, and Andreas Macke
Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020, https://doi.org/10.5194/amt-13-5335-2020, 2020
Short summary
Short summary
In summer 2017, the research vessel Polarstern performed cruise PS106 to the Arctic north of Svalbard. In the frame of the cruise, remote-sensing observations of the atmosphere were performed on Polarstern to continuously monitor aerosol and clouds above the vessel. In our study, we present the deployed instrumentation and applied data analysis methods and provide case studies of the aerosol and cloud observations made during the cruise. Statistics of low-cloud occurrence are presented as well.
Alessandro Battaglia, Pavlos Kollias, Ranvir Dhillon, Katia Lamer, Marat Khairoutdinov, and Daniel Watters
Atmos. Meas. Tech., 13, 4865–4883, https://doi.org/10.5194/amt-13-4865-2020, https://doi.org/10.5194/amt-13-4865-2020, 2020
Short summary
Short summary
Warm rain accounts for slightly more than 30 % of the total rain amount and 70 % of the total rain area in the tropical belt and usually appears in kilometer-size cells. Spaceborne radars adopting millimeter wavelengths are excellent tools for detecting such precipitation types and for separating between the cloud and rain components. Our work highlights the benefits of operating multifrequency radars and discusses the impact of antenna footprints in quantitative estimates of liquid water paths.
Linda Forster, Meinhard Seefeldner, Andreas Baumgartner, Tobias Kölling, and Bernhard Mayer
Atmos. Meas. Tech., 13, 3977–3991, https://doi.org/10.5194/amt-13-3977-2020, https://doi.org/10.5194/amt-13-3977-2020, 2020
Short summary
Short summary
We present a procedure for both the geometric and absolute radiometric characterization of the weather-proof RGB camera HaloCamRAW, which is part of our automated halo observation system HaloCam, designed for the quantitative analysis of halo displays. By comparing the calibrated HaloCamRAW radiances of a 22° halo scene with radiative transfer simulations, we demonstrate the potential of developing a retrieval method for ice crystal properties, such as size, shape, and surface roughness.
Katia Lamer, Pavlos Kollias, Alessandro Battaglia, and Simon Preval
Atmos. Meas. Tech., 13, 2363–2379, https://doi.org/10.5194/amt-13-2363-2020, https://doi.org/10.5194/amt-13-2363-2020, 2020
Short summary
Short summary
According to ground-based radar observations, 50 % of liquid low-level clouds over the Atlantic extend below 1.2 km and are thinner than 400 m, thus limiting their detection from space. Using an emulator, we estimate that a 250 m resolution radar would capture cloud base better than the CloudSat radar which misses about 52 %. The more sensitive EarthCARE radar is expected to capture cloud cover but stretch cloud. This calls for the operation of interlaced pulse modes for future space missions.
Sung-Ho Suh, Masayuki Maki, Masato Iguchi, Dong-In Lee, Akihiko Yamaji, and Tatsuya Momotani
Atmos. Meas. Tech., 12, 5363–5379, https://doi.org/10.5194/amt-12-5363-2019, https://doi.org/10.5194/amt-12-5363-2019, 2019
Short summary
Short summary
This is a fundamental study on the features of aerodynamic parameters: terminal velocity, axis ratio, and canting angle. These are necessary for developing a quantitative ash fall estimation method based on weather radar. They were analyzed under controlled conditions from laboratory free-fall experiments, since the aerodynamic properties of the particles are highly dependent on external conditions. These results will help in the development of quantitative ash estimation.
Mario Mech, Leif-Leonard Kliesch, Andreas Anhäuser, Thomas Rose, Pavlos Kollias, and Susanne Crewell
Atmos. Meas. Tech., 12, 5019–5037, https://doi.org/10.5194/amt-12-5019-2019, https://doi.org/10.5194/amt-12-5019-2019, 2019
Short summary
Short summary
An improved understanding of Arctic mixed-phase clouds and their contribution to Arctic warming can be achieved by observations from airborne platforms with remote sensing instruments. Such an instrument is MiRAC combining active and passive techniques to gain information on the distribution of clouds, the occurrence of precipitation, and the amount of liquid and ice within the cloud. Operated during a campaign in Arctic summer, it could observe lower clouds often not seen by spaceborne radars.
Emma Hopkin, Anthony J. Illingworth, Cristina Charlton-Perez, Chris D. Westbrook, and Sue Ballard
Atmos. Meas. Tech., 12, 4131–4147, https://doi.org/10.5194/amt-12-4131-2019, https://doi.org/10.5194/amt-12-4131-2019, 2019
Short summary
Short summary
Ceilometers are laser cloud base recorders which retrieve information about atmospheric aerosol and differing cloud types. In order to ensure the information retrieved from the ceilometer is correct and comparable with other ceilometers in an observation network, a calibration is needed. Presented here is a novel automated calibration method, which includes a correction for the effects of water vapour in the atmosphere and shows its application on the UK Met Office's ceilometer network.
Alessandro Battaglia and Pavlos Kollias
Atmos. Meas. Tech., 12, 3335–3349, https://doi.org/10.5194/amt-12-3335-2019, https://doi.org/10.5194/amt-12-3335-2019, 2019
Short summary
Short summary
This work investigates the potential of an innovative differential absorption radar for retrieving relative humidity inside ice clouds. The radar exploits the strong spectral dependence of the water vapour absorption for frequencies close to the 183 GHz water vapour band.
Results show that observations from a system with 4–6 frequencies can provide
novel information for understanding the formation and growth of ice crystals.
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019, https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Short summary
Weather radars are offering improved capabilities to investigate storm physics, which remain poorly understood. We investigate enhanced use of such data near Houston, Texas, where pollution sources often provide a convenient contrast between polluted and clean air. We conclude that Houston is a favorable location to conduct a future field campaign during June through September because isolated storms are common and tend to last an hour, allowing frequent observations of a full life cycle.
