Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-803-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-803-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Real-time measurement of radionuclide concentrations and its impact on inverse modeling of 106Ru release in the fall of 2017
Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic
Miroslav Hýža
National Radiation Protection Institute, Prague, Czech Republic
Department of Dosimetry and Application of Ionizing Radiation, Czech Technical University in Prague, Prague, Czech Republic
Nikolaos Evangeliou
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Václav Šmídl
Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic
Related authors
Nikolaos Evangeliou, Ondrej Tichy, Marit Svendby Otervik, Sabine Eckhardt, Yves Balkanski, and Didier Hauglustaine
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-22, https://doi.org/10.5194/ar-2024-22, 2024
Revised manuscript under review for AR
Short summary
Short summary
The COVID-19 lockdown measures in 2020 reduced emissions of various substances improving air quality. However, PM2.5 stayed unchanged due to NH3 and related chemical transformations. Higher humidity favoured more SO42- production so as accumulated NH3 did. Excess NH3 neutralised HNO3 towards NO3-. In high NH3 conditions such as those in 2020, a small reduction of NOx levels drives faster oxidation toward NO3- and slower deposition of total inorganic NO3- causing high secondary PM2.5.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Ondřej Tichý, Lukáš Ulrych, Václav Šmídl, Nikolaos Evangeliou, and Andreas Stohl
Geosci. Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-5917-2020, https://doi.org/10.5194/gmd-13-5917-2020, 2020
Short summary
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.
Ondřej Tichý, Václav Šmídl, Radek Hofman, Kateřina Šindelářová, Miroslav Hýža, and Andreas Stohl
Atmos. Chem. Phys., 17, 12677–12696, https://doi.org/10.5194/acp-17-12677-2017, https://doi.org/10.5194/acp-17-12677-2017, 2017
Short summary
Short summary
In the fall of 2011, iodine-131 (131I) was detected at several radionuclide monitoring stations in central Europe. We estimate the source location and emission variation using only the available 131I measurements. Subsequently, we use the IAEA report about the source term for validation of our results. We find that our algorithm could successfully locate the actual release site. The findings are also in agreement with the values reported by the IAEA.
Ondřej Tichý, Václav Šmídl, Radek Hofman, and Andreas Stohl
Geosci. Model Dev., 9, 4297–4311, https://doi.org/10.5194/gmd-9-4297-2016, https://doi.org/10.5194/gmd-9-4297-2016, 2016
Short summary
Short summary
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. We formulate a probabilistic model, where a full Bayesian estimation allows estimation of all tuning parameters from the measurements. The proposed algorithm is tested and compared with the state-of-the-art method on data from the European Tracer Experiment (ETEX), where advantages of the new method are demonstrated.
Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3124, https://doi.org/10.5194/egusphere-2024-3124, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
High-quality measurements of light-absorbing carbon were performed at the polar aerosol station "Island Bely” (Western Siberian Arctic) from 2019 to 2022. The maximum light absorption coefficients were seen in summer due to gas flaring contribution, which is the most significant source in the region. However, the increasing Siberian wildfires had a special share in carbon contribution to this high Arctic station with a persistent smoke layer extending over the whole troposphere in summer.
Nikolaos Evangeliou, Ondrej Tichy, Marit Svendby Otervik, Sabine Eckhardt, Yves Balkanski, and Didier Hauglustaine
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-22, https://doi.org/10.5194/ar-2024-22, 2024
Revised manuscript under review for AR
Short summary
Short summary
The COVID-19 lockdown measures in 2020 reduced emissions of various substances improving air quality. However, PM2.5 stayed unchanged due to NH3 and related chemical transformations. Higher humidity favoured more SO42- production so as accumulated NH3 did. Excess NH3 neutralised HNO3 towards NO3-. In high NH3 conditions such as those in 2020, a small reduction of NOx levels drives faster oxidation toward NO3- and slower deposition of total inorganic NO3- causing high secondary PM2.5.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
Olga B. Popovicheva, Nikolaos Evangeliou, Vasilii O. Kobelev, Marina A. Chichaeva, Konstantinos Eleftheriadis, Asta Gregorič, and Nikolay S. Kasimov
Atmos. Chem. Phys., 22, 5983–6000, https://doi.org/10.5194/acp-22-5983-2022, https://doi.org/10.5194/acp-22-5983-2022, 2022
Short summary
Short summary
Measurements of black carbon (BC) combined with atmospheric transport modeling reveal that gas flaring from oil and gas extraction in Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia contributes the largest share of surface BC in the Russian Arctic dominating over domestic, industrial and traffic sectors. Pollution episodes show an increasing trend in concentration levels and frequency as the station is in the Siberian gateway of the highest anthropogenic pollution to the Russian Arctic.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
Ondřej Tichý, Lukáš Ulrych, Václav Šmídl, Nikolaos Evangeliou, and Andreas Stohl
Geosci. Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-5917-2020, https://doi.org/10.5194/gmd-13-5917-2020, 2020
Short summary
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Jens Mühle, Cathy M. Trudinger, Luke M. Western, Matthew Rigby, Martin K. Vollmer, Sunyoung Park, Alistair J. Manning, Daniel Say, Anita Ganesan, L. Paul Steele, Diane J. Ivy, Tim Arnold, Shanlan Li, Andreas Stohl, Christina M. Harth, Peter K. Salameh, Archie McCulloch, Simon O'Doherty, Mi-Kyung Park, Chun Ok Jo, Dickon Young, Kieran M. Stanley, Paul B. Krummel, Blagoj Mitrevski, Ove Hermansen, Chris Lunder, Nikolaos Evangeliou, Bo Yao, Jooil Kim, Benjamin Hmiel, Christo Buizert, Vasilii V. Petrenko, Jgor Arduini, Michela Maione, David M. Etheridge, Eleni Michalopoulou, Mike Czerniak, Jeffrey P. Severinghaus, Stefan Reimann, Peter G. Simmonds, Paul J. Fraser, Ronald G. Prinn, and Ray F. Weiss
Atmos. Chem. Phys., 19, 10335–10359, https://doi.org/10.5194/acp-19-10335-2019, https://doi.org/10.5194/acp-19-10335-2019, 2019
Short summary
Short summary
We discuss atmospheric concentrations and emissions of the strong greenhouse gas perfluorocyclobutane. A large fraction of recent emissions stem from China, India, and Russia, probably as a by-product from the production of fluoropolymers and fluorochemicals. Most historic emissions likely stem from developed countries. Total emissions are higher than what is being reported. Clearly, more measurements and better reporting are needed to understand emissions of this and other greenhouse gases.
Nikolaos Evangeliou, Arve Kylling, Sabine Eckhardt, Viktor Myroniuk, Kerstin Stebel, Ronan Paugam, Sergiy Zibtsev, and Andreas Stohl
Atmos. Chem. Phys., 19, 1393–1411, https://doi.org/10.5194/acp-19-1393-2019, https://doi.org/10.5194/acp-19-1393-2019, 2019
Short summary
Short summary
We simulated the peatland fires that burned in Greenland in summer 2017. Using satellite data, we estimated that the total burned area was 2345 ha, the fuel amount consumed 117 kt C and the emissions of BC, OC and BrC 23.5, 731 and 141 t, respectively. About 30 % of the emissions were deposited on snow or ice surfaces. This caused a maximum albedo change of 0.007 and a surface radiative forcing of 0.03–0.04 W m−2, with local maxima of up to 0.63–0.77 W m−2. Overall, the fires had a small impact.
