Articles | Volume 16, issue 12
https://doi.org/10.5194/amt-16-3211-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-16-3211-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global evaluation of Doppler velocity errors of EarthCARE cloud-profiling radar using a global storm-resolving simulation
Radio Research Institute, National Institute of Information and
Communications Technology, Koganei, Tokyo 184-8795, Japan
Yuichi Ohno
Radio Research Institute, National Institute of Information and
Communications Technology, Koganei, Tokyo 184-8795, Japan
Hiroaki Horie
Radio Research Institute, National Institute of Information and
Communications Technology, Koganei, Tokyo 184-8795, Japan
Woosub Roh
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, Chiba 277-8564, Japan
Masaki Satoh
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, Chiba 277-8564, Japan
Takuji Kubota
Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505, Japan
Related authors
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-103, https://doi.org/10.5194/amt-2024-103, 2024
Publication in AMT not foreseen
Short summary
Short summary
The article gives the descriptions of the Japan Aerospace Exploration Agency (JAXA) level 2 (L2) cloud mask and cloud particle type algorithms for CPR and ATLID onboard Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. The 355nm-multiple scattering polarization lidar was used to develop ATLID algorithm. Evaluations show the agreements for CPR-only, ATLID-only and CPR-ATLID synergy algorithms to be about 80%, 85% and 80%, respectively on average for about two EarthCARE orbits.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Kentaroh Suzuki, Woosub Roh, Akira Yamauchi, Hiroaki Horie, Yuichi Ohno, Yuichiro Hagihara, Hiroshi Ishimoto, Rei Kudo, Takuji Kubota, and Toshiyuki Tanaka
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-101, https://doi.org/10.5194/amt-2024-101, 2024
Publication in AMT not foreseen
Short summary
Short summary
This article gives overviews of the JAXA L2 algorithms and products by Japanese science teams for EarthCARE. The algorithms provide corrected Doppler velocity, cloud particle shape and orientations, microphysics of clouds and aerosols, and radiative fluxes and heating rate. The retrievals by the algorithms are demonstrated and evaluated using NICAM/J-simulator outputs. The JAXA EarthCARE L2 products will bring new scientific knowledge about the clouds, aerosols, radiation and convections.
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024, https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Short summary
The advantage of the use of Doppler velocity in the categorization of the hydrometeors is that Doppler velocities suffer less impact from the attenuation of rain and wet attenuation on an antenna. The ground Cloud Profiling Radar observation of the radar reflectivity for the precipitation case is limited because of wet attenuation on an antenna. We found the main contribution to Doppler velocities is the terminal velocity of hydrometeors by analysis of simulation results.
Shunsuke Aoki, Takuji Kubota, and Francis Joseph Turk
EGUsphere, https://doi.org/10.5194/egusphere-2025-3596, https://doi.org/10.5194/egusphere-2025-3596, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The EarthCARE/CPR provides the first spaceborne Doppler velocity measurements, while the GPM/DPR excels at observing rain and heavy snow, which are more attenuated in CPR. Using coincident observations from both radars, we examined vertical motions in stratiform and convective precipitation systems. The synergy between the radars enables a more comprehensive understanding of hydrometeor fall speeds and vertical air motions across different precipitation types.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-103, https://doi.org/10.5194/amt-2024-103, 2024
Publication in AMT not foreseen
Short summary
Short summary
The article gives the descriptions of the Japan Aerospace Exploration Agency (JAXA) level 2 (L2) cloud mask and cloud particle type algorithms for CPR and ATLID onboard Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. The 355nm-multiple scattering polarization lidar was used to develop ATLID algorithm. Evaluations show the agreements for CPR-only, ATLID-only and CPR-ATLID synergy algorithms to be about 80%, 85% and 80%, respectively on average for about two EarthCARE orbits.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Kentaroh Suzuki, Woosub Roh, Akira Yamauchi, Hiroaki Horie, Yuichi Ohno, Yuichiro Hagihara, Hiroshi Ishimoto, Rei Kudo, Takuji Kubota, and Toshiyuki Tanaka
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-101, https://doi.org/10.5194/amt-2024-101, 2024
Publication in AMT not foreseen
Short summary
Short summary
This article gives overviews of the JAXA L2 algorithms and products by Japanese science teams for EarthCARE. The algorithms provide corrected Doppler velocity, cloud particle shape and orientations, microphysics of clouds and aerosols, and radiative fluxes and heating rate. The retrievals by the algorithms are demonstrated and evaluated using NICAM/J-simulator outputs. The JAXA EarthCARE L2 products will bring new scientific knowledge about the clouds, aerosols, radiation and convections.