Kevin Wolf, André Ehrlich, Marek Jacob, Susanne Crewell, Martin Wirth, and Manfred Wendisch
Atmos. Meas. Tech., 12, 1635–1658, https://doi.org/10.5194/amt-12-1635-2019, https://doi.org/10.5194/amt-12-1635-2019, 2019
Short summary
Short summary
Using passive spectral solar radiation and active lidar, radar, and microwave measurements with HALO during NARVAL-II, the cloud droplet number concentration of shallow trade wind cumulus is estimated. With stepwise inclusion of the different instruments into the retrieval, the benefits of the synergetic approach based on artificial measurements and two cloud cases are demonstrated. Significant improvement with the synergetic method compared to the solar-radiation-only method is reported.
Paolo Dandini, Zbigniew Ulanowski, David Campbell, and Richard Kaye
Atmos. Meas. Tech., 12, 1295–1309, https://doi.org/10.5194/amt-12-1295-2019, https://doi.org/10.5194/amt-12-1295-2019, 2019
Short summary
Short summary
The halo ratio indicates the strength of the 22° cirrus halo and gives valuable information on cloud properties. We obtain it from all-sky images by applying a range of transformations and corrections and averaging brightness azimuthally over sun-centred images. The ratio is then taken at two angles from the sun, 20° and 23°, in variance from previous suggestions. While we find ratios > 1 to be linked to halos, they can also occur under scattered cumuli as artefacts due to cloud edges.
Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 12, 1155–1166, https://doi.org/10.5194/amt-12-1155-2019, https://doi.org/10.5194/amt-12-1155-2019, 2019
Short summary
Short summary
Imaging technology allows us to quickly gather information on larger cloud fields. Unlike using lidar or radar, it is difficult to obtain accurate position information about the observed clouds. This work presents a method to retrieve the missing position information using RGB images from an airborne video camera. Using field campaign data, we observe and explain a median offset of 126 m compared to lidar data and show that systematic errors across the measurement swath are well below 50 m.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, Moritz Haarig, Jörg Schmidt, and Ulla Wandinger
Atmos. Meas. Tech., 12, 1077–1093, https://doi.org/10.5194/amt-12-1077-2019, https://doi.org/10.5194/amt-12-1077-2019, 2019
Short summary
Short summary
We propose an extended formalism for a full instrumental characterization of a three-channel lidar system, allowing the retrieval of highly accurate linear depolarization profiles. The results obtained at several depolarizing scenarios, the good agreement with the retrievals of a second collocated calibrated lidar system, and the long-term stability of the calibration parameters corroborate the potential and robustness of the new technique.
Ryan R. Neely III, Lindsay Bennett, Alan Blyth, Chris Collier, David Dufton, James Groves, Daniel Walker, Chris Walden, John Bradford, Barbara Brooks, Freya I. Addison, John Nicol, and Ben Pickering
Atmos. Meas. Tech., 11, 6481–6494, https://doi.org/10.5194/amt-11-6481-2018, https://doi.org/10.5194/amt-11-6481-2018, 2018
Short summary
Short summary
Mobile X-band radars are widely used by atmospheric scientists to observe clouds and make estimates of rainfall. Here we describe the National Centre for Atmospheric Science's mobile X-band dual-polarisation Doppler radar (NXPol). NXPol is the first radar of its kind in the UK. To demonstrate the radar’s capabilities, we present examples of its use in three field campaigns as well as an example from ongoing observations at the National Facility for Atmospheric and Radio Research.
Takuo T. Tsuda, Yuta Hozumi, Kento Kawaura, Keisuke Hosokawa, Hidehiko Suzuki, and Takuji Nakamura
Atmos. Meas. Tech., 11, 6163–6168, https://doi.org/10.5194/amt-11-6163-2018, https://doi.org/10.5194/amt-11-6163-2018, 2018
Short summary
Short summary
Polar mesospheric clouds (PMCs) or noctilucent clouds (NLCs) are the highest clouds in the Earth's atmosphere. In this paper, we introduce new PMC observations by the Japanese Geostationary Earth Orbit (GEO) meteorological satellite Himawari-8, which was launched in October 2014.
Martin Radenz, Johannes Bühl, Volker Lehmann, Ulrich Görsdorf, and Ronny Leinweber
Atmos. Meas. Tech., 11, 5925–5940, https://doi.org/10.5194/amt-11-5925-2018, https://doi.org/10.5194/amt-11-5925-2018, 2018
Short summary
Short summary
Ultra-high-frequency radar wind profilers are widely used for remote sensing of horizontal and vertical wind velocity. They emit electromagnetic radiation at a wavelength of 60 cm and receive signals from both falling particles and the air itself. In this paper, we describe a method to separate both signal components with the help of an additional cloud radar system in order to come up with undisturbed measurements of both vertical air velocity and the fall velocity of particles.
Madhu Chandra R. Kalapureddy, Patra Sukanya, Subrata K. Das, Sachin M. Deshpande, Govindan Pandithurai, Andrew L. Pazamany, Jha Ambuj K., Kaustav Chakravarty, Prasad Kalekar, Hari Krishna Devisetty, and Sreenivas Annam
Atmos. Meas. Tech., 11, 1417–1436, https://doi.org/10.5194/amt-11-1417-2018, https://doi.org/10.5194/amt-11-1417-2018, 2018
Short summary
Short summary
A new technique to separate cloud and non-hydrometeor returns from a cloud radar high-resolution reflectivity measurements is proposed. The TEST algorithm potentially identifies cloud height with the theoretical echo sensitivity curves and observed echo statistics for the cloud height tracing. TEST is more robust in identifying and filtering out the biota contributions by constraining further with spectral width and LDR measurements. This algorithm improves the monsoon cloud characterization.
