Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-5799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the reflectivity calibration of W-band radars based on observations in rain
Alexander Myagkov
CORRESPONDING AUTHOR
RPG Radiometer Physics GmbH, Meckenheim, Germany
Stefan Kneifel
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Thomas Rose
RPG Radiometer Physics GmbH, Meckenheim, Germany
Related authors
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025, https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (ESM) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Anton Kötsche, Alexander Myagkov, Leonie von Terzi, Maximilian Maahn, Veronika Ettrichrätz, Teresa Vogl, Alexander Ryzhkov, Petar Bukovcic, Davide Ori, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2025-734, https://doi.org/10.5194/egusphere-2025-734, 2025
Short summary
Short summary
Our study combines radar observations of snowf with snowfall camera observations on the ground to enhance our understanding of radar variables and snowfall properties. We found that values of an important radar variable (KDP) can be related to many different snow particle properties and number concentrations. We were able to constrain which particle sizes contribute to KDP by using computer models of snowflakes and showed which microphysical processes during snow formation can influence KDP.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022, https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Short summary
This study provides equations to characterize random errors of spectral polarimetric observations from cloud radars. The results can be used for a broad spectrum of applications. For instance, accurate error characterization is essential for advanced retrievals of microphysical properties of clouds and precipitation. Moreover, error characterization allows for the use of measurements from polarimetric cloud radars to potentially improve weather forecasts.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Leonie von Terzi, Davide Ori, and Stefan Kneifel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3910, https://doi.org/10.5194/egusphere-2025-3910, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present a new database of radar-relevant optical properties for a wide range of ice crystal shapes and aggregates, computed using the discrete dipole approximation (DDA) at 5.6, 9.6, 35.6, and 94 GHz. The database is designed to support habit-evolving microphysical schemes, which predict continuous changes in ice particle properties rather than the traditionally assumed fixed categories. It includes over 2,600 individual crystals and 450 aggregates with varying riming and morphology.
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025, https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (ESM) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Anton Kötsche, Alexander Myagkov, Leonie von Terzi, Maximilian Maahn, Veronika Ettrichrätz, Teresa Vogl, Alexander Ryzhkov, Petar Bukovcic, Davide Ori, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2025-734, https://doi.org/10.5194/egusphere-2025-734, 2025
Short summary
Short summary
Our study combines radar observations of snowf with snowfall camera observations on the ground to enhance our understanding of radar variables and snowfall properties. We found that values of an important radar variable (KDP) can be related to many different snow particle properties and number concentrations. We were able to constrain which particle sizes contribute to KDP by using computer models of snowflakes and showed which microphysical processes during snow formation can influence KDP.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022, https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Short summary
This study provides equations to characterize random errors of spectral polarimetric observations from cloud radars. The results can be used for a broad spectrum of applications. For instance, accurate error characterization is essential for advanced retrievals of microphysical properties of clouds and precipitation. Moreover, error characterization allows for the use of measurements from polarimetric cloud radars to potentially improve weather forecasts.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Markus Karrer, Axel Seifert, Davide Ori, and Stefan Kneifel
Atmos. Chem. Phys., 21, 17133–17166, https://doi.org/10.5194/acp-21-17133-2021, https://doi.org/10.5194/acp-21-17133-2021, 2021
Short summary
Short summary
Modeling precipitation is of great relevance, e.g., for mitigating damage caused by extreme weather. A key component in accurate precipitation modeling is aggregation, i.e., sticking together of snowflakes. Simulating aggregation is difficult due to multiple parameters that are not well-known. Knowing how these parameters affect aggregation can help its simulation. We put new parameters in the model and select a combination of parameters with which the model can simulate observations better.
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021, https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
Short summary
Snowflakes have very complex shapes, and modeling their properties requires vast computing power. We produced a large number of realistic snowflakes and modeled their average properties by leveraging their fractal structure. Our approach allows modeling the properties of big ensembles of snowflakes, taking into account their natural variability, at a much lower cost. This enables the usage of remote sensing instruments, such as radars, to monitor the evolution of clouds and precipitation.