Nikolaos Evangeliou, Rona L. Thompson, Sabine Eckhardt, and Andreas Stohl
Atmos. Chem. Phys., 18, 15307–15327, https://doi.org/10.5194/acp-18-15307-2018, https://doi.org/10.5194/acp-18-15307-2018, 2018
Short summary
Short summary
We present BC inversions at high northern latitudes in 2013–2015. The emissions were high close to the gas flaring regions in Russia and in western Canada. The posterior emissions of BC at latitudes > 50° N were estimated as 560 ± 171 kt yr-1, smaller than in bottom-up inventories. Posterior concentrations over the Arctic compared with independent observations from flight and ship campaigns showed small biases. Seasonal maxima were estimated in summer months due to biomass burning, mainly in Europe.
Xin Lin, Philippe Ciais, Philippe Bousquet, Michel Ramonet, Yi Yin, Yves Balkanski, Anne Cozic, Marc Delmotte, Nikolaos Evangeliou, Nuggehalli K. Indira, Robin Locatelli, Shushi Peng, Shilong Piao, Marielle Saunois, Panangady S. Swathi, Rong Wang, Camille Yver-Kwok, Yogesh K. Tiwari, and Lingxi Zhou
Atmos. Chem. Phys., 18, 9475–9497, https://doi.org/10.5194/acp-18-9475-2018, https://doi.org/10.5194/acp-18-9475-2018, 2018
Short summary
Short summary
We simulate CH4 and CO2 using a zoomed global transport model with a horizontal resolution of ~50 km over South and East Asia, as well as a standard model version for comparison. Model performance is evaluated for both gases and versions at multiple timescales against a new collection of surface stations over this key GHG-emitting region. The evaluation at different timescales and comparisons between gases and model versions have implications for possible model improvements and inversions.
Nikolaos Evangeliou, Vladimir P. Shevchenko, Karl Espen Yttri, Sabine Eckhardt, Espen Sollum, Oleg S. Pokrovsky, Vasily O. Kobelev, Vladimir B. Korobov, Andrey A. Lobanov, Dina P. Starodymova, Sergey N. Vorobiev, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 18, 963–977, https://doi.org/10.5194/acp-18-963-2018, https://doi.org/10.5194/acp-18-963-2018, 2018
Short summary
Short summary
We present EC measurements from an uncertain region in terms of emissions (Russia). Its origin is quantified with a Lagrangian model that uses a recently developed feature that allows backward estimation of the specific source locations that contribute to the deposited mass. In NW European Russia transportation and domestic combustion from Finland was important. A systematic underestimation was found in W Siberia at places where gas flaring was important, implying miscalculation or sources.
Sabine Eckhardt, Massimo Cassiani, Nikolaos Evangeliou, Espen Sollum, Ignacio Pisso, and Andreas Stohl
Geosci. Model Dev., 10, 4605–4618, https://doi.org/10.5194/gmd-10-4605-2017, https://doi.org/10.5194/gmd-10-4605-2017, 2017
Short summary
Short summary
We extend the backward modelling technique in the existing model FLEXPART to substances deposited at the Earth’s surface by wet scavenging and dry deposition. This means that for existing measurements of a substance in snow, ice cores or rain samples the source regions can be determined. This will help the interpretation of the measurement as well as gaining information of emission strength at the source of the deposited substance.
Ondřej Tichý, Václav Šmídl, Radek Hofman, Kateřina Šindelářová, Miroslav Hýža, and Andreas Stohl
Atmos. Chem. Phys., 17, 12677–12696, https://doi.org/10.5194/acp-17-12677-2017, https://doi.org/10.5194/acp-17-12677-2017, 2017
Short summary
Short summary
In the fall of 2011, iodine-131 (131I) was detected at several radionuclide monitoring stations in central Europe. We estimate the source location and emission variation using only the available 131I measurements. Subsequently, we use the IAEA report about the source term for validation of our results. We find that our algorithm could successfully locate the actual release site. The findings are also in agreement with the values reported by the IAEA.
Nikolaos Evangeliou, Thomas Hamburger, Anne Cozic, Yves Balkanski, and Andreas Stohl
Atmos. Chem. Phys., 17, 8805–8824, https://doi.org/10.5194/acp-17-8805-2017, https://doi.org/10.5194/acp-17-8805-2017, 2017
Short summary
Short summary
This is the first paper that attempts to assess the source term of the Chernobyl accident using not only activity concentrations but also deposition measurements. This is done by using the FLEXPART model combined with a Bayesian inversion algorithm. Our results show that the altitude of the injection during the first days of the accident might have reached up to 3 km, in contrast to what has been already reported (2.2 km maximum), in order the model to better match observations.
Wei Min Hao, Alexander Petkov, Bryce L. Nordgren, Rachel E. Corley, Robin P. Silverstein, Shawn P. Urbanski, Nikolaos Evangeliou, Yves Balkanski, and Bradley L. Kinder
Geosci. Model Dev., 9, 4461–4474, https://doi.org/10.5194/gmd-9-4461-2016, https://doi.org/10.5194/gmd-9-4461-2016, 2016
Short summary
Short summary
We developed the most comprehensive dataset of daily BC emissions from forest, grassland, shrubland, and savanna fires over northern Eurasia at a 500 m × 500 m resolution from 2002 to 2015. We examined the daily, seasonal, and interannual variability of BC emissions from fires in different ecosystems in the geopolitical regions of Russia, eastern Asia, central and western Asia, and Europe. The results are essential for modeling the transport and deposition of fire-emitted BC to the Arctic.
Ondřej Tichý, Václav Šmídl, Radek Hofman, and Andreas Stohl
Geosci. Model Dev., 9, 4297–4311, https://doi.org/10.5194/gmd-9-4297-2016, https://doi.org/10.5194/gmd-9-4297-2016, 2016
Short summary
Short summary
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. We formulate a probabilistic model, where a full Bayesian estimation allows estimation of all tuning parameters from the measurements. The proposed algorithm is tested and compared with the state-of-the-art method on data from the European Tracer Experiment (ETEX), where advantages of the new method are demonstrated.
N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nøjgaard, and H. Skov
Atmos. Chem. Phys., 16, 7587–7604, https://doi.org/10.5194/acp-16-7587-2016, https://doi.org/10.5194/acp-16-7587-2016, 2016
Short summary
Short summary
In this study, we focused on how vegetation fires that occurred in northern Eurasia during the period 2002–2013 influenced the budget of BC in the Arctic. An average area of 250 000 km2 yr−1 was burned in northern Eurasia and the global emissions of BC ranged between 8.0 and 9.5 Tg yr−1, while 102 ± 29 kt yr−1 BC from biomass burning was deposited on the Arctic. About 46 % of the Arctic BC from vegetation fires originated from Siberia, 6 % from Kazakhstan, 5 % from Europe, and about 1 % from Mon
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Short summary
Processes affecting aerosol removal from the atmosphere are not fully understood. In this study we investigate to what extent atmospheric transport models can reproduce observed loss of aerosols. We compare measurements of radioactive isotopes, that attached to ambient sulfate aerosols during the 2011 Fukushima nuclear accident, to 19 models using identical emissions. Results indicate aerosol removal that is too fast in most models, and apply to aerosols that have undergone long-range transport.