Robert A. Stillwell, Ryan R. Neely III, Jeffrey P. Thayer, Matthew D. Shupe, and David D. Turner
Atmos. Meas. Tech., 11, 835–859, https://doi.org/10.5194/amt-11-835-2018, https://doi.org/10.5194/amt-11-835-2018, 2018
Short summary
Short summary
This work focuses on making unambiguous measurements of Arctic cloud phase and assessing those measurements within the context of cloud radiative effects. It is found that effects related to lidar data recording systems can cause retrieval ambiguities that alter the interpretation of cloud phase in as much as 30 % of the available data. This misinterpretation of cloud-phase data can cause a misinterpretation of the effect of cloud phase on the surface radiation budget by as much as 10 to 30 %.
Pierre Crispel and Gregory Roberts
Atmos. Meas. Tech., 11, 593–609, https://doi.org/10.5194/amt-11-593-2018, https://doi.org/10.5194/amt-11-593-2018, 2018
Short summary
Short summary
In this study, we use an all-sky stereo camera network to perform geolocation of individual elements of a cloud field in order to track individual clouds and estimate some of their morphological characteristics and their evolution in time. Furthermore, this allows use of cloud geolocation for cloud airborne measurements. For example, in the case of instrumented UAVs, the GPS coordinates of the target cloud may be communicated in real time to the autopilot.
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme Nott, Christopher Perro, Colin P. Thackray, Jason Hopper, Jonathan Doyle, Thomas J. Duck, and Kaley A. Walker
Atmos. Meas. Tech., 10, 4253–4277, https://doi.org/10.5194/amt-10-4253-2017, https://doi.org/10.5194/amt-10-4253-2017, 2017
Short summary
Short summary
CRL lidar in the Canadian High Arctic uses lasers and a telescope to study polar clouds, essential for understanding the changing global climate. Hardware added to CRL allows it to measure the polarization of returned laser light, indicating whether cloud particles are liquid or frozen. Calibrations show that traditional analysis methods work well, although CRL was not originally set up to make this type of measurement. CRL can now measure cloud particle phase every 5 min, every 37.5 m, 24h/day.
Linda Forster, Meinhard Seefeldner, Matthias Wiegner, and Bernhard Mayer
Atmos. Meas. Tech., 10, 2499–2516, https://doi.org/10.5194/amt-10-2499-2017, https://doi.org/10.5194/amt-10-2499-2017, 2017
Short summary
Short summary
Halo displays are produced by scattering of sunlight by smooth, hexagonal ice crystals. Consequently, the presence of a halo should contain information on particle shape. This study presents HaloCam, a novel sun-tracking camera system, and an automated detection algorithm to collect and evaluate long-term halo observations. Two-year HaloCam observations revealed that about 25 % of the detected cirrus clouds occurred together with a 22° halo indicating the presence of smooth, hexagonal crystals.
Stuart Fox, Clare Lee, Brian Moyna, Martin Philipp, Ian Rule, Stuart Rogers, Robert King, Matthew Oldfield, Simon Rea, Manju Henry, Hui Wang, and R. Chawn Harlow
Atmos. Meas. Tech., 10, 477–490, https://doi.org/10.5194/amt-10-477-2017, https://doi.org/10.5194/amt-10-477-2017, 2017
Short summary
Short summary
In this paper we present the ISMAR instrument, a new airborne submillimetre radiometer designed for cloud ice remote sensing. We discuss the instrument calibration and evaluate the main sources of bias and the radiometric sensitivity in different measurement scenarios. We also compare clear-sky zenith measurements from high altitude with radiative transfer simulations to demonstrate the performance of ISMAR in flight.
Bryan Urquhart, Ben Kurtz, and Jan Kleissl
Atmos. Meas. Tech., 9, 4279–4294, https://doi.org/10.5194/amt-9-4279-2016, https://doi.org/10.5194/amt-9-4279-2016, 2016
Short summary
Short summary
A model relating the position of objects in the 3-D world to their pixel coordinates has been developed for a fixed-focal length fisheye lens camera. An associated automated method to calibrate model parameters has been developed for a daytime skyward-pointing camera. The position of the sun throughout the day is used as input to the calibration algorithm. The accuracy of the calibration was found to be on the same order as the accuracy of sun position detection in an image.
Edward R. Niple, Herman E. Scott, John A. Conant, Stephen H. Jones, Frank J. Iannarilli, and Wellesley E. Pereira
Atmos. Meas. Tech., 9, 4167–4179, https://doi.org/10.5194/amt-9-4167-2016, https://doi.org/10.5194/amt-9-4167-2016, 2016
Penny M. Rowe, Christopher J. Cox, and Von P. Walden
Atmos. Meas. Tech., 9, 3641–3659, https://doi.org/10.5194/amt-9-3641-2016, https://doi.org/10.5194/amt-9-3641-2016, 2016
Short summary
Short summary
Clouds play an important role in the rapid climate change occurring in polar regions, yet cloud measurements are challenging in such harsh, remote environments. Here we explore how well a proposed low-power infrared spectrometer, which would be highly portable, could be used to determine cloud height. Using simulated data, we estimate retrieval accuracy, finding that such an instrument would be able to constrain cloud height, particular for low, thick clouds, which are common in polar region.
Martin de Graaf, Holger Sihler, Lieuwe G. Tilstra, and Piet Stammes
Atmos. Meas. Tech., 9, 3607–3618, https://doi.org/10.5194/amt-9-3607-2016, https://doi.org/10.5194/amt-9-3607-2016, 2016
Short summary
Short summary
The shapes and sizes of the FoV from the OMI satellite instrument were determined with extensive lab tests but never verified after launch. Here, collocated measurements from MODIS, flying in formation, were used to find the most optimal shape of the OMI FoV. This shape is not quadrangular, as suggested by the provided corner coordinates of a pixel, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels.