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024, https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Short summary
The advantage of the use of Doppler velocity in the categorization of the hydrometeors is that Doppler velocities suffer less impact from the attenuation of rain and wet attenuation on an antenna. The ground Cloud Profiling Radar observation of the radar reflectivity for the precipitation case is limited because of wet attenuation on an antenna. We found the main contribution to Doppler velocities is the terminal velocity of hydrometeors by analysis of simulation results.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Tobias Wehr, Takuji Kubota, Georgios Tzeremes, Kotska Wallace, Hirotaka Nakatsuka, Yuichi Ohno, Rob Koopman, Stephanie Rusli, Maki Kikuchi, Michael Eisinger, Toshiyuki Tanaka, Masatoshi Taga, Patrick Deghaye, Eichi Tomita, and Dirk Bernaerts
Atmos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023, https://doi.org/10.5194/amt-16-3581-2023, 2023
Short summary
Short summary
The EarthCARE satellite is due for launch in 2024. It includes four scientific instruments to measure global vertical profiles of aerosols, clouds and precipitation properties together with radiative fluxes and derived heating rates. The mission's scientific requirements, the satellite and the ground segment are described. In particular, the four scientific instruments and their performance are described at the level of detail required by mission data users.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Chihiro Kodama, Tomoki Ohno, Tatsuya Seiki, Hisashi Yashiro, Akira T. Noda, Masuo Nakano, Yohei Yamada, Woosub Roh, Masaki Satoh, Tomoko Nitta, Daisuke Goto, Hiroaki Miura, Tomoe Nasuno, Tomoki Miyakawa, Ying-Wen Chen, and Masato Sugi
Geosci. Model Dev., 14, 795–820, https://doi.org/10.5194/gmd-14-795-2021, https://doi.org/10.5194/gmd-14-795-2021, 2021
Short summary
Short summary
This paper describes the latest stable version of NICAM, a global atmospheric model, developed for high-resolution climate simulations toward the IPCC Assessment Report. Our model explicitly treats convection, clouds, and precipitation and could reduce the uncertainty of climate change projection. A series of test simulations demonstrated improvements (e.g., high cloud) and issues (e.g., low cloud, precipitation pattern), suggesting further necessity for model improvement and higher resolutions.
Cited articles
Amayenc, P., Testud, J., and Marzoug, M.: Proposal for a Spaceborne
Dual-Beam Rain Radar with Doppler Capability, J. Atmos. Ocean. Technol., 10,
262–276, https://doi.org/10.1175/1520-0426(1993)010<0262:PFASDB>2.0.CO;2, 1993.
Bargen, D. W. and Brown, R. C.: Interactive radar velocity unfolding, 19th
Conference on Radar Meteorology, 278–285, 15–18 April, Miami Beach, FL., 1980.
Battaglia, A. and Tanelli, S.: DOMUS: DOppler MUltiple-Scattering simulator,
IEEE Trans. Geosci. Remote Sens., 49, 442–450,
https://doi.org/10.1109/TGRS.2010.2052818, 2011.
Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A., and
Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud
classification and its comparison to airborne radar-lidar observations, J.
Geophys. Res.-Atmos., 118, 7962–7981, https://doi.org/10.1002/jgrd.50579,
2013.
CloudSat Data Processing Center: 2B-GEOPROF R04 product, CloudSat DPC [data set], https://www.cloudsat.cira.colostate.edu/data-products/2b-geoprof (last access: 12 November 2022), 2023.
Doviak, R. J. and Zrnic, D. S.: Doppler Radar and Weather Observations,
Academic Press, 562 pp., 1993.
Gossard, E. E., Snider, J. B., Clothiaux, E. E., Martner, B., Gibson, J. S.,
Kropfli, R. A., and Frisch, A. S.: The potential of 8-mm radars for remotely
sensing cloud drop size distributions, J. Atmos. Ocean. Technol., 14,
76–87, https://doi.org/10.1175/1520-0426(1997)014<0076:TPOMRF>2.0.CO;2, 1997.
Hagihara, Y., Okamoto, H., and Yoshida, R.: Development of a combined
CloudSat-CALIPSO cloud mask to show global cloud distribution, J. Geophys.
Res.-Atmos., 115, D00H33, https://doi.org/10.1029/2009JD012344, 2010.
Hagihara, Y., Okamoto, H., and Luo, Z. J.: Joint analysis of cloud-top
heights from CloudSat and CALIPSO: New insights into cloud-top microphysics,
J. Geophys. Res.-Atmos., 119, 4087–4106,
https://doi.org/10.1002/2013JD020919, 2014.
Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., Kubota, T., and Oki,
R.: Assessments of Doppler velocity errors of EarthCARE cloud profiling
radar using global cloud system resolving simulations: Effects of Doppler
broadening and folding, IEEE Trans. Geosci. Remote Sens., 60, 1–9,
https://doi.org/10.1109/TGRS.2021.3060828, 2022.
Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T.,
and Okamoto, H.: Evaluating cloud microphysics from NICAM against CloudSat
and CALIPSO, J. Geophys. Res.-Atmos., 118, 7273–7292,
https://doi.org/10.1002/jgrd.50564, 2013.
Hashino, T., Satoh, M., Hagihara, Y., Kato, S., Kubota, T., Matsui, T.,
Nasuno, T., Okamoto, H., and Sekiguchi, M.: Evaluating arctic cloud
radiative effects simulated by NICAM with A-train, J. Geophys. Res., 121,
7041–7063, https://doi.org/10.1002/2016JD024775, 2016.
Heymsfield, A. J., Protat, A., Austin, R. T., Bouniol, D., Hogan, R. J.,
Delanoe, J., Okamoto, H., Sato, K., van Zadelhoff, G. J., Donovan, D. P.,
and Wang, Z.: Testing IWC retrieval methods using radar and ancillary
measurements with in situ data, J. Appl. Meteorol. Climatol., 47, 135–163,
https://doi.org/10.1175/2007JAMC1606.1, 2008.
Horie, H., Iguchi, T., Hanado, H., Kuroiwa, H., Okamoto, H., and Kumagai,
H.: Development of a 95-GHz airborne cloud profiling radar (SPIDER) –
Technical aspects, IEICE Trans. Commun., E83-B, 2010–2019, 2000.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H.,
Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez,
A., Wandinger, U., Wehr, T., and Van Zadelhoff, G. J.: The EarthCARE
satellite: The next step forward in global measurements of clouds, aerosols,
precipitation, and radiation, B. Am. Meteorol. Soc., 96, 1311–1332,
https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
Kikuchi, M., Okamoto, H., Sato, K., Suzuki, K., Cesana, G., Hagihara, Y.,
Takahashi, N., Hayasaka, T., and Oki, R.: Development of algorithm for
discriminating hydrometeor particle types with a synergistic use of CloudSat
and CALIPSO, J. Geophys. Res.-Atmos., 122, 11022–11044,
https://doi.org/10.1002/2017JD027113, 2017.
Kobayashi, S., Kumagai, H., and Kuroiwa, H.: A proposal of pulse-pair
Doppler operation on a spaceborne cloud-profiling radar in the W band, J.
Atmos. Ocean. Technol., 19, 1294–1306,
https://doi.org/10.1175/1520-0426(2002)019<1294:APOPPD>2.0.CO;2, 2002.
Lhermitte, R. M.: Motions of scatterers and the variance of the mean
intensity of weather radar signals, Rep. SRRC-RR-63-57, Sperry Rand Research
Center, 43 pp., 1963.
Marchand, R., Mace, G. G., Ackerman, T., and Stephens, G.: Hydrometeor
detection using Cloudsat – An earth-orbiting 94-GHz cloud radar, J. Atmos.
Ocean. Technol., 25, 519–533, https://doi.org/10.1175/2007JTECHA1006.1,
2008.
Matrosov, S. Y., Battaglia, A., and Rodriguez, P.: Effects of multiple
scattering on attenuation-based retrievals of stratiform rainfall from
CloudSat, J. Atmos. Ocean. Technol., 25, 2199–2208,
https://doi.org/https://doi.org/10.1175/2008JTECHA1095.1, 2008.
Mülmenstädt, J., Nam, C., Salzmann, M., Kretzschmar, J., L'Ecuyer,
T. S., Lohmann, U., Ma, P. L., Myhre, G., Neubauer, D., Stier, P., Suzuki,
K., Wang, M., and Quaas, J.: Reducing the aerosol forcing uncertainty using
observational constraints on warm rain processes, Sci. Adv., 6, 1–8,
https://doi.org/10.1126/sciadv.aaz6433, 2020.
Roh, W. and Satoh, M.: Evaluation of precipitating hydrometeor
parameterizations in a single-moment bulk microphysics scheme for deep
convective systems over the tropical central Pacific, J. Atmos. Sci., 71,
2654–2673, https://doi.org/10.1175/JAS-D-13-0252.1, 2014.