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021, https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Short summary
The article examines the relationship between the characteristics of rain and the properties of the ice cloud from which the rain originated. Our results confirm the widely accepted assumption that the mass flux through the melting zone is well preserved with an exception of extreme aggregation and riming conditions. Moreover, it is shown that the mean (mass-weighted) size of particles above and below the melting zone is strongly linked, with the former being on average larger.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Frédéric Tridon, Alessandro Battaglia, and Stefan Kneifel
Atmos. Meas. Tech., 13, 5065–5085, https://doi.org/10.5194/amt-13-5065-2020, https://doi.org/10.5194/amt-13-5065-2020, 2020
Short summary
Short summary
The droplets and ice crystals composing clouds and precipitation interact with microwaves and can therefore be observed by radars, but they can also attenuate the signal they emit. By combining the observations made by two ground-based radars, this study describes an original approach for estimating such attenuation. As a result, the latter can be not only corrected in the radar observations but also exploited for providing an accurate characterization of droplet and ice crystal properties.
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Short summary
The Passive and Active Microwave TRAnsfer tool (PAMTRA) is a public domain software package written in Python and Fortran for the simulation of microwave remote sensing observations. PAMTRA models the interaction of radiation with gases, clouds, precipitation, and the surface using either in situ observations or model output as input parameters. The wide range of applications is demonstrated for passive (radiometer) and active (radar) instruments on ground, airborne, and satellite platforms.
Cited articles
Acquistapace, C., Kneifel, S., Löhnert, U., Kollias, P., Maahn, M., and Bauer-Pfundstein, M.: Optimizing observations of drizzle onset with millimeter-wavelength radars, Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, 2017. a
Alku, L., Moisseev, D., Aittomäki, T., and Chandrasekar, V.:
Identification and Suppression of Nonmeteorological Echoes Using Spectral
Polarimetric Processing, IEEE Trans. Geosci. Remote Sens.,
53, 3628–3638, https://doi.org/10.1109/TGRS.2014.2380476, 2015. a
Angulo-Martínez, M., Beguería, S., Latorre, B., and Fernández-Raga, M.: Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers, Hydrol. Earth Syst. Sci., 22, 2811–2837, https://doi.org/10.5194/hess-22-2811-2018, 2018. a, b, c, d
Atlas, D.: RADAR CALIBRATION, B. Am. Meteorol. Soc.,
83, 1313–1316, https://doi.org/10.1175/1520-0477-83.9.1313, 2002. a
Aydin, K. and Lure, Y.-M.: Millimeter wave scattering and propagation in
rain – A computational study at 94 and 140 GHz for oblate spheroidal and
spherical raindrops, IEEE Trans. Geosci. Remote Sens., 29,
593–601, https://doi.org/10.1109/36.135821, 1991. a, b, c, d
Basara, J. B., Illston, B. G., Winning, Jr., T. E., and Fiebrich,
C. A.: Evaluation of Rainfall Measurements from the WXT510 Sensor for Use in
the Oklahoma City Micronet, The Open Atmos. Sci. J., 3, 39–47,
https://doi.org/10.2174/1874282300903010039, 2009. a
Borque, P., Luke, E., and Kollias, P.: On the unified estimation of turbulence
eddy dissipation rate using Doppler cloud radars and lidars, J.
Geophys. Res.-Atmos., 121, 5972–5989,
https://doi.org/10.1002/2015JD024543, 2016. a
Bouniol, D., Protat, A., Delanoë, J., Pelon, J., Piriou, J.-M.,
Bouyssel, F., Tompkins, A. M., Wilson, D. R., Morille, Y.,
Haeffelin, M., O'Connor, E. J., Hogan, R. J., Illingworth, A. J.,
Donovan, D. P., and Baltink, H.-K.: Using Continuous Ground-Based Radar
and Lidar Measurements for Evaluating the Representation of Clouds in Four
Operational Models, J. Appl. Meteorol. Climatol., 49,
1971–1991, https://doi.org/10.1175/2010JAMC2333.1, 2010. a
Bühl, J., Leinweber, R., Görsdorf, U., Radenz, M., Ansmann, A., and Lehmann, V.: Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler, Atmos. Meas. Tech., 8, 3527–3536, https://doi.org/10.5194/amt-8-3527-2015, 2015. a
Bühl, J., Seifert, P., Myagkov, A., and Ansmann, A.: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station, Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, 2016. a
Das, S., Abraham, A., Chakraborty, U. K., and Konar, A.: Differential
Evolution Using a Neighborhood-Based Mutation Operator, IEEE Trans.