Luis Millán, Matthew Lebsock, Nathaniel Livesey, and Simone Tanelli
Atmos. Meas. Tech., 9, 2633–2646, https://doi.org/10.5194/amt-9-2633-2016, https://doi.org/10.5194/amt-9-2633-2016, 2016
Short summary
Short summary
We discuss the theoretical capabilities of a radar technique to measure profiles of water vapor in cloudy/precipitating areas. The method uses two radar pulses at different frequencies near the 183 GHz H2O absorption line to determine water vapor profiles by measuring the differential absorption on and off the line. Results of inverting synthetic data assuming a satellite radar are presented.
Florian Ewald, Tobias Kölling, Andreas Baumgartner, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 9, 2015–2042, https://doi.org/10.5194/amt-9-2015-2016, https://doi.org/10.5194/amt-9-2015-2016, 2016
Short summary
Short summary
The new spectrometer of the Munich Aerosol Cloud Scanner (specMACS) is a
multipurpose hyperspectral cloud and sky imager which is designated, but not limited, to investigations of cloud-aerosol interactions in Earth's atmosphere. This paper describes the specMACS instrument's hardware and software design and
characterizes the instrument performance. Initial measurements of cloud sides are presented which demonstrate the wide applicability of the instrument.
Quentin Libois, Christian Proulx, Liviu Ivanescu, Laurence Coursol, Ludovick S. Pelletier, Yacine Bouzid, Francesco Barbero, Éric Girard, and Jean-Pierre Blanchet
Atmos. Meas. Tech., 9, 1817–1832, https://doi.org/10.5194/amt-9-1817-2016, https://doi.org/10.5194/amt-9-1817-2016, 2016
Short summary
Short summary
Here we present a radiometer, FIRR, aimed at measuring atmospheric radiation in the far infrared, an underexplored region of the Earth spectrum. The FIRR is a prototype for the planned TICFIRE satellite mission dedicated to studying thin ice clouds in polar regions. Preliminary in situ measurements compare well with radiative transfer simulations. This highlights the high sensitivity of the FIRR to water vapor content and cloud physical properties, paving the way for new retrieval algorithms.
Cited articles
Acquistapace, C., Kneifel, S., Löhnert, U., Kollias, P., Maahn, M., and Bauer-Pfundstein, M.: Optimizing observations of drizzle onset with millimeter-wavelength radars, Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, 2017. a
Alku, L., Moisseev, D., Aittomäki, T., and Chandrasekar, V.:
Identification and Suppression of Nonmeteorological Echoes Using Spectral
Polarimetric Processing, IEEE Trans. Geosci. Remote Sens.,
53, 3628–3638, https://doi.org/10.1109/TGRS.2014.2380476, 2015. a
Angulo-Martínez, M., Beguería, S., Latorre, B., and Fernández-Raga, M.: Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers, Hydrol. Earth Syst. Sci., 22, 2811–2837, https://doi.org/10.5194/hess-22-2811-2018, 2018. a, b, c, d
Atlas, D.: RADAR CALIBRATION, B. Am. Meteorol. Soc.,
83, 1313–1316, https://doi.org/10.1175/1520-0477-83.9.1313, 2002. a
Aydin, K. and Lure, Y.-M.: Millimeter wave scattering and propagation in
rain – A computational study at 94 and 140 GHz for oblate spheroidal and
spherical raindrops, IEEE Trans. Geosci. Remote Sens., 29,
593–601, https://doi.org/10.1109/36.135821, 1991. a, b, c, d
Basara, J. B., Illston, B. G., Winning, Jr., T. E., and Fiebrich,
C. A.: Evaluation of Rainfall Measurements from the WXT510 Sensor for Use in
the Oklahoma City Micronet, The Open Atmos. Sci. J., 3, 39–47,
https://doi.org/10.2174/1874282300903010039, 2009. a
Borque, P., Luke, E., and Kollias, P.: On the unified estimation of turbulence
eddy dissipation rate using Doppler cloud radars and lidars, J.
Geophys. Res.-Atmos., 121, 5972–5989,
https://doi.org/10.1002/2015JD024543, 2016. a
Bouniol, D., Protat, A., Delanoë, J., Pelon, J., Piriou, J.-M.,
Bouyssel, F., Tompkins, A. M., Wilson, D. R., Morille, Y.,
Haeffelin, M., O'Connor, E. J., Hogan, R. J., Illingworth, A. J.,
Donovan, D. P., and Baltink, H.-K.: Using Continuous Ground-Based Radar
and Lidar Measurements for Evaluating the Representation of Clouds in Four
Operational Models, J. Appl. Meteorol. Climatol., 49,
1971–1991, https://doi.org/10.1175/2010JAMC2333.1, 2010. a
Bühl, J., Leinweber, R., Görsdorf, U., Radenz, M., Ansmann, A., and Lehmann, V.: Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler, Atmos. Meas. Tech., 8, 3527–3536, https://doi.org/10.5194/amt-8-3527-2015, 2015. a
Bühl, J., Seifert, P., Myagkov, A., and Ansmann, A.: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station, Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, 2016. a
Das, S., Abraham, A., Chakraborty, U. K., and Konar, A.: Differential
Evolution Using a Neighborhood-Based Mutation Operator, IEEE Trans.
