Articles | Volume 16, issue 20
https://doi.org/10.5194/amt-16-4757-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4757-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of land–sea air mass transport on spatiotemporal distributions of atmospheric CO2 and CH4 mixing ratios over the southern Yellow Sea
Jiaxin Li
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Kunpeng Zang
CORRESPONDING AUTHOR
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou, China
National Marine Environmental Monitoring Center, Dalian, China
Yi Lin
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Yuanyuan Chen
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Shuo Liu
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Shanshan Qiu
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Kai Jiang
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Xuemei Qing
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Haoyu Xiong
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Haixiang Hong
College of Environmental and Resources Sciences, Zhejiang University of Technology, Hangzhou, China
Shuangxi Fang
CORRESPONDING AUTHOR
Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China
Honghui Xu
Zhejiang Meteorological Science Institute, Hangzhou, China
Yujun Jiang
Zhejiang Meteorological Science Institute, Hangzhou, China
Related authors
No articles found.
Shuo Liu, Zeping Jin, Ziyi Chen, Haolin Li, Zihan Fan, Shaohui Li, Haiwang Fu, Wei He, Kunpeng Zang, Shuangxi Fang, and Peng Yan
EGUsphere, https://doi.org/10.5194/egusphere-2025-5065, https://doi.org/10.5194/egusphere-2025-5065, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied how planting green manure between tea rows affects carbon dioxide release from tea fields. Mixing legume and grass species improved soil health, reduced emissions from tea rows, and stabilized carbon over time. Although inter-row areas released more carbon, overall emissions declined with continued intercropping. This shows that green manure can make tea farming more climate-friendly and sustainable.
Quan Liu, Xiaojing Shen, Junying Sun, Yangmei Zhang, Bing Qi, Qianli Ma, Lujie Han, Honghui Xu, Xinyao Hu, Jiayuan Lu, Shuo Liu, Aoyuan Yu, Linlin Liang, Qian Gao, Hong Wang, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 25, 3253–3267, https://doi.org/10.5194/acp-25-3253-2025, https://doi.org/10.5194/acp-25-3253-2025, 2025
Short summary
Short summary
Through simultaneous measurements of aerosol particles and fog droplets, the evolution of droplets size distribution during the eight observed fog events was investigated. The results showed that the concentration and size distribution of pre-fog aerosol had significant impacts on fog microphysical characteristics. The extinction of fog interstitial particles played an important role in visibility degradation for light fogs, especially in polluted regions.
Shuo Liu, Shuangxi Fang, Peng Liu, Miao Liang, Minrui Guo, and Zhaozhong Feng
Atmos. Chem. Phys., 21, 393–413, https://doi.org/10.5194/acp-21-393-2021, https://doi.org/10.5194/acp-21-393-2021, 2021
Short summary
Short summary
We analyzed 26-year CH4 measurements at Mount Waliguan in the Tibetan Plateau, China. The CH4 increased ~ 133 parts per billion (ppb) with a rate of 5.1 ± 0.1 ppb yr-1 from 1994 to 2019. Major source regions were identified in northeast and southwest. The influence of human activities is more and more serious, and northern India has possibly become a stronger contributor than city regions were in the past. It has become urgent to control CH4 emissions in the Tibetan Plateau.
Cited articles
Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andre, M. O.: Methane in the Baltic and North Seas and a Reassessment of the Marine Emissions of Methane, Global Biogeochem Cy., 8, 465–480, https://doi.org/10.1016/j.marchem.2008.02.005, 1994.
Bartlett, K. B., Sachse, G. W., Slate, T., Harward, C., and Blake, D. R.: Large-scale distribution of CH4 in the western North Pacific: Sources and transport from the Asian continent, J. Geophys. Res-Atmos., 108, 8807, https://doi.org/10.1029/2002JD003076, 2003.
Bouman, E. A., Lindstad, E., Rialland, A. I., and Stomman, A. H.: State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping-A review, Transport. Res. D-Tr. E., 52, 408–421, https://doi.org/10.1016/j.trd.2017.03.022, 2017.
Chang, C., Yi, L., and Chen, G. T.: A numerical simulation of vortex development during the 1992 east Asian summer monsoon onset using the navy's regional model, Mon. Weather Rev., 128, 1604–1631, https://doi.org/10.1175/1520-0493(2000)128<1604:ANSOVD>2.0.CO;2, 2000.
Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor, App. Phys. B-Lasers O., 92, 403–408, https://doi.org/10.1007/s00340-008-3135-y, 2008.
Daube, B. C., Boering, K. A., Andrews, A. E., and Wofsy, S. C.: A high-precision fast-response airborne CO2 analyzer for in situ sampling from the surface to the middle stratosphere, J. Atmos. Ocean. Tech., 19, 1532–1543, 2002.
Ding, J., Van Der A, R. J., Mijling, B., Jalkanen, J. P., Johansson, L., and Levelt, P. F.: Maritime NOx emissions over Chinese Seas derived from satellite observations, Geophys. Res. Lett., 45, 2031–2037, https://doi.org/10.1002/2017GL076788, 2018.
Ding, Y. H., Liu, J. J., Sun, Y., Liu, Y., He, J., and Song, Y.: A study of the synoptic-climatology of the Meiyu system in East Asia, Chinese Journal of Atmospheric Sciences, 31, 1082–1101, 2007.
Dlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A., Crotwell, A. M., Thoning, K. W., Hall, B. D., Elkins, J. W., and Steele, L. P.: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res., 110, D18306, https://doi.org/10.1029/2005JD006035, 2005.
Fang, S., Tans, P. P., Yao, B., Luan, T., Wu, Y., and Yu, D.: Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport, Sci. China Earth Sci., 60, 1886–1895, 2017.
Fang, S. X., Zhou, L. X., Masarie, K. A., Xu, L., and Rella, C. W.: Study of atmospheric CH4 mole fractions at three WMO/GAW stations in China, J. Geophys. Res.-Atmos., 118, 4874–4886, https://doi.org/10.1002/jgrd.50284, 2013.
Fang, S. X., Tans, P. P., Steinbacher, M., Zhou, L. X., and Luan, T.: Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China, Atmos. Meas. Tech., 8, 5301–5313, https://doi.org/10.5194/amt-8-5301-2015, 2015.
Gao, Z. M., Liu, H. P., and Mcfarland, D. P.: Mechanistic links between underestimated CO2 fluxes and non-closure of the surface energy balance in a semi-arid sagebrush ecosystem, Environ. Res. Lett., 14, 1748–9326, https://doi.org/10.1088/1748-9326/ab082d, 2019.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Huang, R. H.: The influence of the heat source anomaly over Tibetan Plateau on the northern hemispheric circulation anomalies, Acta. Meteorol. Sin., 43, 208–220, 1985.
Huang, R. H., Zhou, L. T., and Chen, W.: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes, Adv. Atmos. Sci., 20, 55–69, 2003.
Jia, M., Li, F., Zhang, Y. Z., Wu, M. S., Li, Y. S., Feng, S. Z., Wang, H. M., Chen, H. L., Ju, W. M., Lin, J., Cai, J. W., Zhang, Y. G., and Jiang, F.: The Nord Stream pipeline gas leaks released approximately 220,000 tonnes of methane into the atmosphere, Environmental Science and Ecotechnology, 12, 2666–4984, https://doi.org/10.1016/j.ese.2022.100210, 2022.
Kong, S., Lu, B., Han, B., Bai, Z. P., Xu, Z., You, Y., Jin, L. M., Guo, X. Y., and Wang, R.: Seasonal variation analysis of atmospheric CH4, N2O and CO2 in Tianjin offshore area, Sci. China Earth Sci., 53, 1205–1215, https://doi.org/10.1007/s11430-010-3065-5, 2010.
Kourtidis, K., Kioutsioukis, I., McGinnis, D. F., and Rapsomanikis, S.: Effects of methane outgassing on the Black Sea atmosphere, Atmos. Chem. Phys., 6, 5173–5182, https://doi.org/10.5194/acp-6-5173-2006, 2006.
Law, C. S., Brévière, E., De Leeuw, G., Garçon, V., Guieu, C., Kieber, D. J., Kontradowitz, S., Paulmier, A., Quinn, P. K., Saltzman, E. S., Stefels, J., and Von Glasow, R.: Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science, Environ. Chem., 10, 1–16, https://doi.org/10.1071/EN12159, 2013.
Liu, Y. S., Zhou, L. X., Tans, P. P., Zang, K. P., and Cheng, S. Y.: Ratios of greenhouse gas emissions observed over the Yellow Sea and the East China Sea, Sci. Total Environ., 33, 1022–1031 https://doi.org/10.1016/j.scitotenv.2018.03.250, 2018.
Luo, X. F., Wei, H., Liu, Z., and Zhao, L.: Seasonal variability of air–sea CO2 fluxes in the Yellow and East China Seas: A case study of continental shelf sea carbon cycle model, Cont. Shelf Res., 107, 69–78, https://doi.org/10.1016/j.csr.2015.07.009, 2015.
Lyu, W. Z., Fu, T. F., Hu, Z. X., Tang, Y. Z., Chen, G. Q., Xu, X. Y., Chen, Y. P., and Chen, S. L.: Sedimentary dynamics of the central South Yellow Sea revealing the relation between east Asian Summer and Winter Monsoon over the past 6000 years, Front. Earth Sci., 9, 689508, https://doi.org/10.3389/feart.2021.689508, 2021.
Matsueda, H., Inoue, H. Y., Ishii, M., and Nogi, Y.: Atmospheric methane over the North Pacific from 1987 to 1993, Geochem. J., 30, 1–15, 1996.
Nara, H., Tanimoto, H., Tohjima, Y., Mukai, H., Nojiri, Y., and Machida, T.: Emissions of methane from offshore oil and gas platforms in Southeast Asia, Sci. Rep.-UK, 4, 6503, https://doi.org/10.1038/srep06503, 2014.
NOAA Global Monitoring Laboratory: The NOAA annual greenhouse gas index (AGGI), NOAA Earth System Research Laboratory, Boulder, Colorado, USA, https://esrl.noaa.gov/gmd/aggi/aggi.html (last access: 20 October 2022), 2014.
NOAA Global Monitoring Laboratory (GML): Simulated MBL values, NOAA GML [data set], https://gml.noaa.gov/aftp/data/trace_gases/, last access: 10 October 2022.
Peters, G., Marland, G., Le Quéré, C., Boden, T., Canadell, J. G., and Raupach, M. R.: Rapid growth in CO2 emissions after the 2008-2009 global financial crisis, Nat. Clim. Change., 2, 2–4, https://doi.org/10.1038/nclimate1332, 2012.
Rella, C. W., Chen, H., Andrews, A. E., Filges, A., Gerbig, C., Hatakka, J., Karion, A., Miles, N. L., Richardson, S. J., Steinbacher, M., Sweeney, C., Wastine, B., and Zellweger, C.: High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air, Atmos. Meas. Tech., 6, 837–860, https://doi.org/10.5194/amt-6-837-2013, 2013.
Riddick, S. N., Mauzerall, D. L., Celia, M., Harris, N. R. P., Allen, G., Pitt, J., Staunton-Sykes, J., Forster, G. L., Kang, M., Lowry, D., Nisbet, E. G., and Manning, A. J.: Methane emissions from oil and gas platforms in the North Sea, Atmos. Chem. Phys., 19, 9787–9796, https://doi.org/10.5194/acp-19-9787-2019, 2019.
Schmale, O., Greinert, J., and Rehder, G.: Methane emission from high-intensity marine gas seeps in the Black Sea into the atmosphere, Geophys. Res. Lett., 32, L07609, https://doi.org/10.1029/2004GL021138, 2005.
Wang, S. Y. and Zhai, W. D.: Regional differences in seasonal variation of air–sea CO2 exchange in the Yellow Sea, Cont. Shelf Res., 218, 104393, https://doi.org/10.1016/j.csr.2021.104393, 2021.
Warneke, T., de Beek, R., Buchwitz, M., Notholt, J., Schulz, A., Velazco, V., and Schrems, O.: Shipborne solar absorption measurements of CO2, CH4, N2O and CO and comparison with SCIAMACHY WFM-DOAS retrievals, Atmos. Chem. Phys., 5, 2029–2034, https://doi.org/10.5194/acp-5-2029-2005, 2005.
WMO: 14th WMO/IAEA Meeting of experts on carbon dioxide, other greenhouse gases and related tracers measurement techniques, Helsinki, Finland, 10–13 September 2007, GAW Report No. 186, 18 pp., 2007.
WMO: Greenhouse Gas Bulletin (GHG Bulletin): The state of greenhouse gases in the atmosphere based on global observations through 2021, No. 18, https://gaw.kishou.go.jp/publications/bulletin (last access: 15 October 2022), 2022.
Xia, L. J., Liu, L. X., Li, B. Z., and Zhou, L. X.: Spatial and temporal distribution characteristics of atmospheric CO2 in central China, China Environmental Science, 38, 2811–2819, https://doi.org/10.19674/j.cnki.issn1000-6923.2018.0294, 2018.
Yang, M., Bell, T. G., Hopkins, F. E., Kitidis, V., Cazenave, P. W., Nightingale, P. D., Yelland, M. J., Pascal, R. W., Prytherch, J., Brooks, I. M., and Smyth, T. J.: Air–sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK, Atmos. Chem. Phys., 16, 5745–5761, https://doi.org/10.5194/acp-16-5745-2016, 2016.
Yu, G., Chen, Z., Piao, S. L., Peng, C. H., Ciais, P., Wang, Q. F., Li, X. R., and Zhu, X. J.: High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region, P. Natl. Acad. Sci. USA, 111, 4910–4915, https://doi.org/10.1073/pnas.1317065111, 2014.
Zang, K. P., Zhou, L. X., and Wang, J. Y.: Carbon Dioxide and Methane in the China Sea Shelf Boundary Layer observed by Cavity Ring-Down Spectroscopy, J. Atmos. Ocean. Tech., 34, 2233–2244, https://doi.org/10.1175/JTECH-D-16-0217.1, 2017.
Zang, K. P., Zhang, G., Xu, X. M., and Yao, Z. W.: Impact of air-sea exchange on the spatial distribution of atmospheric methane in the Dalian Bay and adjacent coastal area, China, Chemosphere, 251, 126412, https://doi.org/10.1016/j.chemosphere.2020.126412, 2020.
Zhai, W. D.: Sea surface partial pressure of CO2 and its controls in the northern south China Sea in the non-bloom period in spring, Haiyang Xuebao, 37, 31–40, https://doi.org/10.3969/j.issn.0253-4193.2015.06.004, 2015.
Zhai, W. D., Chen, J. F., Jin, H. Y., Li, H. L., Liu, J. W., He, X. Q., and Bai, Y.: Spring carbonate chemistry dynamics of surface waters in the northern East China Sea: Water mixing, biological uptake of CO2, and chemical buffering capacity, J. Geophys. Res.-Oceans, 119, 5638–5653, 2014.
Zhan, M. J., Sun, J. Y., Zhang, Y. M., Zhang, X. C., Nie, H., Deligeer, Kivekas, N., and Lihavainen, H.: The influence of air mass sources on the particle number concentration and the size distribution at Mt. Waliguan, Journal of Glaciology and Geocryology, 31, 659–663, 2009.
Zhan, R. F. and Li, J. P.: Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor, Sci. China Earth Sci., 51, 1179–1193, https://doi.org/10.1007/s11430-008-0082-8, 2008.
Zhang, G. L., Zhang, J., Ren, J. L., Li, J. B., and Liu, S. M.: Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer, Mar. Chem., 110, 42–55, https://doi.org/10.1016/j.marchem.2008.02.005, 2008.
Zhang, F., Chen, Y. J., Tian, C. G., Wang, X. P., Huang, G. P., Fang, Y., and Zong, Z.: Identification and quantification of shipping emissions in Bohai Rim, China, Sci. Total Environ., 497–498, 570–577, https://doi.org/10.1016/j.scitotenv.2014.08.016, 2014.
Zhang, J. Y., Song, S. H., Xu, R., and Wen, J. H.: Source of airborne particulate matter in Guilin based on backward trajectory model, Environmental Monitoring in China, 33, 42–46, https://doi.org/10.19316/j.issn.1002-6002.2017.02.07, 2017.
Zhang, S. P., Liu, J. W., Xie, S. P., and Meng, X. G.: The formation of a surface anticyclone over the Yellow and East China Seas in spring, J. Meteorol. Soc. Jpn., Ser. II, 89, 119–131, 2011.
Zhang, X. I. A., Nakazawa, T., Ishizawa, M., Aoki, S., Nakaoka, S. I., Sugawara, S., Maksyutov, S., Saeki T., and Hayasaka, T.: Temporal variations of atmospheric carbon dioxide in the southernmost part of Japan, Tellus B, 59, 654–663, 2007.
Zhang, Y., Deng, F., Man, H., Fu, M., Lv, Z., Xiao, Q., Jin, X., Liu, S., He, K., and Liu, H.: Compliance and port air quality features with respect to ship fuel switching regulation: a field observation campaign, SEISO-Bohai, Atmos. Chem. Phys., 19, 4899–4916, https://doi.org/10.5194/acp-19-4899-2019, 2019.
Zhang, Z. P. and Chu, Z. X.: Modern variations in clay minerals in mud deposits of the Yellow and East China Seas and their geological significance, Holocene, 28, 386–395, https://doi.org/10.1177/0959683617729446, 2018.
Zou, L., Hu, B., Li, J., Dou, Y. G., Xie, L. H., and Dong, L.: Middle Holocene Organic Carbon and biomarker records from the South Yellow Sea: relationship to the East Asian Monsoon, J. Ocean U. China, 17, 823–834, https://doi.org/10.1007/s11802-018-3521-y, 2018.
Short summary
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in November 2012 and June 2013, a data process and quality control method was optimized and established to filter the data influenced by multiple factors. Spatial and seasonal variations in CO2 and CH4 mixing ratios were mainly controlled by the East Asian Monsoon, while the influence of air–sea exchange was slight.
Based on observed data of CO2 and CH4 and meteorological parameters over the Yellow Sea in...