Evolut. Comput., 13, 526–553, https://doi.org/10.1109/TEVC.2008.2009457,
2009. a, b
Delanoë, J., Protat, A., Vinson, J.-P., Brett, W., Caudoux, C.,
Bertrand, F., Parent du Chatelet, J., Hallali, R., Barthes, L.,
Haeffelin, M., and Dupont, J.-C.: BASTA: A 95-GHz FMCW Doppler Radar for
Cloud and Fog Studies, J. Atmos. Ocean. Technol., 33,
1023–1038, https://doi.org/10.1175/JTECH-D-15-0104.1, 2016. a
Demuth, H. B., Beale, M. H., De Jess, O., and Hagan, M. T.: Neural Network Design, Martin Hagan, Stillwater, OK, USA, 2nd Edn., 2014. a
Dias Neto, J., Kneifel, S., Ori, D., Trömel, S., Handwerker, J., Bohn, B., Hermes, N., Mühlbauer, K., Lenefer, M., and Simmer, C.: The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation, Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, 2019. a
Dufournet, Y. and Russchenberg, H. W. J.: Towards the improvement of cloud microphysical retrievals using simultaneous Doppler and polarimetric radar measurements, Atmos. Meas. Tech., 4, 2163–2178, https://doi.org/10.5194/amt-4-2163-2011, 2011. a
Ewald, F., Groß, S., Hagen, M., Hirsch, L., Delanoë, J., and Bauer-Pfundstein, M.: Calibration of a 35 GHz airborne cloud radar: lessons learned and intercomparisons with 94 GHz cloud radars, Atmos. Meas. Tech., 12, 1815–1839, https://doi.org/10.5194/amt-12-1815-2019, 2019. a, b
Foote, G. B. and Du Toit, P. S.: Terminal Velocity of Raindrops Aloft,
J. Appl. Meteorol., 8, 249–253,
https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2, 1969. a
Frech, M., Hagen, M., and Mammen, T.: Monitoring the Absolute
Calibration of a Polarimetric Weather Radar, J. Atmos.
Ocean. Technol., 34, 599–615, https://doi.org/10.1175/JTECH-D-16-0076.1, 2017. a
Frisch, S., Shupe, M., Djalalova, I., Feingold, G., and Poellot, M.:
The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars,
J. Atmos. Ocean. Technol., 19, 835,
https://doi.org/10.1175/1520-0426(2002)019<0835:TROSCD>2.0.CO;2, 2002. a
Gage, K. S., Clark, W. L., Williams, C. R., and Tokay, A.: Determining
reflectivity measurement error from serial measurements using paired
disdrometers and profilers, Geophys. Res. Lett., 31, L23107,
https://doi.org/10.1029/2004GL020591, 2004. a
Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G.,
Vavriv, D., Vinogradov, V., and Volkov, V.: A 35-GHz polarimetric
Doppler radar for long term observations of cloud parameters – Description of
system and data processing, J. Atmos. Ocean. Technol.,
32, 675–690, https://doi.org/10.1175/JTECH-D-14-00066.1, 2015. a, b
Gorgucci, E., Scarchilli, G., and Chandrasekar, V.: Calibration of radars using
polarimetric techniques, IEEE Trans. Geosci. Remote Sens.,
30, 853–858, https://doi.org/10.1109/36.175319, 1992. a
Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Bouniol, D., Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë, J., Drobinski, P., Dufresne, J.-L., Flamant, C., Grall, M., Hodzic, A., Hourdin, F., Lapouge, F., Lemaître, Y., Mathieu, A., Morille, Y., Naud, C., Noël, V., O'Hirok, W., Pelon, J., Pietras, C., Protat, A., Romand, B., Scialom, G., and Vautard, R.: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Ann. Geophys., 23, 253–275, https://doi.org/10.5194/angeo-23-253-2005, 2005. a
Heymsfield, A. J., Protat, A., Austin, R. T., Bouniol, D., Hogan,
R. J., Delanoë, J., Okamoto, H., Sato, K., van Zadelhoff, G.-J.,
Donovan, D. P., and Wang, Z.: Testing IWC Retrieval Methods Using Radar
and Ancillary Measurements with In Situ Data, J. Appl. Meteorol.