Evolut. Comput., 13, 526–553, https://doi.org/10.1109/TEVC.2008.2009457,
2009. a, b
Delanoë, J., Protat, A., Vinson, J.-P., Brett, W., Caudoux, C.,
Bertrand, F., Parent du Chatelet, J., Hallali, R., Barthes, L.,
Haeffelin, M., and Dupont, J.-C.: BASTA: A 95-GHz FMCW Doppler Radar for
Cloud and Fog Studies, J. Atmos. Ocean. Technol., 33,
1023–1038, https://doi.org/10.1175/JTECH-D-15-0104.1, 2016. a
Demuth, H. B., Beale, M. H., De Jess, O., and Hagan, M. T.: Neural Network Design, Martin Hagan, Stillwater, OK, USA, 2nd Edn., 2014. a
Dias Neto, J., Kneifel, S., Ori, D., Trömel, S., Handwerker, J., Bohn, B., Hermes, N., Mühlbauer, K., Lenefer, M., and Simmer, C.: The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation, Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, 2019. a
Dufournet, Y. and Russchenberg, H. W. J.: Towards the improvement of cloud microphysical retrievals using simultaneous Doppler and polarimetric radar measurements, Atmos. Meas. Tech., 4, 2163–2178, https://doi.org/10.5194/amt-4-2163-2011, 2011. a
Ewald, F., Groß, S., Hagen, M., Hirsch, L., Delanoë, J., and Bauer-Pfundstein, M.: Calibration of a 35 GHz airborne cloud radar: lessons learned and intercomparisons with 94 GHz cloud radars, Atmos. Meas. Tech., 12, 1815–1839, https://doi.org/10.5194/amt-12-1815-2019, 2019. a, b
Foote, G. B. and Du Toit, P. S.: Terminal Velocity of Raindrops Aloft,
J. Appl. Meteorol., 8, 249–253,
https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2, 1969. a
Frech, M., Hagen, M., and Mammen, T.: Monitoring the Absolute
Calibration of a Polarimetric Weather Radar, J. Atmos.
Ocean. Technol., 34, 599–615, https://doi.org/10.1175/JTECH-D-16-0076.1, 2017. a
Frisch, S., Shupe, M., Djalalova, I., Feingold, G., and Poellot, M.:
The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars,
J. Atmos. Ocean. Technol., 19, 835,
https://doi.org/10.1175/1520-0426(2002)019<0835:TROSCD>2.0.CO;2, 2002. a
Gage, K. S., Clark, W. L., Williams, C. R., and Tokay, A.: Determining
reflectivity measurement error from serial measurements using paired
disdrometers and profilers, Geophys. Res. Lett., 31, L23107,
https://doi.org/10.1029/2004GL020591, 2004. a
Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G.,
Vavriv, D., Vinogradov, V., and Volkov, V.: A 35-GHz polarimetric
Doppler radar for long term observations of cloud parameters – Description of
system and data processing, J. Atmos. Ocean. Technol.,
32, 675–690, https://doi.org/10.1175/JTECH-D-14-00066.1, 2015. a, b
Gorgucci, E., Scarchilli, G., and Chandrasekar, V.: Calibration of radars using
polarimetric techniques, IEEE Trans. Geosci. Remote Sens.,
30, 853–858, https://doi.org/10.1109/36.175319, 1992. a
Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Bouniol, D., Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë, J., Drobinski, P., Dufresne, J.-L., Flamant, C., Grall, M., Hodzic, A., Hourdin, F., Lapouge, F., Lemaître, Y., Mathieu, A., Morille, Y., Naud, C., Noël, V., O'Hirok, W., Pelon, J., Pietras, C., Protat, A., Romand, B., Scialom, G., and Vautard, R.: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Ann. Geophys., 23, 253–275, https://doi.org/10.5194/angeo-23-253-2005, 2005. a
Heymsfield, A. J., Protat, A., Austin, R. T., Bouniol, D., Hogan,
R. J., Delanoë, J., Okamoto, H., Sato, K., van Zadelhoff, G.-J.,
Donovan, D. P., and Wang, Z.: Testing IWC Retrieval Methods Using Radar
and Ancillary Measurements with In Situ Data, J. Appl. Meteorol.
Climatol., 47, 135, https://doi.org/10.1175/2007JAMC1606.1, 2008. a
Hirsikko, A., O'Connor, E. J., Komppula, M., Korhonen, K., Pfüller, A., Giannakaki, E., Wood, C. R., Bauer-Pfundstein, M., Poikonen, A., Karppinen, T., Lonka, H., Kurri, M., Heinonen, J., Moisseev, D., Asmi, E., Aaltonen, V., Nordbo, A., Rodriguez, E., Lihavainen, H., Laaksonen, A., Lehtinen, K. E. J., Laurila, T., Petäjä, T., Kulmala, M., and Viisanen, Y.: Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network, Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, 2014. a
Hogan, R. J., Mittermaier, M. P., and Illingworth, A. J.: The Retrieval
of Ice Water Content from Radar Reflectivity Factor and Temperature and Its
Use in Evaluating a Mesoscale Model, J. Appl. Meteorol.
Climatol., 45, 301–317, https://doi.org/10.1175/JAM2340.1, 2006. a
Huang, G.-J., Bringi, V. N., and Thurai, M.: Orientation Angle
Distributions of Drops after an 80-m Fall Using a 2D Video Disdrometer,
J. Atmos. Ocean. Technol., 25, 1717,
https://doi.org/10.1175/2008JTECHA1075.1, 2008. a, b
Huuskonen, A. and Holleman, I.: Determining Weather Radar Antenna Pointing
Using Signals Detected from the Sun at Low Antenna Elevations, J.
Atmos. Ocean. Technol., 24, 476, https://doi.org/10.1175/JTECH1978.1, 2007. a
Illingworth, A. J. and Blackman, T. M.: The Need to Represent Raindrop
Size Spectra as Normalized Gamma Distributions for the Interpretation of
Polarization Radar Observations., J. Appl. Meteorol., 41,
286–297, https://doi.org/10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2, 2002. a
Illingworth, A. J., Hogan, R. J., O'Connor, E. J., Bouniol, D., Delanoë, J.,
Pelon, J., Protat, A., Brooks, M. E., Gaussiat, N., Wilson, D. R., Donovan,
D. P., Baltink, H. K., van Zadelhoff, G.-J., Eastment, J. D., Goddard, J.
W. F., Wrench, C. L., Haeffelin, M., Krasnov, O. A., Russchenberg, H. W. J.,
Piriou, J.-M., Vinit, F., Seifert, A., Tompkins, A. M., and Willén, U.:
Cloudnet, B. Am. Meteorol. Soc., 88, 883–898,
https://doi.org/10.1175/BAMS-88-6-883, 2007. a, b
Johannsen, L. L., Zambon, N., Strauss, P., Dostal, T., Neumann, M.,
Zumr, D., Cochrane, T. A., Blöschl, G., and Klik, A.: Comparison of
three types of laser optical disdrometers under natural rainfall conditions,
Hydrol. Sci. J., 65, 524–535,
https://doi.org/10.1080/02626667.2019.1709641, 2020. a
Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P., and Luke, E.: Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling, Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, 2016. a
Kneifel, S., von Lerber, A., Tiira, J., Moisseev, D., Kollias, P.,
and Leinonen, J.: Observed relations between snowfall microphysics and
triple-frequency radar measurements, J. Geophys. Res.-Atmos., 120, 6034–6055, https://doi.org/10.1002/2015JD023156, 2015. a
Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno, J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, A., and Poikonen, A.: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, 2017. a
Kollias, P., Albrecht, B. A., and Marks, F.: Why Mie?, B. Am.