Roh, W. and Satoh, M.: Extension of a multisensor satellite radiance-based
evaluation for cloud system resolving models, J. Meteor. Soc. Japan, 96,
55–63, https://doi.org/10.2151/jmsj.2018-002, 2018.
Roh, W., Satoh, M., and Nasuno, T.: Improvement of a cloud microphysics
scheme for a global nonhydrostatic model using TRMM and a satellite
simulator, J. Atmos. Sci., 74, 167–184,
https://doi.org/10.1175/JAS-D-16-0027.1, 2017.
Roh, W., Satoh, M., Hashino, T., Okamoto, H., and Seiki, T.: Evaluations of
the thermodynamic phases of clouds in a cloud-system-resolving model using
CALIPSO and a satellite simulator over the Southern Ocean, J. Atmos. Sci.,
77, 3781–3801, https://doi.org/10.1175/JAS-D-19-0273.1, 2020.
Roh, W., Satoh, M., Hashino, T., Matsugishi, S., Nasuno, T., and Kubota, T.: The JAXA EarthCARE synthetic data using a global storm resolving simulation, Zenodo [data set], https://doi.org/10.5281/zenodo.7835229, 2023.
Sassen, K. and Wang, Z.: Classifying clouds around the globe with the
CloudSat radar: 1-year of results, Geophys. Res. Lett., 35, L04805,
https://doi.org/10.1029/2007GL032591, 2008.
Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., and Iga, S.:
Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud
resolving simulations, J. Comput. Phys., 227, 3486–3514,
https://doi.org/10.1016/j.jcp.2007.02.006, 2008.
Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda,
A. T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M.,
Ohno, T., Iga, S., Arakawa, T., Inoue, T., and Kubokawa, H.: The
Non-hydrostatic Icosahedral Atmospheric Model: description and development,
Prog. Earth Planet. Sci., 1, 18, https://doi.org/10.1186/s40645-014-0018-1, 2014.
Satoh, M., Roh, W., and Hashino, T.: Evaluations of clouds and
precipitations in NICAM using the Joint Simulator for Satellite Sensors,
CGER's Supercomput. Monogr. Rep., 22, 110, https://doi.org/CGER-I127-2016,
2016.
Sloss, P. W. and Atlas, D.: Wind shear and reflectivity gradient effects on
Doppler radar spectra, J. Atmos. Sci., 25, 1080–1089, 1968.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang,
Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L.,
Miller, S. D., Austin, R. T., Benedetti, A., and Mitrescu, C.: The CloudSat
mission and the A-Train: A new dimension of space-based observations of
clouds and precipitation, B. Am. Meteorol. Soc., 83, 1771–1790,
https://doi.org/10.1175/bams-83-12-1771, 2002.
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science after
the first year of operation, J. Geophys. Res.-Atmos., 114, 1–18,
https://doi.org/10.1029/2008JD009982, 2008.
Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C.,
L'Ecuyer, T., and Lebsock, M.: CloudSat and CALIPSO within the A-Train: Ten
years of actively observing the Earth system, B. Am. Meteorol. Soc., 99,
569–581, https://doi.org/10.1175/BAMS-D-16-0324.1, 2018.
Sy, O. O., Tanelli, S., Takahashi, N., Ohno, Y., Horie, H., and Kollias, P.:
Simulation of EarthCARE spaceborne Doppler radar products using ground-based
and airborne data: Effects of aliasing and nonuniform beam-filling, IEEE
Trans. Geosci. Remote Sens., 52, 1463–1479,
https://doi.org/10.1109/TGRS.2013.2251639, 2014.
Takahashi, H., Luo, Z. J., and Stephens, G.: Revisiting the entrainment
relationship of convective plumes: A perspective from global observations,
Geophys. Res. Lett., 48, 1–7, https://doi.org/10.1029/2020GL092349, 2021.
Tomita, H. and Satoh, M.: A new dynamical framework of nonhydrostatic global
model using the icosahedral grid, Fluid Dyn. Res., 34, 357–400,
https://doi.org/https://doi.org/10.1016/j.fluiddyn.2004.03.003, 2004.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP
data processing algorithms, J. Atmos. Ocean. Technol., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Short summary
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the effectiveness of horizontal integration and the unfolding method for the reduction of the Doppler error (the standard deviation of the random error) in the CPR_ECO product. The error was higher in the tropics than in the other latitudes due to frequent rain echo occurrence and limitation of its unfolding correction. If we use low-mode operation (high PRF), the errors become small enough.
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the...
Special issue