Climatol., 47, 135, https://doi.org/10.1175/2007JAMC1606.1, 2008. a
Hirsikko, A., O'Connor, E. J., Komppula, M., Korhonen, K., Pfüller, A., Giannakaki, E., Wood, C. R., Bauer-Pfundstein, M., Poikonen, A., Karppinen, T., Lonka, H., Kurri, M., Heinonen, J., Moisseev, D., Asmi, E., Aaltonen, V., Nordbo, A., Rodriguez, E., Lihavainen, H., Laaksonen, A., Lehtinen, K. E. J., Laurila, T., Petäjä, T., Kulmala, M., and Viisanen, Y.: Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network, Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, 2014. a
Hogan, R. J., Mittermaier, M. P., and Illingworth, A. J.: The Retrieval
of Ice Water Content from Radar Reflectivity Factor and Temperature and Its
Use in Evaluating a Mesoscale Model, J. Appl. Meteorol.
Climatol., 45, 301–317, https://doi.org/10.1175/JAM2340.1, 2006. a
Huang, G.-J., Bringi, V. N., and Thurai, M.: Orientation Angle
Distributions of Drops after an 80-m Fall Using a 2D Video Disdrometer,
J. Atmos. Ocean. Technol., 25, 1717,
https://doi.org/10.1175/2008JTECHA1075.1, 2008. a, b
Huuskonen, A. and Holleman, I.: Determining Weather Radar Antenna Pointing
Using Signals Detected from the Sun at Low Antenna Elevations, J.
Atmos. Ocean. Technol., 24, 476, https://doi.org/10.1175/JTECH1978.1, 2007. a
Illingworth, A. J. and Blackman, T. M.: The Need to Represent Raindrop
Size Spectra as Normalized Gamma Distributions for the Interpretation of
Polarization Radar Observations., J. Appl. Meteorol., 41,
286–297, https://doi.org/10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2, 2002. a
Illingworth, A. J., Hogan, R. J., O'Connor, E. J., Bouniol, D., Delanoë, J.,
Pelon, J., Protat, A., Brooks, M. E., Gaussiat, N., Wilson, D. R., Donovan,
D. P., Baltink, H. K., van Zadelhoff, G.-J., Eastment, J. D., Goddard, J.
W. F., Wrench, C. L., Haeffelin, M., Krasnov, O. A., Russchenberg, H. W. J.,
Piriou, J.-M., Vinit, F., Seifert, A., Tompkins, A. M., and Willén, U.:
Cloudnet, B. Am. Meteorol. Soc., 88, 883–898,
https://doi.org/10.1175/BAMS-88-6-883, 2007. a, b
Johannsen, L. L., Zambon, N., Strauss, P., Dostal, T., Neumann, M.,
Zumr, D., Cochrane, T. A., Blöschl, G., and Klik, A.: Comparison of
three types of laser optical disdrometers under natural rainfall conditions,
Hydrol. Sci. J., 65, 524–535,
https://doi.org/10.1080/02626667.2019.1709641, 2020. a
Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P., and Luke, E.: Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling, Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, 2016. a
Kneifel, S., von Lerber, A., Tiira, J., Moisseev, D., Kollias, P.,
and Leinonen, J.: Observed relations between snowfall microphysics and
triple-frequency radar measurements, J. Geophys. Res.-Atmos., 120, 6034–6055, https://doi.org/10.1002/2015JD023156, 2015. a
Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno, J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, A., and Poikonen, A.: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, 2017. a
Kollias, P., Albrecht, B. A., and Marks, F.: Why Mie?, B. Am.
Meteorol. Soc., 83, 1471–1484, https://doi.org/10.1175/BAMS-83-10-1471, 2002. a
Kollias, P., Clothiaux, E. E., Miller, M. A., Albrecht, B. A.,
Stephens, G. L., and Ackerman, T. P.: Millimeter-Wavelength Radars: New
Frontier in Atmospheric Cloud and Precipitation Research, B.