Meteorol. Soc., 83, 1471–1484, https://doi.org/10.1175/BAMS-83-10-1471, 2002. a
Kollias, P., Clothiaux, E. E., Miller, M. A., Albrecht, B. A.,
Stephens, G. L., and Ackerman, T. P.: Millimeter-Wavelength Radars: New
Frontier in Atmospheric Cloud and Precipitation Research, B.
Am. Meteorol. Soc., 88, 1608–1624,
https://doi.org/10.1175/BAMS-88-10-1608, 2007. a
Kollias, P., Puigdomènech Treserras, B., and Protat, A.: Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat, Atmos. Meas. Tech., 12, 4949–4964, https://doi.org/10.5194/amt-12-4949-2019, 2019. a, b, c
Küchler, N., Kneifel, S., Löhnert, U., Kollias, P., Czekala,
H., and Rose, T.: A W-Band Radar-Radiometer System for Accurate and
Continuous Monitoring of Clouds and Precipitation, J. Atmos.
Ocean. Technol., 34, 2375–2392, https://doi.org/10.1175/JTECH-D-17-0019.1,
2017. a, b
Kumjian, M. R.: Principles and Applications of Dual-Polarization Weather
Radar. Part I: Description of the Polarimetric Radar Variables, J.
Operational Meteor., 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119, 2013. a
Kumjian, M. R. and Ryzhkov, A. V.: The impact of evaporation on
polarimetric characteristics of rain: Theoretical model and practical
implications, J. Appl. Meteorol. Climatol., 49,
1247–1267, https://doi.org/10.1175/2010JAMC2243.1, 2010. a
Leinonen, J., Moisseev, D., and Nousiainen, T.: Linking snowflake
microstructure to multi-frequency radar observations, J. Geophys.
Res.-Atmos., 118, 3259–3270, https://doi.org/10.1002/jgrd.50163, 2013. a
Leith, C. E.: The Standard Error of Time-Average Estimates of Climatic Means,
J. Appl. Meteorol., 12, 1066–1069,
https://doi.org/10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2, 1973. a
Li, H. and Moisseev, D.: Melting Layer Attenuation at Ka- and W-Bands as
Derived From Multifrequency Radar Doppler Spectra Observations, J.
Geophys. Res.-Atmos., 124, 9520–9533,
https://doi.org/10.1029/2019JD030316, 2019. a
Liebe, H. J.: MPM – An atmospheric millimeter-wave propagation model,
Int. J. Infra. Milli. Waves, 10, 631–650,
https://doi.org/10.1007/BF01009565, 1989. a
Löffler-Mang, M. and Blahak, U.: Estimation of the Equivalent Radar
Reflectivity Factor from Measured Snow Size Spectra, J. Appl.
Meteorol., 40, 843–849,
https://doi.org/10.1175/1520-0450(2001)040<0843:EOTERR>2.0.CO;2, 2001. a
Löffler-Mang, M. and Joss, J.: An Optical Disdrometer for Measuring
Size and Velocity of Hydrometeors, J. Atmos. Ocean.
Technol., 17, 130, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2,
2000. a, b
Löhnert, U., Schween, J. H., Acquistapace, C., Ebell, K., Maahn, M.,
Barreraverdejo, M., Hirsikko, A., Bohn, B., Knaps, A., O'connor, E., Simmer,
C., Wahner, A., and Crewell, S.: JOYCE: Jülich observatory for cloud
evolution, B. Am. Meteorol. Soc., 96, 1157–1174,
https://doi.org/10.1175/BAMS-D-14-00105.1, 2015. a, b
Maahn, M., Hoffmann, F., Shupe, M. D., de Boer, G., Matrosov, S. Y., and Luke, E. P.: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?, Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, 2019. a
MacKay, D. J. C.: Bayesian Interpolation, Neural Comput., 4, 415–447,
https://doi.org/10.1162/neco.1992.4.3.415, 1992. a
Mather, J. H. and Voyles, J. W.: The Arm Climate Research Facility: A Review of
Structure and Capabilities, B. Am. Meteorol. Soc.,
94, 377–392, https://doi.org/10.1175/BAMS-D-11-00218.1, 2013. a
Matrosov, S. Y.: Variability of Microphysical Parameters in High-Altitude
Ice Clouds: Results of the Remote Sensing Method, J. Appl.
Meteorol., 36, 633–648, https://doi.org/10.1175/1520-0450-36.6.633, 1997. a
Matrosov, S. Y.: Retrievals of vertical profiles of ice cloud microphysics
from radar and IR measurements using tuned regressions between reflectivity
and cloud parameters, J. Geophys. Res.-Atmos., 104,
16741, https://doi.org/10.1029/1999JD900244, 1999. a
Matrosov, S. Y.: Feasibility of using radar differential Doppler velocity
and dual-frequency ratio for sizing particles in thick ice clouds, J. Geophys. Res.-Atmos., 116, D17202,
https://doi.org/10.1029/2011JD015857, 2011. a
Matrosov, S. Y., Heymsfield, A. J., Kropfli, R. A., Martner, B. E.,
Reinking, R. F., Snider, J. B., Piironen, P., and Eloranta, E. W.:
Comparisons of Ice Cloud Parameters Obtained by Combined Remote Sensor
Retrievals and Direct Methods, J. Atmos. Ocean.
