Articles | Volume 14, issue 8
https://doi.org/10.5194/amt-14-5369-2021
https://doi.org/10.5194/amt-14-5369-2021
Research article
 | Highlight paper
 | 
06 Aug 2021
Research article | Highlight paper |  | 06 Aug 2021

Physical characteristics of frozen hydrometeors inferred with parameter estimation

Alan J. Geer

Related authors

Assessment and application of melting layer simulations for spaceborne radars within the RTTOV-SCATT v13.1 model
Rohit Mangla, Mary Borderies, Philippe Chambon, Alan Geer, and James Hocking
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-131,https://doi.org/10.5194/amt-2024-131, 2024
Preprint under review for AMT
Short summary
Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021,https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021,https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud
Alan J. Geer, Stefano Migliorini, and Marco Matricardi
Atmos. Meas. Tech., 12, 4903–4929, https://doi.org/10.5194/amt-12-4903-2019,https://doi.org/10.5194/amt-12-4903-2019, 2019
Short summary
Correlated observation error models for assimilating all-sky infrared radiances
Alan J. Geer
Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019,https://doi.org/10.5194/amt-12-3629-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024,https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary

Cited articles

Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R., and Brunel, P.: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. Roy. Meteorol. Soc., 137, 690–699, https://doi.org/10.1002/qj.803, 2011. a
Allen, J. T., Tippett, M. K., Kaheil, Y., Sobel, A. H., Lepore, C., Nong, S., and Muehlbauer, A.: An extreme value model for US hail size, Mon. Weath. Rev., 145, 4501–4519, https://doi.org/10.1175/MWR-D-17-0119.1, 2017. a
Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for satellite data in a numerical weather prediction system, Q. J. Roy. Meteorol. Soc., 133, 631–642, https://doi.org/10.1002/qj.56, 2007. a
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009. a
Baordo, F. and Geer, A. J.: Assimilation of SSMIS humidity-sounding channels in all-sky conditions over land using a dynamic emissivity retrieval, Q. J. Roy. Meteorol. Soc., 142, 2854–2866, https://doi.org/10.1002/qj.2873, 2016. a
Download
Short summary
Satellite observations sensitive to cloud and precipitation help improve the quality of weather forecasts. However, they are sensitive to things that models do not forecast, such as the shapes and sizes of snow and ice particles. These details can be estimated from the observations themselves and then incorporated in the satellite simulators used in weather forecasting. This approach, known as parameter estimation, will be increasingly useful to build models of poorly known physical processes.