Am. Meteorol. Soc., 88, 1608–1624,
https://doi.org/10.1175/BAMS-88-10-1608, 2007. a
Kollias, P., Puigdomènech Treserras, B., and Protat, A.: Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat, Atmos. Meas. Tech., 12, 4949–4964, https://doi.org/10.5194/amt-12-4949-2019, 2019. a, b, c
Küchler, N., Kneifel, S., Löhnert, U., Kollias, P., Czekala,
H., and Rose, T.: A W-Band Radar-Radiometer System for Accurate and
Continuous Monitoring of Clouds and Precipitation, J. Atmos.
Ocean. Technol., 34, 2375–2392, https://doi.org/10.1175/JTECH-D-17-0019.1,
2017. a, b
Kumjian, M. R.: Principles and Applications of Dual-Polarization Weather
Radar. Part I: Description of the Polarimetric Radar Variables, J.
Operational Meteor., 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119, 2013. a
Kumjian, M. R. and Ryzhkov, A. V.: The impact of evaporation on
polarimetric characteristics of rain: Theoretical model and practical
implications, J. Appl. Meteorol. Climatol., 49,
1247–1267, https://doi.org/10.1175/2010JAMC2243.1, 2010. a
Leinonen, J., Moisseev, D., and Nousiainen, T.: Linking snowflake
microstructure to multi-frequency radar observations, J. Geophys.
Res.-Atmos., 118, 3259–3270, https://doi.org/10.1002/jgrd.50163, 2013. a
Leith, C. E.: The Standard Error of Time-Average Estimates of Climatic Means,
J. Appl. Meteorol., 12, 1066–1069,
https://doi.org/10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2, 1973. a
Li, H. and Moisseev, D.: Melting Layer Attenuation at Ka- and W-Bands as
Derived From Multifrequency Radar Doppler Spectra Observations, J.
Geophys. Res.-Atmos., 124, 9520–9533,
https://doi.org/10.1029/2019JD030316, 2019. a
Liebe, H. J.: MPM – An atmospheric millimeter-wave propagation model,
Int. J. Infra. Milli. Waves, 10, 631–650,
https://doi.org/10.1007/BF01009565, 1989. a
Löffler-Mang, M. and Blahak, U.: Estimation of the Equivalent Radar
Reflectivity Factor from Measured Snow Size Spectra, J. Appl.
Meteorol., 40, 843–849,
https://doi.org/10.1175/1520-0450(2001)040<0843:EOTERR>2.0.CO;2, 2001. a
Löffler-Mang, M. and Joss, J.: An Optical Disdrometer for Measuring
Size and Velocity of Hydrometeors, J. Atmos. Ocean.
Technol., 17, 130, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2,
2000. a, b
Löhnert, U., Schween, J. H., Acquistapace, C., Ebell, K., Maahn, M.,
Barreraverdejo, M., Hirsikko, A., Bohn, B., Knaps, A., O'connor, E., Simmer,
C., Wahner, A., and Crewell, S.: JOYCE: Jülich observatory for cloud
evolution, B. Am. Meteorol. Soc., 96, 1157–1174,
https://doi.org/10.1175/BAMS-D-14-00105.1, 2015. a, b
Maahn, M., Hoffmann, F., Shupe, M. D., de Boer, G., Matrosov, S. Y., and Luke, E. P.: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?, Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, 2019. a
MacKay, D. J. C.: Bayesian Interpolation, Neural Comput., 4, 415–447,
https://doi.org/10.1162/neco.1992.4.3.415, 1992. a
Mather, J. H. and Voyles, J. W.: The Arm Climate Research Facility: A Review of
Structure and Capabilities, B. Am. Meteorol. Soc.,
94, 377–392, https://doi.org/10.1175/BAMS-D-11-00218.1, 2013. a
Matrosov, S. Y.: Variability of Microphysical Parameters in High-Altitude
Ice Clouds: Results of the Remote Sensing Method, J. Appl.
Meteorol., 36, 633–648, https://doi.org/10.1175/1520-0450-36.6.633, 1997. a
Matrosov, S. Y.: Retrievals of vertical profiles of ice cloud microphysics
from radar and IR measurements using tuned regressions between reflectivity
and cloud parameters, J. Geophys. Res.-Atmos., 104,
16741, https://doi.org/10.1029/1999JD900244, 1999. a
Matrosov, S. Y.: Feasibility of using radar differential Doppler velocity
and dual-frequency ratio for sizing particles in thick ice clouds, J. Geophys. Res.-Atmos., 116, D17202,
https://doi.org/10.1029/2011JD015857, 2011. a
Matrosov, S. Y., Heymsfield, A. J., Kropfli, R. A., Martner, B. E.,
Reinking, R. F., Snider, J. B., Piironen, P., and Eloranta, E. W.:
Comparisons of Ice Cloud Parameters Obtained by Combined Remote Sensor
Retrievals and Direct Methods, J. Atmos. Ocean.
Technol., 15, 184, https://doi.org/10.1175/1520-0426(1998)015<0184:COICPO>2.0.CO;2,
1998. a
Matrosov, S. Y., Kropfli, R. A., Reinking, R. F., and Martner, B. E.:
Prospects for measuring rainfall using propagation differential phase in X-
and Ka-radar bands, J. Appl. Meteorol., 38, 766–776,
https://doi.org/10.1175/1520-0450(1999)038<0766:PFMRUP>2.0.CO;2, 1999. a, b
Mishchenko, M. I.: Calculation of the Amplitude Matrix for a Nonspherical
Particle in a Fixed Orientation, Appl. Opt.s, 39, 1026–1031,
https://doi.org/10.1364/AO.39.001026, 2000. a, b
Moisseev, D. N. and Chandrasekar, V.: Nonparametric Estimation of Raindrop Size
Distributions from Dual-Polarization Radar Spectral Observations, J.
Atmos. Ocean. Technol., 24, 1008–1018,
https://doi.org/10.1175/JTECH2024.1, 2007. a
Moisseev, D. N. and Chandrasekar, V.: Polarimetric Spectral Filter for Adaptive
Clutter and Noise Suppression, J. Atmos. Ocean. Technol.,
26, 215–228, https://doi.org/10.1175/2008JTECHA1119.1, 2009. a
Moisseev, D. N., Unal, C. M. H., Russchenberg, H. W. J., and Ligthart,
L. P.: Improved Polarimetric Calibration for Atmospheric Radars, J.
Atmos. Ocean. Technol., 19, 1968,
https://doi.org/10.1175/1520-0426(2002)019<1968:IPCFAR>2.0.CO;2, 2002. a
Muth, X., Schneebeli, M., and Berne, A.: A sun-tracking method to improve the pointing accuracy of weather radar, Atmos. Meas. Tech., 5, 547–555, https://doi.org/10.5194/amt-5-547-2012, 2012. a
Myagkov, A., Seifert, P., Wandinger, U., Bauer-Pfundstein, M., and
Matrosov, S. Y.: Effects of antenna patterns on cloud radar polarimetric
measurements, J. Atmos. Ocean. Technol., 32, 1813–1828,
https://doi.org/10.1175/JTECH-D-15-0045.1, 2015. a, b
Myagkov, A., Seifert, P., Bauer-Pfundstein, M., and Wandinger, U.: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals, Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016, 2016a. a, b
Myagkov, A., Seifert, P., Wandinger, U., Bühl, J., and Engelmann, R.: Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign, Atmos. Meas. Tech., 9, 3739–3754, https://doi.org/10.5194/amt-9-3739-2016, 2016b. a
Otto, T. and Russchenberg, H. W. J.: Estimation of specific differential
phase and differential backscatter phase from polarimetric weather radar
measurements of rain, IEEE Geosci. Remote Sens. Lett., 8,
988–992, https://doi.org/10.1109/LGRS.2011.2145354, 2011. a, b, c
Oue, M., Kumjian, M. R., Lu, Y., Verlinde, J., Aydin, K., and
Clothiaux, E. E.: Linear depolarization ratios of columnar ice crystals in
a deep precipitating system over the Arctic observed by zenith-pointing
Ka-band Doppler radar, J. Appl. Meteorol. Climatol., 54,