Technol., 15, 184, https://doi.org/10.1175/1520-0426(1998)015<0184:COICPO>2.0.CO;2,
1998. a
Matrosov, S. Y., Kropfli, R. A., Reinking, R. F., and Martner, B. E.:
Prospects for measuring rainfall using propagation differential phase in X-
and Ka-radar bands, J. Appl. Meteorol., 38, 766–776,
https://doi.org/10.1175/1520-0450(1999)038<0766:PFMRUP>2.0.CO;2, 1999. a, b
Mishchenko, M. I.: Calculation of the Amplitude Matrix for a Nonspherical
Particle in a Fixed Orientation, Appl. Opt.s, 39, 1026–1031,
https://doi.org/10.1364/AO.39.001026, 2000. a, b
Moisseev, D. N. and Chandrasekar, V.: Nonparametric Estimation of Raindrop Size
Distributions from Dual-Polarization Radar Spectral Observations, J.
Atmos. Ocean. Technol., 24, 1008–1018,
https://doi.org/10.1175/JTECH2024.1, 2007. a
Moisseev, D. N. and Chandrasekar, V.: Polarimetric Spectral Filter for Adaptive
Clutter and Noise Suppression, J. Atmos. Ocean. Technol.,
26, 215–228, https://doi.org/10.1175/2008JTECHA1119.1, 2009. a
Moisseev, D. N., Unal, C. M. H., Russchenberg, H. W. J., and Ligthart,
L. P.: Improved Polarimetric Calibration for Atmospheric Radars, J.
Atmos. Ocean. Technol., 19, 1968,
https://doi.org/10.1175/1520-0426(2002)019<1968:IPCFAR>2.0.CO;2, 2002. a
Muth, X., Schneebeli, M., and Berne, A.: A sun-tracking method to improve the pointing accuracy of weather radar, Atmos. Meas. Tech., 5, 547–555, https://doi.org/10.5194/amt-5-547-2012, 2012. a
Myagkov, A., Seifert, P., Wandinger, U., Bauer-Pfundstein, M., and
Matrosov, S. Y.: Effects of antenna patterns on cloud radar polarimetric
measurements, J. Atmos. Ocean. Technol., 32, 1813–1828,
https://doi.org/10.1175/JTECH-D-15-0045.1, 2015. a, b
Myagkov, A., Seifert, P., Bauer-Pfundstein, M., and Wandinger, U.: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals, Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016, 2016a. a, b
Myagkov, A., Seifert, P., Wandinger, U., Bühl, J., and Engelmann, R.: Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign, Atmos. Meas. Tech., 9, 3739–3754, https://doi.org/10.5194/amt-9-3739-2016, 2016b. a
Otto, T. and Russchenberg, H. W. J.: Estimation of specific differential
phase and differential backscatter phase from polarimetric weather radar
measurements of rain, IEEE Geosci. Remote Sens. Lett., 8,
988–992, https://doi.org/10.1109/LGRS.2011.2145354, 2011. a, b, c
Oue, M., Kumjian, M. R., Lu, Y., Verlinde, J., Aydin, K., and
Clothiaux, E. E.: Linear depolarization ratios of columnar ice crystals in
a deep precipitating system over the Arctic observed by zenith-pointing
Ka-band Doppler radar, J. Appl. Meteorol. Climatol., 54,
1060–1068, https://doi.org/10.1175/JAMC-D-15-0012.1, 2015. a
Oue, M., Kollias, P., Ryzhkov, A., and Luke, E. P.: Toward Exploring the
Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep
Cold Precipitating Systems in the Arctic, J. Geophys. Res.-Atmos., 123, 2797–2815, https://doi.org/10.1002/2017JD027717, 2018. a
Pfitzenmaier, L., Unal, C. M. H., Dufournet, Y., and Russchenberg, H. W. J.: Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data, Atmos. Chem. Phys., 18, 7843–7862, https://doi.org/10.5194/acp-18-7843-2018, 2018. a
Protat, A., Bouniol, D., Delanoë, J., May, P. T., Plana-Fattori,
A., Hasson, A., O'Connor, E., Görsdorf, U., and Heymsfield,
A. J.: Assessment of Cloudsat Reflectivity Measurements and Ice Cloud
Properties Using Ground-Based and Airborne Cloud Radar Observations, J. Atmos. Ocean. Technol., 26, 1717,
https://doi.org/10.1175/2009JTECHA1246.1, 2009. a
Protat, A., Bouniol, D., O'Connor, E. J., Klein Baltink, H.,
Verlinde, J., and Widener, K.: CloudSatas a Global Radar Calibrator,
J. Atmos. Ocean. Technol., 28, 445–452,
https://doi.org/10.1175/2010JTECHA1443.1, 2011. a, b
Pruppacher, H. R. and Pitter, R. L.: A Semi-Empirical Determination of the
Shape of Cloud and Rain Drops, J. Atmos. Sci., 28, 86–94,
https://doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2, 1971. a
Radenz, M., Bühl, J., Lehmann, V., Görsdorf, U., and Leinweber, R.: Combining cloud radar and radar wind profiler for a value added estimate of vertical air motion and particle terminal velocity within clouds, Atmos. Meas. Tech., 11, 5925–5940, https://doi.org/10.5194/amt-11-5925-2018, 2018. a
Ray, P. S.: Broadband complex refractive indices of ice and water, Appl.
Opt., 11, 1836–1844, https://doi.org/10.1364/AO.11.001836, 1972. a
Rusli, S. P., Donovan, D. P., and Russchenberg, H. W. J.: Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations, Atmos. Meas. Tech., 10, 4777–4803, https://doi.org/10.5194/amt-10-4777-2017, 2017. a
Ryzhkov, A. V.: Interpretation of polarimetric radar covariance matrix for
meteorological scatterers: Theoretical analysis, J. Atmos.
