Articles | Volume 16, issue 5
https://doi.org/10.5194/amt-16-1195-2023
https://doi.org/10.5194/amt-16-1195-2023
Research article
 | 
08 Mar 2023
Research article |  | 08 Mar 2023

Optimizing cloud motion estimation on the edge with phase correlation and optical flow

Bhupendra A. Raut, Paytsar Muradyan, Rajesh Sankaran, Robert C. Jackson, Seongha Park, Sean A. Shahkarami, Dario Dematties, Yongho Kim, Joseph Swantek, Neal Conrad, Wolfgang Gerlach, Sergey Shemyakin, Pete Beckman, Nicola J. Ferrier, and Scott M. Collis

Related authors

tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024,https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Calibrating radar wind profiler reflectivity factor using surface disdrometer observations
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023,https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022,https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
The Earth Model Column Collaboratory (EMC2) v1.1: an open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models
Israel Silber, Robert C. Jackson, Ann M. Fridlind, Andrew S. Ackerman, Scott Collis, Johannes Verlinde, and Jiachen Ding
Geosci. Model Dev., 15, 901–927, https://doi.org/10.5194/gmd-15-901-2022,https://doi.org/10.5194/gmd-15-901-2022, 2022
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024,https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024,https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary

Cited articles

Apke, J. M., Noh, Y.-J., and Bedka, K.: Comparison of Optical Flow Derivation Techniques for Retrieving Tropospheric Winds from Satellite Image Sequences, J. Atmos. Ocean. Tech., 39, 2005–2021, https://doi.org/10.1175/JTECH-D-22-0057.1, 2022. a
Beckman, P., Sankaran, R., Catlett, C., Ferrier, N., Jacob, R., and Papka, M.: Waggle: An open sensor platform for edge computing, in: 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016, IEEE, 1–3, https://doi.org/10.1109/ICSENS.2016.7808975, 2016. a
Chalasinska-Macukow, K., Turon, F., Yzuel, M., and Campos, J.: Contrast performance of pure phase correlation, J. Optics, 24, 71, https://doi.org/10.1088/0150-536X/24/2/004, 1993.  a
Chow, C. W., Belongie, S., and Kleissl, J.: Cloud motion and stability estimation for intra-hour solar forecasting, Sol. Energy, 115, 645–655, 2015. a, b
Dematties, D., Raut, B. A., Park, S., Jackson, R. C., Shahkarami, S., Kim, Y., Sankarana, R., Beckmana, P., Collis, S. M., and Ferrier, N.: Let's Unleash the Network Judgement: A Self-supervised Approach for Cloud Image Analysis, Artificial Intelligence for the Earth Systems, in press, 2023. a
Download
Short summary
We studied the stability of a blockwise phase correlation (PC) method to estimate cloud motion using a total sky imager (TSI). Shorter frame intervals and larger block sizes improve stability, while image resolution and color channels have minor effects. Raindrop contamination can be identified by the rotational motion of the TSI mirror. The correlations of cloud motion vectors (CMVs) from the PC method with wind data vary from 0.38 to 0.59. Optical flow vectors are more stable than PC vectors.