1060–1068, https://doi.org/10.1175/JAMC-D-15-0012.1, 2015. a
Oue, M., Kollias, P., Ryzhkov, A., and Luke, E. P.: Toward Exploring the
Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep
Cold Precipitating Systems in the Arctic, J. Geophys. Res.-Atmos., 123, 2797–2815, https://doi.org/10.1002/2017JD027717, 2018. a
Pfitzenmaier, L., Unal, C. M. H., Dufournet, Y., and Russchenberg, H. W. J.: Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data, Atmos. Chem. Phys., 18, 7843–7862, https://doi.org/10.5194/acp-18-7843-2018, 2018. a
Protat, A., Bouniol, D., Delanoë, J., May, P. T., Plana-Fattori,
A., Hasson, A., O'Connor, E., Görsdorf, U., and Heymsfield,
A. J.: Assessment of Cloudsat Reflectivity Measurements and Ice Cloud
Properties Using Ground-Based and Airborne Cloud Radar Observations, J. Atmos. Ocean. Technol., 26, 1717,
https://doi.org/10.1175/2009JTECHA1246.1, 2009. a
Protat, A., Bouniol, D., O'Connor, E. J., Klein Baltink, H.,
Verlinde, J., and Widener, K.: CloudSatas a Global Radar Calibrator,
J. Atmos. Ocean. Technol., 28, 445–452,
https://doi.org/10.1175/2010JTECHA1443.1, 2011. a, b
Pruppacher, H. R. and Pitter, R. L.: A Semi-Empirical Determination of the
Shape of Cloud and Rain Drops, J. Atmos. Sci., 28, 86–94,
https://doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2, 1971. a
Radenz, M., Bühl, J., Lehmann, V., Görsdorf, U., and Leinweber, R.: Combining cloud radar and radar wind profiler for a value added estimate of vertical air motion and particle terminal velocity within clouds, Atmos. Meas. Tech., 11, 5925–5940, https://doi.org/10.5194/amt-11-5925-2018, 2018. a
Ray, P. S.: Broadband complex refractive indices of ice and water, Appl.
Opt., 11, 1836–1844, https://doi.org/10.1364/AO.11.001836, 1972. a
Rusli, S. P., Donovan, D. P., and Russchenberg, H. W. J.: Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations, Atmos. Meas. Tech., 10, 4777–4803, https://doi.org/10.5194/amt-10-4777-2017, 2017. a
Ryzhkov, A. V.: Interpretation of polarimetric radar covariance matrix for
meteorological scatterers: Theoretical analysis, J. Atmos.
Ocean. Technol., 18, 315–328,
https://doi.org/10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2, 2001. a
Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Heinselman, P. L.,
Giangrande, S. E., and Zrnic, D. S.: The Joint Polarization Experiment:
Polarimetric Rainfall Measurements and Hydrometeor Classification., B. Am. Meteorol. Soc., 86, 809–824,
https://doi.org/10.1175/BAMS-86-6-809, 2005. a
Schneebeli, M. and Berne, A.: An Extended Kalman Filter Framework for
Polarimetric X-Band Weather Radar Data Processing, J. Atmos.
Ocean. Technol., 29, 711–730, https://doi.org/10.1175/JTECH-D-10-05053.1, 2012. a, b
Sekelsky, S. M. and Clothiaux, E. E.: Parallax Errors and Corrections for
Dual-Antenna Millimeter-Wave Cloud Radars, J. Atmos. Ocean.
Technol., 19, 478–485,
https://doi.org/10.1175/1520-0426(2002)019<0478:PEACFD>2.0.CO;2, 2002. a
Shupe, M. D.: Clouds at Arctic atmospheric observatories. Part II:
Thermodynamic phase characteristics, J. Appl. Meteorol.
Climatol., 50, 645–661, https://doi.org/10.1175/2010JAMC2468.1, 2011. a
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic Mixed-Phase Cloud
Properties Derived from Surface-Based Sensors at SHEBA, J.
Atmos. Sci., 63, 697–711, https://doi.org/10.1175/JAS3659.1, 2006. a
Shupe, M. D., Kollias, P., Persson, P. O. G., and McFarquhar, G. M.:
Vertical Motions in Arctic Mixed-Phase Stratiform Clouds, J.