N. Evangeliou, Y. Balkanski, A. Cozic, and A. P. Møller
Atmos. Chem. Phys., 13, 7183–7198, https://doi.org/10.5194/acp-13-7183-2013, https://doi.org/10.5194/acp-13-7183-2013, 2013
Related subject area
Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions
Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
Classification accuracy and compatibility across devices of a new Rapid-E+ flow cytometer
A 2-year intercomparison of three methods for measuring black carbon concentration at a high-altitude research station in Europe
The Fifth International Workshop on Ice Nucleation Phase 3 (FIN-03): Field Intercomparison of Ice Nucleation Measurements
Comparison of the LEO and CPMA-SP2 techniques for black-carbon mixing-state measurements
Aerosol trace element solubility determined using ultrapure water batch leaching: an intercomparison study of four different leaching protocols
Field comparison of dual- and single-spot Aethalometers: equivalent black carbon, light absorption, Ångström exponent and secondary brown carbon estimations
Comparison of the imaginary parts of the atmospheric refractive index structure parameter and aerosol flux based on different measurement methods
Spectral analysis approach for assessing the accuracy of low-cost air quality sensor network data
Challenges and solutions in determining dilution ratios and emission factors from chase measurements of passenger vehicles
Seasonally optimized calibrations improve low-cost sensor performance: long-term field evaluation of PurpleAir sensors in urban and rural India
Performance evaluation of portable dual-spot micro-aethalometers for source identification of black carbon aerosols: application to wildfire smoke and traffic emissions in the Pacific Northwest
Further validation of the estimates of the downwelling solar radiation at ground level in cloud-free conditions provided by the McClear service: the case of Sub-Saharan Africa and the Maldives Archipelago
Identifying optimal co-location calibration periods for low-cost sensors
Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments
Balloon-borne aerosol–cloud interaction studies (BACIS): field campaigns to understand and quantify aerosol effects on clouds
Correcting for filter-based aerosol light absorption biases at the Atmospheric Radiation Measurement program's Southern Great Plains site using photoacoustic measurements and machine learning
Development and evaluation of correction models for a low-cost fine particulate matter monitor
Relative errors in derived multi-wavelength intensive aerosol optical properties using cavity attenuated phase shift single-scattering albedo monitors, a nephelometer, and tricolour absorption photometer measurements
Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: comparison of measurement techniques for mass, number, and size
Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and water-soluble inorganic ions (NO3−, SO42−, NH4+, and Cl−) in PM2.5 over a heavily polluted megacity, Delhi
Measurement of black carbon emissions from multiple engine and source types using laser-induced incandescence: sensitivity to laser fluence
Compositional data analysis (CoDA) as a tool to evaluate a new low-cost settling-based PM10 sampling head in a desert dust source region
On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol
Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site
Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach
Evaluation of retrieval methods for planetary boundary layer height based on radiosonde data
Absorption instruments inter-comparison campaign at the Arctic Pallas station
Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor
Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 2: Spatiotemporal trends
The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission
Intercomparison of thermal–optical carbon measurements by Sunset and Desert Research Institute (DRI) analyzers using the IMPROVE_A protocol
Ångström exponent errors prevent accurate visibility measurement
Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites
Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope
Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments
Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples
Multi-year ACSM measurements at the central European research station Melpitz (Germany) – Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter
The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols
Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation
Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer
Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods
Intercomparison between the aerosol optical properties retrieved by different inversion methods from SKYNET sky radiometer observations over Qionghai and Yucheng in China
A comparison of lognormal and gamma size distributions for characterizing the stratospheric aerosol phase function from optical particle counter measurements
Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA
Field comparison of dry deposition samplers for collection of atmospheric mineral dust: results from single-particle characterization
On-flight intercomparison of three miniature aerosol absorption sensors using unmanned aerial systems (UASs)
Martine E. Mathieu-Campbell, Chuqi Guo, Andrew P. Grieshop, and Jennifer Richmond-Bryant
Atmos. Meas. Tech., 17, 6735–6749, https://doi.org/10.5194/amt-17-6735-2024, https://doi.org/10.5194/amt-17-6735-2024, 2024
Short summary
Short summary
The main source of measurement error from particulate matter PurpleAir sensors is relative humidity. Recent bias correction methods have not focused on the humid southeastern United States (US). To provide high-quality spatial and temporal data to inform community exposure in this area, our study developed and evaluated PurpleAir correction models for use in the warm–humid climate zones of the US. We found improved performance metrics, with error metrics decreasing by 16–23 % for our models.
Marleen A. E. Vos, Wim de Vries, G. F. (Ciska) Veen, Marcel R. Hoosbeek, and Frank J. Sterck
Atmos. Meas. Tech., 17, 6579–6594, https://doi.org/10.5194/amt-17-6579-2024, https://doi.org/10.5194/amt-17-6579-2024, 2024
Short summary
Short summary
Atmospheric deposition poses risks with high anthropogenic inputs. Current deposition measurement methods are labor-intensive. Ion exchange resin (IER) offers a promising, cost-effective alternative. We assessed IER for bulk deposition and throughfall, testing adsorption capacity, recovery efficiency and field performance. IER showed good adsorption and recovery and was unaffected by environmental conditions, showing potential for robust and efficient measurements of atmospheric deposition.
Branko Sikoparija, Predrag Matavulj, Isidora Simovic, Predrag Radisic, Sanja Brdar, Vladan Minic, Danijela Tesendic, Evgeny Kadantsev, Julia Palamarchuk, and Mikhail Sofiev
Atmos. Meas. Tech., 17, 5051–5070, https://doi.org/10.5194/amt-17-5051-2024, https://doi.org/10.5194/amt-17-5051-2024, 2024
Short summary
Short summary
We assess the suitability of a Rapid-E+ particle counter for use in pollen monitoring networks. The criterion was the ability of different devices to provide the same signal for the same pollen type, which would allow for unified reference libraries and recognition algorithms for Rapid-E+. We tested three devices and found notable differences between their fluorescence measurements. Each one showed potential for pollen identification, but the large variability between them needs to be addressed.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Véronique Pont, Mathilde Arnaud, Thierry Bourrianne, Maria Dias Alves, and Eric Gardrat
Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024, https://doi.org/10.5194/amt-17-3897-2024, 2024
Short summary
Short summary
The three most widely used techniques for measuring black carbon (BC) have been deployed continuously for 2 years at a French high-altitude research station. Despite a similar temporal variation in the BC load, we found significant biases by up to a factor of 8 between the three instruments. This study raises questions about the relevance of using these instruments for specific background sites, as well as the processing of their data, which can vary according to the atmospheric conditions.
Paul DeMott, Jessica Mirrielees, Sarah Petters, Daniel Cziczo, Markus Petters, Heinz Bingemer, Thomas Hill, Karl Froyd, Sarvesh Garimella, Gannet Hallar, Ezra Levin, Ian McCubbin, Anne Perring, Christopher Rapp, Thea Schiebel, Jann Schrod, Kaitlyn Suski, Daniel Weber, Martin Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah Brooks
EGUsphere, https://doi.org/10.5194/egusphere-2024-1744, https://doi.org/10.5194/egusphere-2024-1744, 2024
Short summary
Short summary
The Fifth International Ice Nucleation Workshop 3rd Phase (FIN-03) compared the ambient atmospheric performance of ice nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, most measurements agreed within one order of magnitude. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Arash Naseri, Joel C. Corbin, and Jason S. Olfert
Atmos. Meas. Tech., 17, 3719–3738, https://doi.org/10.5194/amt-17-3719-2024, https://doi.org/10.5194/amt-17-3719-2024, 2024
Short summary
Short summary
It is crucial to accurately measure the mixing states of light-absorbing carbon particles from emission sources like wildfires and biomass combustion to decrease climate forcing uncertainties. This study compares methods that measure light-absorbing carbon in the atmosphere. The CPMA-SP2 method offers more accurate results than traditional light-scattering methods, such as the leading-edge-only (LEO) method, thereby enhancing the accuracy of measuring the mixing states of light-absorbing carbon.
Rui Li, Prema Piyusha Panda, Yizhu Chen, Zhenming Zhu, Fu Wang, Yujiao Zhu, He Meng, Yan Ren, Ashwini Kumar, and Mingjin Tang
Atmos. Meas. Tech., 17, 3147–3156, https://doi.org/10.5194/amt-17-3147-2024, https://doi.org/10.5194/amt-17-3147-2024, 2024
Short summary
Short summary
We found that for ultrapure water batch leaching, the difference in specific experimental parameters, including agitation methods, filter pore size, and contact time, only led to a small and sometimes insignificant difference in determined aerosol trace element solubility. Furthermore, aerosol trace element solubility determined using four common ultrapure water leaching protocols showed good agreement.
Liangbin Wu, Cheng Wu, Tao Deng, Dui Wu, Mei Li, Yong Jie Li, and Zhen Zhou
Atmos. Meas. Tech., 17, 2917–2936, https://doi.org/10.5194/amt-17-2917-2024, https://doi.org/10.5194/amt-17-2917-2024, 2024
Short summary
Short summary
Field comparison of dual-spot (AE33) and single-spot (AE31) Aethalometers by full-year collocated measurements suggests that site-specific correction factors are needed to ensure the long-term data continuity for AE31-to-AE33 transition in black carbon monitoring networks; babs agrees well between AE33 and AE31, with slight variations by wavelength (slope: 0.87–1.04; R2: 0.95–0.97). A ~ 20 % difference in secondary brown carbon light absorption was found between AE33 and AE31.
Renmin Yuan, Hongsheng Zhang, Jiajia Hua, Hao Liu, Peizhe Wu, Xingyu Zhu, and Jianning Sun
Atmos. Meas. Tech., 17, 2089–2102, https://doi.org/10.5194/amt-17-2089-2024, https://doi.org/10.5194/amt-17-2089-2024, 2024
Short summary
Short summary
Previously, a new method for atmospheric aerosol flux was proposed, and a large-aperture scintillometer was developed for experimental measurements, but the method was consistently not validated. In this paper, eddy correlation experiments for aerosol vertical transport fluxes were conducted to verify the reliability of the previous large-aperture scintillometer method. The experimental results also show that urban green land is a sink area for aerosol particles.
Vijay Kumar, Dinushani Senarathna, Supraja Gurajala, William Olsen, Shantanu Sur, Sumona Mondal, and Suresh Dhaniyala
Atmos. Meas. Tech., 16, 5415–5427, https://doi.org/10.5194/amt-16-5415-2023, https://doi.org/10.5194/amt-16-5415-2023, 2023
Short summary
Short summary
Low-cost sensors are becoming increasingly important in air quality monitoring due to their affordability and ease of deployment. While low-cost sensors have the potential to democratize air quality monitoring, their use must be accompanied by careful interpretation and validation of the data. Analysis of their long-term data record clearly shows that the reported data from low-cost sensors may not be equally sensitive to all emission sources, which can complicate policy-making.
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023, https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary
Short summary
Emission factor calculation was studied to provide models that do not use traditional CO2-based calculation in exhaust plume analysis. Two types of models, one based on the physical dependency of dilution of the exhaust flow rate and speed and two based on the statistical, measured dependency of dilution of the exhaust flow rate, acceleration, speed, altitude change, and/or wind, were developed. These methods could possibly be extended to also calculate non-exhaust emissions in the future.
Mark Joseph Campmier, Jonathan Gingrich, Saumya Singh, Nisar Baig, Shahzad Gani, Adithi Upadhya, Pratyush Agrawal, Meenakshi Kushwaha, Harsh Raj Mishra, Ajay Pillarisetti, Sreekanth Vakacherla, Ravi Kant Pathak, and Joshua S. Apte
Atmos. Meas. Tech., 16, 4357–4374, https://doi.org/10.5194/amt-16-4357-2023, https://doi.org/10.5194/amt-16-4357-2023, 2023
Short summary
Short summary
We studied a low-cost air pollution sensor called PurpleAir PA-II in three different locations in India (Delhi, Hamirpur, and Bangalore) to characterize its performance. We compared its signal to more expensive reference sensors and found that the PurpleAir sensor was precise but inaccurate without calibration. We created a custom calibration equation for each location, which improved the accuracy of the PurpleAir sensor, and found that calibrations should be adjusted for different seasons.
Mrinmoy Chakraborty, Amanda Giang, and Naomi Zimmerman
Atmos. Meas. Tech., 16, 2333–2352, https://doi.org/10.5194/amt-16-2333-2023, https://doi.org/10.5194/amt-16-2333-2023, 2023
Short summary
Short summary
Black carbon (BC) has important climate and human health impacts. Aethalometers are used to measure BC, but they are hard to deploy in many environments (remote, mobile). We evaluate how well a portable micro-aethalometer (MA300) performs compared to a reference aethalometer at a road-side site in Vancouver, BC, Canada, during regular and wildfire conditions. We find that the MA300 can reproduce overall patterns in concentrations and source characterization but with some underestimation.
William Wandji Nyamsi, Yves-Marie Saint-Drenan, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 16, 2001–2036, https://doi.org/10.5194/amt-16-2001-2023, https://doi.org/10.5194/amt-16-2001-2023, 2023
Short summary
Short summary
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By comparing McClear estimates to 1 min measurements performed in Sub-Saharan Africa and the Maldives Archipelago in the Indian Ocean, McClear accurately estimates global irradiance and tends to overestimate direct irrradiance. This work establishes a general overview of the performance of the McClear service.
Misti Levy Zamora, Colby Buehler, Abhirup Datta, Drew R. Gentner, and Kirsten Koehler
Atmos. Meas. Tech., 16, 169–179, https://doi.org/10.5194/amt-16-169-2023, https://doi.org/10.5194/amt-16-169-2023, 2023
Short summary
Short summary
We assessed five pairs of co-located reference and low-cost sensor data sets (PM2.5, O3, NO2, NO, and CO) to make recommendations for best practices regarding the field calibration of low-cost air quality sensors. We found diminishing improvements for calibration periods longer than about 6 weeks for all sensors and that co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of the desired measurement setting.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Joshin Kumar, Theo Paik, Nishit J. Shetty, Patrick Sheridan, Allison C. Aiken, Manvendra K. Dubey, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 15, 4569–4583, https://doi.org/10.5194/amt-15-4569-2022, https://doi.org/10.5194/amt-15-4569-2022, 2022
Short summary
Short summary
Accurate long-term measurement of aerosol light absorption is vital for assessing direct aerosol radiative forcing. Light absorption by aerosols at the US Department of Energy long-term climate monitoring SGP site is measured using the Particle Soot Absorption Photometer (PSAP), which suffers from artifacts and biases difficult to quantify. Machine learning offers a promising path forward to correct for biases in the long-term absorption dataset at the SGP site and similar Class-I areas.
Brayden Nilson, Peter L. Jackson, Corinne L. Schiller, and Matthew T. Parsons
Atmos. Meas. Tech., 15, 3315–3328, https://doi.org/10.5194/amt-15-3315-2022, https://doi.org/10.5194/amt-15-3315-2022, 2022
Short summary
Short summary
Correction models were developed using PurpleAir–Federal Equivalent Method (FEM) hourly fine particulate matter (PM2.5) observation colocation sites across North America (NA). These were evaluated in comparison with four existing models at an additional 15 NA colocation sites. This study provides a robust framework for the evaluation of low-cost PM2.5 sensor correction models using the Canadian AQHI+ system and presents an optimized general correction model for North American PA sensors.
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
Joel C. Corbin, Tobias Schripp, Bruce E. Anderson, Greg J. Smallwood, Patrick LeClercq, Ewan C. Crosbie, Steven Achterberg, Philip D. Whitefield, Richard C. Miake-Lye, Zhenhong Yu, Andrew Freedman, Max Trueblood, David Satterfield, Wenyan Liu, Patrick Oßwald, Claire Robinson, Michael A. Shook, Richard H. Moore, and Prem Lobo
Atmos. Meas. Tech., 15, 3223–3242, https://doi.org/10.5194/amt-15-3223-2022, https://doi.org/10.5194/amt-15-3223-2022, 2022
Short summary
Short summary
The combustion of sustainable aviation fuels in aircraft engines produces particulate matter (PM) emissions with different properties than conventional fuels due to changes in fuel composition. Consequently, the response of various diagnostic instruments to PM emissions may be impacted. We found no significant instrument biases in terms of particle mass, number, and size measurements for conventional and sustainable aviation fuel blends despite large differences in the magnitude of emissions.
Himadri Sekhar Bhowmik, Ashutosh Shukla, Vipul Lalchandani, Jay Dave, Neeraj Rastogi, Mayank Kumar, Vikram Singh, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 15, 2667–2684, https://doi.org/10.5194/amt-15-2667-2022, https://doi.org/10.5194/amt-15-2667-2022, 2022
Short summary
Short summary
This study presents comparisons between online and offline measurements of both refractory and non-refractory aerosol. This study shows differences between the measurements, related to either the limitations of the instrument (e.g., aerosol mass spectrometer only observing non-refractory aerosol) or known interferences with the technique (e.g., volatilization or reactions). The findings highlight the measurement methods' accuracy and imply the particular type of measurements needed.
Ruoyang Yuan, Prem Lobo, Greg J. Smallwood, Mark P. Johnson, Matthew C. Parker, Daniel Butcher, and Adrian Spencer
Atmos. Meas. Tech., 15, 241–259, https://doi.org/10.5194/amt-15-241-2022, https://doi.org/10.5194/amt-15-241-2022, 2022
Short summary
Short summary
The relationship between the non-volatile particulate matter (nvPM) mass emissions produced by different engine sources and the response of the LII 300 instrument, used for regulatory measurements of nvPM mass emissions in aircraft engine certification tests, was investigated for different sources and operating conditions. Laser fluence optimisation was required for real-time nvPM mass concentration measurements. These results will inform the development of updated calibration protocols.
Yangjunjie Xu-Yang, Rémi Losno, Fabrice Monna, Jean-Louis Rajot, Mohamed Labiadh, Gilles Bergametti, and Béatrice Marticorena
Atmos. Meas. Tech., 14, 7657–7680, https://doi.org/10.5194/amt-14-7657-2021, https://doi.org/10.5194/amt-14-7657-2021, 2021
Short summary
Short summary
Suspended particles in air (aerosols) are sampled with a pump drawing ambient air through a filter. The air inlet must be carefully designed to control the size of sampled particles and to reject the largest ones (> 10 µm). A low-cost sampling head for determination of the finest fraction of aerosol (> 10 µm in diameter) is presented. Compositional data analysis (CoDA) tools are extensively used here to demonstrate similarity between the low-cost sampling head and other existing systems.
Chunshui Lin, Darius Ceburnis, Anna Trubetskaya, Wei Xu, William Smith, Stig Hellebust, John Wenger, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Meas. Tech., 14, 6905–6916, https://doi.org/10.5194/amt-14-6905-2021, https://doi.org/10.5194/amt-14-6905-2021, 2021
Short summary
Short summary
Source apportionment of solid-fuel-burning emissions can be complicated by the use of different fuels, stoves, and burning conditions. Here, the organic aerosol mass spectra produced from burning a range of solid fuels in several stoves were compared. This study accounts for the source variability and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations, holding significant implications for public health and policymakers.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021, https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Short summary
Reliable values of mass absorption cross sections (MACs) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by a continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation in BC in the Arctic.
Krista Luoma, Aki Virkkula, Pasi Aalto, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 14, 6419–6441, https://doi.org/10.5194/amt-14-6419-2021, https://doi.org/10.5194/amt-14-6419-2021, 2021
Short summary
Short summary
The study presents a comparison of three absorption photometers that measured ambient aerosol particles at a boreal forest site. The study aims to better understand problems related to filter-based measurements. Results show how different correction algorithms, which are used to produce the data, affect the derived optical properties of aerosol particles.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Eija Asmi, John Backman, Henri Servomaa, Aki Virkkula, Maria I. Gini, Konstantinos Eleftheriadis, Thomas Müller, Sho Ohata, Yutaka Kondo, and Antti Hyvärinen
Atmos. Meas. Tech., 14, 5397–5413, https://doi.org/10.5194/amt-14-5397-2021, https://doi.org/10.5194/amt-14-5397-2021, 2021
Short summary
Short summary
Absorbing aerosols are warming the planet and accurate measurements of their concentrations in pristine environments are needed. We applied eight different absorbing-aerosol measurement methods in a field campaign at the Arctic Pallas station. The filter-based techniques were found to be the most sensitive to detect the minuscule amounts of black carbon present, showing a 40 % agreement between them. Our results help to reduce uncertainties in absorbing aerosol measurements.
Karoline K. Barkjohn, Brett Gantt, and Andrea L. Clements
Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, https://doi.org/10.5194/amt-14-4617-2021, 2021
Short summary
Short summary
Although widely used, air sensor measurements are often biased. In this work we develop a correction with a relative humidity term that reduces the bias and improves consistency between different United States regions. This correction equation, along with proposed data cleaning criteria, has been applied to PurpleAir PM2.5 measurements across the US on the AirNow Fire and Smoke Map and has the potential to be successfully used in other air quality and public health applications.
Richard H. Moore, Elizabeth B. Wiggins, Adam T. Ahern, Stephen Zimmerman, Lauren Montgomery, Pedro Campuzano Jost, Claire E. Robinson, Luke D. Ziemba, Edward L. Winstead, Bruce E. Anderson, Charles A. Brock, Matthew D. Brown, Gao Chen, Ewan C. Crosbie, Hongyu Guo, Jose L. Jimenez, Carolyn E. Jordan, Ming Lyu, Benjamin A. Nault, Nicholas E. Rothfuss, Kevin J. Sanchez, Melinda Schueneman, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Nicholas L. Wagner, and Jian Wang
Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, https://doi.org/10.5194/amt-14-4517-2021, 2021
Short summary
Short summary
Atmospheric particles are everywhere and exist in a range of sizes, from a few nanometers to hundreds of microns. Because particle size determines the behavior of chemical and physical processes, accurately measuring particle sizes is an important and integral part of atmospheric field measurements! Here, we discuss the performance of two commonly used particle sizers and how changes in particle composition and optical properties may result in sizing uncertainties, which we quantify.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech., 14, 4355–4374, https://doi.org/10.5194/amt-14-4355-2021, https://doi.org/10.5194/amt-14-4355-2021, 2021
Short summary
Short summary
Infrared spectrometry can be applied in routine monitoring of atmospheric particles to give comprehensive characterization of the organic material by bond rather than species. Using this technique, the concentrations of particle organic material were found to decrease 2011–2016 in the southeastern US, driven by a decline in highly aged material, concurrent with declining anthropogenic emissions. However, an increase was observed in the fraction of more moderately aged organic matter.
Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Douglas A. Day, Jason C. Schroder, Dongwook Kim, Jack E. Dibb, Maximilian Dollner, Bernadett Weinzierl, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 3631–3655, https://doi.org/10.5194/amt-14-3631-2021, https://doi.org/10.5194/amt-14-3631-2021, 2021
Short summary
Short summary
We utilize a set of high-quality datasets collected during the NASA Atmospheric Tomography Mission to investigate the impact of differences in observable particle sizes across aerosol instruments in aerosol measurement comparisons. Very good agreement was found between chemically and physically derived submicron aerosol volume. Results support a lack of significant unknown biases in the response of an Aerodyne aerosol mass spectrometer (AMS) when sampling remote aerosols across the globe.
Xiaolu Zhang, Krystyna Trzepla, Warren White, Sean Raffuse, and Nicole Pauly Hyslop
Atmos. Meas. Tech., 14, 3217–3231, https://doi.org/10.5194/amt-14-3217-2021, https://doi.org/10.5194/amt-14-3217-2021, 2021
Short summary
Short summary
Three models of carbon analyzer were used in the past decade to measure carbonaceous particles from samples collected within the Chemical Speciation Network. This study compares results from these analyzer models to investigate the impact on long-term data from instrument differences. Good agreement was found among the three models for total carbon, organic carbon, and elemental carbon, while the reasons for and implications of some notable differences in their subtractions are investigated.
Hengnan Guo, Zefeng Zhang, Lin Jiang, Junlin An, Bin Zhu, Hanqing Kang, and Jing Wang
Atmos. Meas. Tech., 14, 2441–2450, https://doi.org/10.5194/amt-14-2441-2021, https://doi.org/10.5194/amt-14-2441-2021, 2021
Short summary
Short summary
Visibility is an indicator of atmospheric transparency and is widely used in many research fields. Although efforts have been made to improve the performance of visibility meters, a significant error exists in measured visibility data. This is because current methods of visibility measurement include a false assumption, which leads to the long-term neglect of an important source of visibility errors. Without major adjustments to current methods, it is not possible to obtain reliable data.
Rosaria E. Pileci, Robin L. Modini, Michele Bertò, Jinfeng Yuan, Joel C. Corbin, Angela Marinoni, Bas Henzing, Marcel M. Moerman, Jean P. Putaud, Gerald Spindler, Birgit Wehner, Thomas Müller, Thomas Tuch, Arianna Trentini, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021, https://doi.org/10.5194/amt-14-1379-2021, 2021
Short summary
Short summary
Black carbon (BC), which is an important constituent of atmospheric aerosols, remains difficult to quantify due to various limitations of available methods. This study provides an extensive comparison of co-located field measurements, applying two methods based on different principles. It was shown that both methods indeed quantify the same aerosol property – BC mass concentration. The level of agreement that can be expected was quantified, and some reasons for discrepancy were identified.
Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier
Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, https://doi.org/10.5194/amt-13-6945-2020, 2020
Short summary
Short summary
The Mann–Kendall trend test requires prewhitening in the presence of serially correlated data. The effects of five prewhitening methods and time granularity, autocorrelation, temporal segmentation and length of the time series on the statistical significance and the slope are studies for seven atmospheric datasets. Finally, a new algorithm using three prewhitening methods is proposed in order to optimize the power of the test, the amount of erroneous false positive trends and the slope estimate.
Charlotte M. Beall, Dolan Lucero, Thomas C. Hill, Paul J. DeMott, M. Dale Stokes, and Kimberly A. Prather
Atmos. Meas. Tech., 13, 6473–6486, https://doi.org/10.5194/amt-13-6473-2020, https://doi.org/10.5194/amt-13-6473-2020, 2020
Short summary
Short summary
Ice-nucleating particles (INPs) can influence multiple climate-relevant cloud properties. Previous studies report INP observations from precipitation samples that were stored prior to analysis, yet storage protocols vary widely, and little is known about how storage impacts INPs. This study finds that storing samples at −20 °C best preserves INP concentrations and that significant losses of small INPs occur across all storage protocols.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Hongyu Guo, Duseong S. Jo, Anne V. Handschy, Demetrios Pagonis, Jason C. Schroder, Melinda K. Schueneman, Michael J. Cubison, Jack E. Dibb, Alma Hodzic, Weiwei Hu, Brett B. Palm, and Jose L. Jimenez
Atmos. Meas. Tech., 13, 6193–6213, https://doi.org/10.5194/amt-13-6193-2020, https://doi.org/10.5194/amt-13-6193-2020, 2020
Short summary
Short summary
Collecting particulate matter, or aerosols, onto filters to be analyzed offline is a widely used method to investigate the mass concentration and chemical composition of the aerosol, especially the inorganic portion. Here, we show that acidic aerosol (sulfuric acid) collected onto filters and then exposed to high ammonia mixing ratios (from human emissions) will lead to biases in the ammonium collected onto filters, and the uptake of ammonia is rapid (< 10 s), which impacts the filter data.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
Martin Rigler, Luka Drinovec, Gašper Lavrič, Athanasia Vlachou, André S. H. Prévôt, Jean Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Kranjc, Janja Turšič, Anthony D. A. Hansen, and Griša Močnik
Atmos. Meas. Tech., 13, 4333–4351, https://doi.org/10.5194/amt-13-4333-2020, https://doi.org/10.5194/amt-13-4333-2020, 2020
Short summary
Short summary
Carbonaceous aerosols are a large fraction of fine particulate matter. They are extremely diverse, and they directly impact air quality, visibility, cloud formation and public health. In this paper we present a new instrument and new method to measure carbon content in particulate matter in real time and at a high time resolution. The new method was validated in a 1-month winter field campaign in Ljubljana, Slovenia.
Rosa Delia García-Cabrera, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Mario Pó, Ramón Ramos, and Kees Hoogendijk
Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, https://doi.org/10.5194/amt-13-2601-2020, 2020
Short summary
Short summary
Spectral direct UV–visible normal solar irradiance, measured with an EKO MS-711 grating spectroradiometer at the Izaña Atmospheric Observatory (Spain), has been used to determine aerosol optical depth (AOD) at several wavelengths, and has been compared to synchronous AOD measurements from a reference AERONET (Aerosol RObotic NETwork) Cimel sun photometer.
Yan Zheng, Xi Cheng, Keren Liao, Yaowei Li, Yong Jie Li, Ru-Jin Huang, Weiwei Hu, Ying Liu, Tong Zhu, Shiyi Chen, Limin Zeng, Douglas R. Worsnop, and Qi Chen
Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, https://doi.org/10.5194/amt-13-2457-2020, 2020
Short summary
Short summary
This paper provides important information to help researchers to understand the mass quantification and source apportionment by Aerodyne aerosol mass spectrometers.
Minxing Si, Ying Xiong, Shan Du, and Ke Du
Atmos. Meas. Tech., 13, 1693–1707, https://doi.org/10.5194/amt-13-1693-2020, https://doi.org/10.5194/amt-13-1693-2020, 2020
Short summary
Short summary
The study evaluated the performance of a low-cost PM sensor in ambient conditions and calibrated its readings using simple linear regression (SLR), multiple linear regression (MLR), and two more powerful machine-learning algorithms with random search techniques for the best model architectures. The two machine-learning algorithms are XGBoost and a feedforward neural network (NN).
Zhe Jiang, Minzheng Duan, Huizheng Che, Wenxing Zhang, Teruyuki Nakajima, Makiko Hashimoto, Bin Chen, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 1195–1212, https://doi.org/10.5194/amt-13-1195-2020, https://doi.org/10.5194/amt-13-1195-2020, 2020
Short summary
Short summary
This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, which are two new sites of SKYNET. The seasonal variability of the aerosol properties over the two sites were investigated based on SKYRAD.pack V5.0. The validation results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Andebo Waza, Kilian Schneiders, Jan May, Sergio Rodríguez, Bernd Epple, and Konrad Kandler
Atmos. Meas. Tech., 12, 6647–6665, https://doi.org/10.5194/amt-12-6647-2019, https://doi.org/10.5194/amt-12-6647-2019, 2019
Short summary
Short summary
Deposition or other passive measurement techniques are used to sample mineral dust from the atmosphere. However, there exist a multitude of different collection instruments with different, usually not well-characterized sampling efficiencies, so the resulting data might be considerably biased with respect to their size representatively. In the paper, we report on collection properties of different deposition and other passive samplers based on single-particle measurements.
Michael Pikridas, Spiros Bezantakos, Griša Močnik, Christos Keleshis, Fred Brechtel, Iasonas Stavroulas, Gregoris Demetriades, Panayiota Antoniou, Panagiotis Vouterakos, Marios Argyrides, Eleni Liakakou, Luka Drinovec, Eleni Marinou, Vassilis Amiridis, Mihalis Vrekoussis, Nikolaos Mihalopoulos, and Jean Sciare
Atmos. Meas. Tech., 12, 6425–6447, https://doi.org/10.5194/amt-12-6425-2019, https://doi.org/10.5194/amt-12-6425-2019, 2019
Short summary
Short summary
This work evaluates the performance of three sensors that monitor black carbon (soot). These sensors exhibit similar behavior to their rack-mounted counterparts and are therefore promising for more extended use. A reconstruction of the black carbon mass vertical distribution above Athens, Greece, is shown using drones, similar to those acquired by remote-sensing techniques. The potential of combining miniature sensors with drones for at least the lower part of the atmosphere is exhibited.
Cited articles
Abida, R. and Bocquet, M.: Targeting of observations for accidental atmospheric
release monitoring, Atmos. Environ., 43, 6312–6327, 2009. a
ACRO: Note Technique relative à l'incident du 31 octobre 2001 et aux
retombées des incidents ruthénium survenus à Cogéma-La Hague
en 2001, HEROUVILLE ST CLAIR, Report Number INIS-FR-08-1453, 17 pp., available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:40007585 (last access: 25 May 2020), 2002 (in French). a
Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Conil, S., Geever, M., Laurila, T., Lavrič, J., Lopez, M., Moncrieff, J., Necki, J., Ramonet, M., Schmidt, M., Steinbacher, M., and Tarniewicz, J.: Towards better error statistics for atmospheric inversions of methane surface fluxes, Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, 2013. a
Bernardo, J. and Smith, A.: Bayesian theory, vol. 405, John Wiley & Sons,
Hoboken, USA,
2009. a
Bishop, C.: Pattern recognition and machine learning, Springer,
New York, USA,
2006. a
Bossew, P., Gering, F., Petermann, E., Hamburger, T., Katzlberger, C.,
Hernandez-Ceballos, M., De Cort, M., Gorzkiewicz, K., Kierepko, R., and
Mietelski, J.: An episode of Ru-106 in air over Europe,
September–October 2017 – Geographical distribution of inhalation dose
over Europe, J. Environ. Radioactiv., 205, 79–92, 2019. a
Brunner, D., Henne, S., Keller, C. A., Reimann, S., Vollmer, M. K., O'Doherty, S., and Maione, M.: An extended Kalman-filter for regional scale inverse emission estimation, Atmos. Chem. Phys., 12, 3455–3478, https://doi.org/10.5194/acp-12-3455-2012, 2012. a
Carlton, W. and Denham, M.: Assessment of selected fission products in the
Savannah River Site environment, Tech. rep., Westinghouse Savannah River
Co., https://doi.org/10.2172/554138, 1997. a
Cassiani, M., Stohl, A., and Brioude, J.: Lagrangian stochastic modelling of
dispersion in the convective boundary layer with skewed turbulence conditions
and a vertical density gradient: Formulation and implementation in the
FLEXPART model, Bound.-Lay. Meteorol., 154, 367–390, 2015. a
Chang, J. and Hanna, S.: Air quality model performance evaluation, Meteorol.
Atmos. Phys., 87, 167–196, 2004. a
Chz, I.: Zpráva o radiační situaci na území ČSSR
po havárii jaderné elektrárny Černobyl, Prague Institut
hygieny a epidemiologie, Centrum hygieny záření,
1987 (in Czech). a
De Meutter, P. and Hoffman, I.: Bayesian source reconstruction of an anomalous
Selenium-75 release at a nuclear research institute, J.
Environ. Radioactiv., 218, 106225, https://doi.org/10.1016/j.jenvrad.2020.106225, 2020. a
De Meutter, P., Camps, J., Delcloo, A., and Termonia, P.: Source localisation
and its uncertainty quantification after the third DPRK nuclear test,
Sci. Rep.-UK, 8, 10155, https://doi.org/10.1038/s41598-018-28403-z, 2018. a, b
De Meutter, P., Camps, J., Delcloo, A., and Termonia, P.: Source Localization of Ruthenium-106 Detections in Autumn 2017 Using Inverse Modelling, in: Air Pollution Modeling and its Application XXVI. ITM 2018, edited by: Mensink, C., Gong, W., and Hakami, A., Springer Proceedings in Complexity, Springer, Cham, https://doi.org/10.1007/978-3-030-22055-6_15, 2020. a, b, c
Draxler, R. and Hess, G.: Description of the HYSPLIT_4 modeling system, NOAA Technical Memorandum ERL ARL-224, Silver Spring, Maryland, USA, 1997. a
Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.: Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling, Atmos. Chem. Phys., 8, 3881–3897, https://doi.org/10.5194/acp-8-3881-2008, 2008. a
Evangeliou, N., Hamburger, T., Cozic, A., Balkanski, Y., and Stohl, A.: Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements, Atmos. Chem. Phys., 17, 8805–8824, https://doi.org/10.5194/acp-17-8805-2017, 2017. a, b, c
Forster, C., Stohl, A., and Seibert, P.: Parameterization of convective
transport in a Lagrangian particle dispersion model and its evaluation,
J. Appl. Meteorol. Clim., 46, 403–422, 2007. a
Grythe, H., Kristiansen, N. I., Groot Zwaaftink, C. D., Eckhardt, S., Ström, J., Tunved, P., Krejci, R., and Stohl, A.: A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10, Geosci. Model Dev., 10, 1447–1466, https://doi.org/10.5194/gmd-10-1447-2017, 2017. a
Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, 2016. a
Hýža, M. and Rulík, P.: Low-level atmospheric radioactivity
measurement using a NaI (Tl) spectrometer during aerosol sampling,
Appl. Radiat. Isotopes, 126, 225–227, 2017. a
Kovalets, I. and Romanenko, A.: Detection of ruthenium-106 in 2017:
meteorological analysis of the potential sources, research report,
https://doi.org/10.13140/RG.2.2.36537.67685, 2017. a, b
Kristiansen, N., Stohl, A., Prata, A., Richter, A., Eckhardt, S., Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T., and Stebel, K.: Remote sensing and
inverse transport modeling of the Kasatochi eruption sulfur dioxide cloud,
J. Geophys. Res.-Atmos., 115, 1984–2012, 2010. a
Liu, Y., Haussaire, J.-M., Bocquet, M., Roustan, Y., Saunier, O., and Mathieu,
A.: Uncertainty quantification of pollutant source retrieval: comparison of
Bayesian methods with application to the Chernobyl and Fukushima
Daiichi accidental releases of radionuclides, Q. J.
Roy. Meteor. Soc., 143, 2886–2901, 2017. a
Masson, O., Baeza, A., Bieringer, J., Brudecki, K., Bucci, S., Cappai, M., Carvalho, F. P., Connan, O., Cosma, C., Dalheimer, A., Didier, D., Depuydt, G., De Geer, L. E., De Vismes, A., Gini, L., Groppi, F., Gudnason, K., Gurriaran, R., Hainz, D., Halldórsson, Ó., Hammond, D., Hanley, O., Holeý, K., Homoki, Zs., Ioannidou, A., Isajenko, K., Jankovic, M., Katzlberger, C., Kettunen, M., Kierepko, R., Kontro, R., Kwakman, P. J. M., Lecomte, M., Leon Vintro, L., Leppänen, A.-P., Lind, B., Lujaniene, G., McGinnity, P., Mahon, C. M., Malá, H., Manenti, S., Manolopoulou, M., Mattila, A., Mauring, A., Mietelski, J. W., Møller, B., Nielsen, S. P., Nikolic, J., Overwater, R. M. W., Pálsson, S. E., Papastefanou, C., Penev, I., Pham, M. K., Povinec, P. P., Ramebäck, H., Reis, M. C., Ringer, W., Rodriguez, A., Rulík, P., Saey, P. R. J., Samsonov, V., Schlosser, C., Sgorbati, G., Silobritiene, B. V., Söderström, C., Sogni, R., Solier, L., Sonck, M., Steinhauser, G., Steinkopff, T., Steinmann, P., Stoulos, S., Sýkora, I., Todorovic, D., Tooloutalaie, N., Tositti, L., Tschiersch, J., Ugron, A., Vagena, E., Vargas, A., Wershofen, H., and Zhukova, O.: Tracking of
airborne radionuclides from the damaged Fukushima Dai-ichi nuclear
reactors by European networks, Environ. Sci. Technol., 45,
7670–7677, 2011. a
Masson, O., Steinhauser, G., Wershofen, H., Mietelski, J. W., Fischer, H. W.,
Pourcelot, L., Saunier, O., Bieringer, J., Steinkopff, T., Hýža, M.,
Moller, B., Bowyer, T. W., Dalaka, E., Dalheimer, A., de Vismes-Ott, A.,
Eleftheriadis, K., Forte, M., Gasco Leonarte, C., Gorzkiewicz, K., Homoki,
Z., Isajenko, K., Karhunen, T., Katzlberger, C., Kierepko, R.,
Kovendiné Kónyi, J., Malá, H., Nikolic, J., Povinec, P. P., Rajacic, M.,
Ringer, W., Rulík, P., Rusconi, R., Sáfrány, G., Sykora, I., Todorovic,
D., Tschiersch, J., Ungar, K., and Zorko, B.: Potential Source Apportionment
and Meteorological Conditions Involved in Airborne 131I Detections in
January/February 2017 in Europe, Environ. Sci. Technol.,
52, 8488–8500, 2018. a
Masson, O., Steinhauser, G., Zok, D., Saunier, O., Angelov, H., Babić, D., Bečková, V., Bieringer, J., Bruggeman, M., Burbidge, C. I., Conil, S., Dalheimer, A., De Geer, L.-E., de Vismes Ott, A., Eleftheriadis, K., Estier, S., Fischer, H., Garavaglia, M. G., Gasco Leonarte, C., Gorzkiewicz, K., Hainz, D., Hoffman, I., Hýža, M., Isajenko, K., Karhunen, T., Kastlander, J., Katzlberger, C., Kierepko, R., Knetsch, G.-J., Kövendiné Kónyi, J., Lecomte, M., Mietelski, J. W., Min, P., Møller, B., Nielsen, S. P., Nikolic, J., Nikolovska, L., Penev, I., Petrinec, B., Povinec, P. P., Querfeld, R., Raimondi, O., Ransby, D., Ringer, W., Romanenko, O., Rusconi, R., Saey, P. R. J., Samsonov, V., Šilobritiene, B., Simion, E., Söderström, C.,Šoštarić, M., Steinkopff, T., Steinmann, P., Sýkora, I., Tabachnyi, L., Todorovic, D., Tomankiewicz, E., Tschiersch, J., Tsibranski, R., Tzortzis, M., Ungar, K., Vidic, A., Weller, A., Wershofen, H., Zagyvai, P., Zalewska, T., and Zapata García, D. and Zorko, B.:
Airborne concentrations and chemical considerations of radioactive ruthenium
from an undeclared major nuclear release in 2017, P. Natl.
Acad. Sci., 116, 16750–16759, 2019. a, b, c, d, e
Minty, B. and Hovgaard, J.: Reducing noise in gamma-ray spectrometry using
spectral component analysis, Explor. Geophys., 33, 172–176, 2002. a
Nikitina, O. and Slobodenyuk, I.: The French Newspaper Le Figaro Claims
That a Possible Source of Emissions of Ruthenium Could Be Russian
Mayak, Tech. rep., IBRAE, available at: http://en.ibrae.ac.ru/newstext/889/ (last access: 25 May 2020), 2018. a
Nisbet, E. and Weiss, R.: Top-down versus bottom-up, Science, 328, 1241–1243,
2010. a
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019. a, b, c
Seibert, P.: Iverse modelling with a Lagrangian particle disperion model:
application to point releases over limited time intervals, in: Air Pollution Modeling and Its Application XIV, edited by: Gryning, S. E. and Schiermeier, F. A., Springer, Boston, MA, USA, 381–389, https://doi.org/10.1007/0-306-47460-3_38, 2001. a
Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004. a
Šmídl, V. and Quinn, A.: The Variational Bayes Method in Signal
Processing, Springer, Berlin, Heidelberg, Germany, 2006. a
Song, S., Selin, N. E., Soerensen, A. L., Angot, H., Artz, R., Brooks, S., Brunke, E.-G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T. M., Jaffe, D. A., Kang, S., Kelley, P., Luke, W. T., Magand, O., Marumoto, K., Pfaffhuber, K. A., Ren, X., Sheu, G.-R., Slemr, F., Warneke, T., Weigelt, A., Weiss-Penzias, P., Wip, D. C., and Zhang, Q.: Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling, Atmos. Chem. Phys., 15, 7103–7125, https://doi.org/10.5194/acp-15-7103-2015, 2015. a
Stein, A., Draxler, R., Rolph, G., Stunder, B., Cohen, M., and Ngan, F.:
NOAA's HYSPLIT atmospheric transport and dispersion modeling system,
B. Am. Meteorol. Soc., 96, 2059–2077, 2015. a
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a
Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O'Doherty, S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.: An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons, Atmos. Chem. Phys., 9, 1597–1620, https://doi.org/10.5194/acp-9-1597-2009, 2009.
a
Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313–2343, https://doi.org/10.5194/acp-12-2313-2012, 2012. a, b
Takiar, V., Voong, K., Gombos, D., Mourtada, F., Rechner, L., Lawyer, A.,
Morrison, W., Garden, A., and Beadle, B.: A choice of radionuclide:
Comparative outcomes and toxicity of ruthenium-106 and iodine-125 in the
definitive treatment of uveal melanoma, Practical Radiation Oncology, 5,
169–176, 2015. a
Tcherkezian, V., Galushkin, B., Goryachenkova, T., Kashkarov, L., Liul, A.,
Roschina, I., and Rumiantsev, O.: Forms of contamination of the environment
by radionuclides after the Tomsk accident (Russia, 1993), J.
Environ. Radioactiv., 27, 133–139, 1995. a
Tichý, O., Ulrych, L., Šmídl, V., Evangeliou, N., and Stohl, A.: On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART, Geosci. Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-5917-2020, 2020. a
Tipping, M. and Bishop, C.: Probabilistic principal component analysis, J.
R. Stat. Soc., 61,
611–622, 1999. a
UNSCEAR: Sources and effects of ionizing radiation: sources, United Nations
Publications, New York, USA, 2000. a
Western, L., Millington, S., Benfield-Dexter, A., and Witham, C.: Source
estimation of an unexpected release of Ruthenium-106 in 2017 using an
inverse modelling approach, J. Environ. Radioactiv., 220,
106304, https://doi.org/10.1016/j.jenvrad.2020.106304, 2020. a, b, c, d
Short summary
We present an investigation of the usability of newly developed real-time concentration monitoring systems, which are based on the gamma-ray counting of aerosol filters. These high-resolution data were used for inverse modeling of the 106Ru release in 2017. Our inverse modeling results agree with previously published estimates and provide better temporal resolution of the estimates.
We present an investigation of the usability of newly developed real-time concentration...