Articles | Volume 14, issue 5
Atmos. Meas. Tech., 14, 3371–3394, 2021
https://doi.org/10.5194/amt-14-3371-2021
Atmos. Meas. Tech., 14, 3371–3394, 2021
https://doi.org/10.5194/amt-14-3371-2021

Research article 07 May 2021

Research article | 07 May 2021

Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks

Charles H. White et al.

Related authors

Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion
Yue Li, Bryan A. Baum, Andrew K. Heidinger, W. Paul Menzel, and Elisabeth Weisz
Atmos. Meas. Tech., 13, 4035–4049, https://doi.org/10.5194/amt-13-4035-2020,https://doi.org/10.5194/amt-13-4035-2020, 2020
Short summary
Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019,https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals
Robert E. Holz, Steven Platnick, Kerry Meyer, Mark Vaughan, Andrew Heidinger, Ping Yang, Gala Wind, Steven Dutcher, Steven Ackerman, Nandana Amarasinghe, Fredrick Nagle, and Chenxi Wang
Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016,https://doi.org/10.5194/acp-16-5075-2016, 2016
Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms
U. Hamann, A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind
Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014,https://doi.org/10.5194/amt-7-2839-2014, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021,https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O2–O2, MODIS, and Suomi-NPP VIIRS
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021,https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Dissecting effects of orbital drift of polar-orbiting satellites on accuracy and trends of climate data records of cloud fractional cover
Jędrzej S. Bojanowski and Jan P. Musiał
Atmos. Meas. Tech., 13, 6771–6788, https://doi.org/10.5194/amt-13-6771-2020,https://doi.org/10.5194/amt-13-6771-2020, 2020
Short summary
Calibration of global MODIS cloud amount using CALIOP cloud profiles
Andrzej Z. Kotarba
Atmos. Meas. Tech., 13, 4995–5012, https://doi.org/10.5194/amt-13-4995-2020,https://doi.org/10.5194/amt-13-4995-2020, 2020
Short summary
Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020,https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A system for large-scale machine learning, Proc. 12th USENIX Symp. Oper. Syst. Des. Implementation, OSDI 2016, 265–283, http://arxiv.org/abs/1605.08695 (last access: 12 September 2020), 2016. a
Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud Detection with MODIS, Part II: Validation, J. Atmos. Ocean. Technol., 25, 1073–1086, https://doi.org/10.1175/2007JTECHA1053.1, 2008. a
Ackerman, S., Richard, F., Kathleen, S., Yinghui, L., Liam, G., Bryan, B., and Paul, M.: Discriminating Clear-Sky from Cloud with MODIS, Algorithm Theoretical Basis Document (MOD35) – Version 6.1, Tech. Rep., NASA, https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD35_ATBD_Collection6_1.pdf (last access: 21 July 2020), 2010. a
Braun, B. M., Sweetser, T. H., Graham, C., and Bartsch, J.: CloudSat's A-Train Exit and the Formation of the C-Train: An Orbital Dynamics Perspective, in: 2019 IEEE Aerospace Conference, 1–10, https://doi.org/10.1109/AERO.2019.8741958, 2019. a
Bulgin, C. E., Mittaz, J. P., Embury, O., Eastwood, S., and Merchant, C. J.: Bayesian Cloud Detection for 37 Years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Data, Remote Sens., 10, 97, https://doi.org/10.3390/rs10010097, 2018. a
Download
Short summary
Automated detection of clouds in satellite imagery is an important practice that is useful for predicting and understanding both weather and climate. Cloud detection is often difficult at night and over cold surfaces. In this paper, we discuss how a complex statistical model (a neural network) can more accurately detect clouds compared to currently used approaches. Overall, our results suggest that our approach could result in more reliable assessments of global cloud cover.