Atmos. Sci., 65, 1304, https://doi.org/10.1175/2007JAS2479.1, 2008. a
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell,
J. R., Starkweather, S. M., and Shiobara, M.: Clouds at Arctic
Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties,
J. Appl. Meteorol. Climatol., 50, 626–644,
https://doi.org/10.1175/2010JAMC2467.1, 2011. a
Spek, A. L. J., Unal, C. M. H., Moisseev, D. N., Russchenberg,
H. W. J., Chandrasekar, V., and Dufournet, Y.: A new technique to
categorize and retrieve the microphysical properties of ice particles above
the melting layer using radar dual-polarization spectral analysis, J. Atmos. Ocean. Technol., 25, 482–497,
https://doi.org/10.1175/2007JTECHA944.1, 2008. a, b
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science after
the first year of operation, J. Geophys. Res.-Atmos.,
113, D00A18, https://doi.org/10.1029/2008JD009982, 2008. a
Storn, R. and Price, K.: Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces, J. Global
Optim., 11, 341–359, https://doi.org/10.1023/A:1008202821328, 1997. a
Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P.,
Haynes, J. M., and Marchand, R. T.: CloudSat's Cloud Profiling Radar After
Two Years in Orbit: Performance, Calibration, and Processing, IEEE
Trans. Geosci. Remote Sens., 46, 3560–3573,
https://doi.org/10.1109/TGRS.2008.2002030, 2008. a
Tokay, A., Wolff, D. B., and Petersen, W. A.: Evaluation of the New Version of
the Laser-Optical Disdrometer, OTT Parsivel2, J. Atmos.
Ocean. Technol., 31, 1276–1288, https://doi.org/10.1175/JTECH-D-13-00174.1, 2014. a, b, c, d
Tridon, F. and Battaglia, A.: Dual-frequency radar Doppler spectral retrieval
of rain drop size distributions and entangled dynamics variables, J.
Geophys. Res.-Atmos., 120, 5585–5601,
https://doi.org/10.1002/2014JD023023, 2015. a
Tridon, F., Battaglia, A., Luke, E., and Kollias, P.: Rain retrieval
from dual-frequency radar Doppler spectra: validation and potential for a
midlatitude precipitating case-study, Q. J. Roy.
Meteorol. Soc., 143, 1364–1380, https://doi.org/10.1002/qj.3010, 2017. a
Tridon, F., Battaglia, A., and Watters, D.: Evaporation in action sensed by
multiwavelength Doppler radars, J. Geophys. Res.-Atmos.,
122, 9379–9390, https://doi.org/10.1002/2016JD025998, 2017. a
Unal, C.: Spectral Polarimetric Radar Clutter Suppression to Enhance
Atmospheric Echoes, J. Atmos. Ocean. Technol., 26,
1781–1797, https://doi.org/10.1175/2009JTECHA1170.1, 2009. a
Unal, C. M. H. and Moisseev, D. N.: Combined Doppler and Polarimetric
Radar Measurements: Correction for Spectrum Aliasing and Nonsimultaneous
Polarimetric Measurements, J. Atmos. Ocean. Technol.,
21, 443, https://doi.org/10.1175/1520-0426(2004)021<0443:CDAPRM>2.0.CO;2, 2004. a
Wang, Z. and Sassen, K.: Cloud Type and Macrophysical Property Retrieval
Using Multiple Remote Sensors., J. Appl. Meteorol., 40,
1665–1683, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2, 2001. a
Xie, X., Evaristo, R., Troemel, S., Saavedra, P., Simmer, C., and
Ryzhkov, A.: Radar Observation of Evaporation and Implications for
Quantitative Precipitation and Cooling Rate Estimation, J.
Atmos. Ocean. Technol., 33, 1779–1792,
https://doi.org/10.1175/JTECH-D-15-0244.1, 2016. a, b
Short summary
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars. Both methods use natural rain as a reference target. The first method is based on spectral polarimetric observations and requires a polarimetric cloud radar with a scanner. The second method utilizes disdrometer observations and can be applied to scanning and vertically pointed radars. Both methods show consistent results and can be applied for operational monitoring of measurement quality.
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars....