Articles | Volume 15, issue 5
https://doi.org/10.5194/amt-15-1395-2022
https://doi.org/10.5194/amt-15-1395-2022
Research article
 | 
16 Mar 2022
Research article |  | 16 Mar 2022

The NO2 camera based on gas correlation spectroscopy

Leon Kuhn, Jonas Kuhn, Thomas Wagner, and Ulrich Platt

Related authors

NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Validation of GEMS tropospheric NO2 columns and their diurnal variation with ground-based DOAS measurements
Kezia Lange, Andreas Richter, Tim Bösch, Bianca Zilker, Miriam Latsch, Lisa K. Behrens, Chisom M. Okafor, Hartmut Bösch, John P. Burrows, Alexis Merlaud, Gaia Pinardi, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Steffen Ziegler, Simona Ripperger-Lukosiunaite, Leon Kuhn, Bianca Lauster, Thomas Wagner, Hyunkee Hong, Donghee Kim, Lim-Seok Chang, Kangho Bae, Chang-Keun Song, Jong-Uk Park, and Hanlim Lee
Atmos. Meas. Tech., 17, 6315–6344, https://doi.org/10.5194/amt-17-6315-2024,https://doi.org/10.5194/amt-17-6315-2024, 2024
Short summary
On the influence of vertical mixing, boundary layer schemes, and temporal emission profiles on tropospheric NO2 in WRF-Chem – comparisons to in situ, satellite, and MAX-DOAS observations
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024,https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
Maximizing the scientific application of Pandora column observations of HCHO and NO2
Prajjwal Rawat, James H. Crawford, Katherine R. Travis, Laura M. Judd, Mary Angelique G. Demetillo, Lukas C. Valin, James J. Szykman, Andrew Whitehill, Eric Baumann, and Thomas F. Hanisco
Atmos. Meas. Tech., 18, 2899–2917, https://doi.org/10.5194/amt-18-2899-2025,https://doi.org/10.5194/amt-18-2899-2025, 2025
Short summary
Comment on "Design study for an airborne N2O lidar" by Kiemle et al. (2024)
Joel F. Campbell, Bing Lin, and Zhaoyan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1448,https://doi.org/10.5194/egusphere-2025-1448, 2025
Short summary
Assessing the Detection Potential of Targeting Satellites for Global Greenhouse Gas Monitoring: Insights from TANGO Simulations
Harikrishnan Charuvil Asokan, Jochen Landgraf, Pepijn Veefkind, Stijn Dellaert, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1071,https://doi.org/10.5194/egusphere-2025-1071, 2025
Short summary
Expanding Observational Capabilities of A Diode-Laser-Based Lidar Through Shot-To-Shot Modification of Laser Pulse Characteristics
Robert A. Stillwell, Adam Karboski, Matthew Hayman, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1288,https://doi.org/10.5194/egusphere-2025-1288, 2025
Short summary
Retrieval simulations of a spaceborne differential absorption radar near the 380 GHz water vapor line
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-322,https://doi.org/10.5194/egusphere-2025-322, 2025
Short summary
Download
Short summary
We present a novel instrument for imaging measurements of NO2 with high spatiotemporal resolution based on gas correlation spectroscopy, called the GCS NO2 camera. The instrument works by placing two gas cells (cuvettes) in front of two photosensor arrays, one filled with air and one filled with a high concentration of NO2, acting as a non-dispersive spectral filter. NO2 images are then generated on the basis of the signal ratio of the two channels in the spectral region of 430–445 nm.
Share