Ocean. Technol., 18, 315–328,
https://doi.org/10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2, 2001. a
Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Heinselman, P. L.,
Giangrande, S. E., and Zrnic, D. S.: The Joint Polarization Experiment:
Polarimetric Rainfall Measurements and Hydrometeor Classification., B. Am. Meteorol. Soc., 86, 809–824,
https://doi.org/10.1175/BAMS-86-6-809, 2005. a
Schneebeli, M. and Berne, A.: An Extended Kalman Filter Framework for
Polarimetric X-Band Weather Radar Data Processing, J. Atmos.
Ocean. Technol., 29, 711–730, https://doi.org/10.1175/JTECH-D-10-05053.1, 2012. a, b
Sekelsky, S. M. and Clothiaux, E. E.: Parallax Errors and Corrections for
Dual-Antenna Millimeter-Wave Cloud Radars, J. Atmos. Ocean.
Technol., 19, 478–485,
https://doi.org/10.1175/1520-0426(2002)019<0478:PEACFD>2.0.CO;2, 2002. a
Shupe, M. D.: Clouds at Arctic atmospheric observatories. Part II:
Thermodynamic phase characteristics, J. Appl. Meteorol.
Climatol., 50, 645–661, https://doi.org/10.1175/2010JAMC2468.1, 2011. a
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic Mixed-Phase Cloud
Properties Derived from Surface-Based Sensors at SHEBA, J.
Atmos. Sci., 63, 697–711, https://doi.org/10.1175/JAS3659.1, 2006. a
Shupe, M. D., Kollias, P., Persson, P. O. G., and McFarquhar, G. M.:
Vertical Motions in Arctic Mixed-Phase Stratiform Clouds, J.
Atmos. Sci., 65, 1304, https://doi.org/10.1175/2007JAS2479.1, 2008. a
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell,
J. R., Starkweather, S. M., and Shiobara, M.: Clouds at Arctic
Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties,
J. Appl. Meteorol. Climatol., 50, 626–644,
https://doi.org/10.1175/2010JAMC2467.1, 2011. a
Spek, A. L. J., Unal, C. M. H., Moisseev, D. N., Russchenberg,
H. W. J., Chandrasekar, V., and Dufournet, Y.: A new technique to
categorize and retrieve the microphysical properties of ice particles above
the melting layer using radar dual-polarization spectral analysis, J. Atmos. Ocean. Technol., 25, 482–497,
https://doi.org/10.1175/2007JTECHA944.1, 2008. a, b
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science after
the first year of operation, J. Geophys. Res.-Atmos.,
113, D00A18, https://doi.org/10.1029/2008JD009982, 2008. a
Storn, R. and Price, K.: Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces, J. Global
Optim., 11, 341–359, https://doi.org/10.1023/A:1008202821328, 1997. a
Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P.,
Haynes, J. M., and Marchand, R. T.: CloudSat's Cloud Profiling Radar After
Two Years in Orbit: Performance, Calibration, and Processing, IEEE
Trans. Geosci. Remote Sens., 46, 3560–3573,
https://doi.org/10.1109/TGRS.2008.2002030, 2008. a
Tokay, A., Wolff, D. B., and Petersen, W. A.: Evaluation of the New Version of
the Laser-Optical Disdrometer, OTT Parsivel2, J. Atmos.
Ocean. Technol., 31, 1276–1288, https://doi.org/10.1175/JTECH-D-13-00174.1, 2014. a, b, c, d
Tridon, F. and Battaglia, A.: Dual-frequency radar Doppler spectral retrieval
of rain drop size distributions and entangled dynamics variables, J.
Geophys. Res.-Atmos., 120, 5585–5601,
https://doi.org/10.1002/2014JD023023, 2015. a
Tridon, F., Battaglia, A., Luke, E., and Kollias, P.: Rain retrieval
from dual-frequency radar Doppler spectra: validation and potential for a
midlatitude precipitating case-study, Q. J. Roy.
Meteorol. Soc., 143, 1364–1380, https://doi.org/10.1002/qj.3010, 2017. a
Tridon, F., Battaglia, A., and Watters, D.: Evaporation in action sensed by
multiwavelength Doppler radars, J. Geophys. Res.-Atmos.,
122, 9379–9390, https://doi.org/10.1002/2016JD025998, 2017. a
Unal, C.: Spectral Polarimetric Radar Clutter Suppression to Enhance
Atmospheric Echoes, J. Atmos. Ocean. Technol., 26,
1781–1797, https://doi.org/10.1175/2009JTECHA1170.1, 2009. a
Unal, C. M. H. and Moisseev, D. N.: Combined Doppler and Polarimetric
Radar Measurements: Correction for Spectrum Aliasing and Nonsimultaneous
Polarimetric Measurements, J. Atmos. Ocean. Technol.,
21, 443, https://doi.org/10.1175/1520-0426(2004)021<0443:CDAPRM>2.0.CO;2, 2004. a
Wang, Z. and Sassen, K.: Cloud Type and Macrophysical Property Retrieval
Using Multiple Remote Sensors., J. Appl. Meteorol., 40,
1665–1683, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2, 2001. a
Xie, X., Evaristo, R., Troemel, S., Saavedra, P., Simmer, C., and
Ryzhkov, A.: Radar Observation of Evaporation and Implications for
Quantitative Precipitation and Cooling Rate Estimation, J.
Atmos. Ocean. Technol., 33, 1779–1792,
https://doi.org/10.1175/JTECH-D-15-0244.1, 2016. a, b
Short summary
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars. Both methods use natural rain as a reference target. The first method is based on spectral polarimetric observations and requires a polarimetric cloud radar with a scanner. The second method utilizes disdrometer observations and can be applied to scanning and vertically pointed radars. Both methods show consistent results and can be applied for operational monitoring of measurement quality.
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars....