Articles | Volume 16, issue 2
https://doi.org/10.5194/amt-16-529-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-529-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods
Daan Swart
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Jun Zhang
Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 15, 1755 ZG, Petten, the Netherlands
Shelley van der Graaf
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Susanna Rutledge-Jonker
CORRESPONDING AUTHOR
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Arjan Hensen
Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 15, 1755 ZG, Petten, the Netherlands
Stijn Berkhout
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Pascal Wintjen
Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 15, 1755 ZG, Petten, the Netherlands
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
René van der Hoff
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Marty Haaima
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Arnoud Frumau
Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 15, 1755 ZG, Petten, the Netherlands
Pim van den Bulk
Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 15, 1755 ZG, Petten, the Netherlands
Ruben Schulte
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Wageningen University & Research (WUR), P.O. Box 47, 6700 AA,
Wageningen, the Netherlands
Margreet van Zanten
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Thomas van Goethem
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
Related authors
Camille Viatte, Nadir Guendouz, Clarisse Dufaux, Arjan Hensen, Daan Swart, Martin Van Damme, Lieven Clarisse, Pierre Coheur, and Cathy Clerbaux
Atmos. Chem. Phys., 23, 15253–15267, https://doi.org/10.5194/acp-23-15253-2023, https://doi.org/10.5194/acp-23-15253-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important air pollutant which, as a precursor of fine particulate matter, raises public health concerns. Models have difficulty predicting events of pollution associated with NH3 since ground-based observations of this gas are still relatively sparse and difficult to implement. We present the first relatively long (2.5 years) and continuous record of hourly NH3 concentrations in Paris to determine its temporal variabilities at different scales to unravel emission sources.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Martin K. Vollmer, Joseph R. Pitt, Dickon Young, Stephan Henne, Blagoj Mitrevski, Jens Mühle, Anita Ganesan, Jgor Arduini, Alistair J. Manning, Thomas Wagenhäuser, Alison L. Redington, Brendan Murphy, Ray Gluckmann, Kieran M. Stanley, Paul B. Krummel, Chris R. Lunder, Jaegeun Yun, Dominique Rust, Angelina Wenger, Myriam Guillevic, Jooil Kim, Ray H. J. Wang, Tae Siek Rhee, Lionel Constantin, Arnoud Frumau, Christina M. Harth, Peter K. Salameh, Ove Hermansen, Andreas Engel, Simon O'Doherty, Sunyoung Park, Michela Maione, Paul J. Fraser, Ronald G. Prinn, Ray F. Weiss, and Stefan Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4824, https://doi.org/10.5194/egusphere-2025-4824, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We provide atmospheric measurements of halogenated olefins from the Advanced Global Atmospheric Gases Experiments and we calculate NorthWest European Emissions.
Judith Tettenborn, Daniel Zavala-Araiza, Daan Stroeken, Hossein Maazallahi, Carina van der Veen, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Felix Vogel, Lawson Gillespie, Sebastien Ars, James France, David Lowry, Rebecca Fisher, and Thomas Röckmann
Atmos. Meas. Tech., 18, 3569–3584, https://doi.org/10.5194/amt-18-3569-2025, https://doi.org/10.5194/amt-18-3569-2025, 2025
Short summary
Short summary
Measurements of methane with vehicle-based sensors are an effective method to identify and quantify leaks from urban gas distribution systems. We deliberately released methane in different environments and calibrated the response of different methane analysers when they transected the plumes in a vehicle. We derived an improved statistical function for consistent emission estimations using different instruments. Repeated transects reduce the uncertainty in emission rate estimates.
Tycho Jongenelen, Margreet van Zanten, Enrico Dammers, Roy Wichink Kruit, Arjan Hensen, Leon Geers, and Jan Willem Erisman
Atmos. Chem. Phys., 25, 4943–4963, https://doi.org/10.5194/acp-25-4943-2025, https://doi.org/10.5194/acp-25-4943-2025, 2025
Short summary
Short summary
This article compares three ammonia (NH3) deposition models in a dune ecosystem and investigates the uncertainty of these models. The Zhang model aligned best with the measurements, whereas the DEPAC (DEPosition of Acidifying Compounds) and Massad models overestimated and underestimated the NH3 deposition respectively. The study found that NH3 exchange with wet plant leaves was an important but uncertain process. It offers recommendations to improve future models and suggests measurements to lower the existing uncertainty.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Xinya Liu, Bas Henzing, Arjan Hensen, Jan Mulder, Peng Yao, Danielle van Dinther, Jerry van Bronckhorst, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 3405–3420, https://doi.org/10.5194/acp-24-3405-2024, https://doi.org/10.5194/acp-24-3405-2024, 2024
Short summary
Short summary
We evaluated the time-of-flight aerosol chemical speciation monitor (TOF-ACSM) following the implementation of the PM2.5 aerodynamic lens and a capture vaporizer (CV). The results showed that it significantly improved the accuracy and precision of ACSM in the field observations. The paper elucidates the measurement outcomes of various instruments and provides an analysis of their biases. This comprehensive evaluation is expected to benefit the ACSM community and other aerosol field measurements.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Camille Viatte, Nadir Guendouz, Clarisse Dufaux, Arjan Hensen, Daan Swart, Martin Van Damme, Lieven Clarisse, Pierre Coheur, and Cathy Clerbaux
Atmos. Chem. Phys., 23, 15253–15267, https://doi.org/10.5194/acp-23-15253-2023, https://doi.org/10.5194/acp-23-15253-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important air pollutant which, as a precursor of fine particulate matter, raises public health concerns. Models have difficulty predicting events of pollution associated with NH3 since ground-based observations of this gas are still relatively sparse and difficult to implement. We present the first relatively long (2.5 years) and continuous record of hourly NH3 concentrations in Paris to determine its temporal variabilities at different scales to unravel emission sources.
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023, https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary
Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the emissions reported to UNFCCC, and up to three-quarters of the detected emissions are related to operational venting. Our results suggest that oil and gas production infrastructure in Romania holds a massive mitigation potential.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022, https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Short summary
Mobile measurement techniques (e.g., instruments placed in cars) are often employed to identify and quantify individual sources of greenhouse gases. Due to road restrictions, those observations are often sparse (temporally and spatially). We performed high-resolution simulations of plume dispersion, with realistic weather conditions encountered in the field, to reproduce the measurement process of a methane plume emitted from an oil well and provide additional information about the plume.
Christian Brümmer, Jeremy J. Rüffer, Jean-Pierre Delorme, Pascal Wintjen, Frederik Schrader, Burkhard Beudert, Martijn Schaap, and Christof Ammann
Earth Syst. Sci. Data, 14, 743–761, https://doi.org/10.5194/essd-14-743-2022, https://doi.org/10.5194/essd-14-743-2022, 2022
Short summary
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Shelley van der Graaf, Enrico Dammers, Arjo Segers, Richard Kranenburg, Martijn Schaap, Mark W. Shephard, and Jan Willem Erisman
Atmos. Chem. Phys., 22, 951–972, https://doi.org/10.5194/acp-22-951-2022, https://doi.org/10.5194/acp-22-951-2022, 2022
Short summary
Short summary
CrIS NH3 satellite observations are assimilated into the LOTOS-EUROS model using two different methods. In the first method the data are used to fit spatially varying NH3 emission time factors. In the second method a local ensemble transform Kalman filter is used. Compared to in situ observations, combining both methods led to the most significant improvements in the modeled concentrations and deposition, illustrating the usefulness of CrIS NH3 to improve the spatiotemporal distribution of NH3.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Cited articles
Bai, M., Suter, H., Macdonald, B., and Schwenke, G.: Ammonia, methane and
nitrous oxide emissions from furrow irrigated cotton crops from two nitrogen
fertilisers and application methods, Agr. Forest Meteorol.,
303, 108375, https://doi.org/10.1016/j.agrformet.2021.108375,
2021.
Bai, M., Loh, Z., Griffith, D. W. T., Turner, D., Eckard, R., Edis, R., Denmead, O. T., Bryant, G. W., Paton-Walsh, C., Tonini, M., McGinn, S. M., and Chen, D.: Performance of open-path lasers and Fourier transform infrared spectroscopic systems in agriculture emissions research, Atmos. Meas. Tech., 15, 3593–3610, https://doi.org/10.5194/amt-15-3593-2022, 2022.
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux parameterization over land
surfaces for atmospheric models, J. Appl. Meteorol., 30,
327–341, https://doi.org/10.1175/1520-0450(1991)030<0327:Fpolsf>2.0.Co;2, 1991.
Berkhout, A. J. C., Swart, D. P. J., Volten, H., Gast, L. F. L., Haaima, M., Verboom, H., Stefess, G., Hafkenscheid, T., and Hoogerbrugge, R.: Replacing the AMOR with the miniDOAS in the ammonia monitoring network in the Netherlands, Atmos. Meas. Tech., 10, 4099–4120, https://doi.org/10.5194/amt-10-4099-2017, 2017.
Bosveld, F. C.: The Cabauw in-situ observational program 2000–present:
instruments, calibrations and set-up, Royal Netherlands Meteorological
Institute, De Bilt, 79 pp., Technical report TR-384, , 2020.
Bosveld, F. C., Baas, P., Beljaars, A. C. M., Holtslag, A. A. M., de
Arellano, J. V.-G., and van de Wiel, B. J. H.: Fifty years of atmospheric
boundary-layer research at Cabauw serving weather, air quality and climate,
Bound.-Lay. Meteorol., 177, 583–612, https://doi.org/10.1007/s10546-020-00541-w, 2020.
Burba, G., Anderson, T., and Komissarov, A.: Accounting for spectroscopic
effects in laser-based open-path eddy covariance flux measurements, Global
Change Biol., 25, 2189–2202, https://doi.org/10.1111/gcb.14614, 2019.
Dyer, A. J.: A review of flux-profile relationships, Bound.-Lay.
Meteorol., 7, 363–372, https://doi.org/10.1007/BF00240838, 1974.
Erisman, J. W. and Wyers, G. P.: Continuous measurements of surface exchange
of SO2 and NH3; Implications for their possible interaction in the
deposition process, Atmos. Environ. A, 27,
1937–1949, https://doi.org/10.1016/0960-1686(93)90266-2, 1993.
Erisman, J. W., Galloway, J. N., Dice, N. B., Sutton, M. A., Bleeker, A.,
Grizzetti, B., Leach, A. M., and Vries, W. D.: Nitrogen: too much of a vital
resource, Science Brief. WWF Netherlands, Zeist, The Netherlands, 48 pp., ISBN 978-90-74595-22-3, 2015.
Famulari, D., Fowler, D., Hargreaves, K., Milford, C., Nemitz, E., Sutton,
M. A., and Weston, K.: Measuring eddy covariance fluxes of ammonia using
tunable diode laser absorption spectroscopy, J. Water Air Soil Pollut.
Focus, 4, 151–158, https://doi.org/10.1007/s11267-005-3025-9, 2004.
Famulari, D., Fowler, D., Nemitz, E., Hargreaves, K. J., Storeton-West, R.
L., Rutherford, G., Tang, Y. S., Sutton, M. A., and Weston, K. J.:
Development of a low-cost system for measuring conditional time-averaged
gradients of SO2 and NH3, Environ. Monitor. Assess.,
161, 11–27, https://doi.org/10.1007/s10661-008-0723-6, 2010.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network, Atmos. Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Flesch, T. K., Baron, V. S., Wilson, J. D., Griffith, D. W. T., Basarab, J.
A., and Carlson, P. J.: Agricultural gas emissions during the spring thaw:
Applying a new measurement technique, Agr. Forest Meteorol.,
221, 111–121, https://doi.org/10.1016/j.agrformet.2016.02.010,
2016.
Foken, T.: Micrometeorology, Springer Berlin Heidelberg, 308 pp., https://doi.org/10.1007/978-3-540-74666-9, 2008.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S.,
Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P.,
Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D.,
Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first
century, Philos. Trans. Roy. Soc. B, 368, 20130164, https://doi.org/10.1098/rstb.2013.0164, 2013.
Galloway, J. N., Bleeker, A., and Erisman, J. W.: The human creation and use
of reactive nitrogen: a global and regional perspective, Annu. Rev.
Environ. Resour., 46, 255–288,
https://doi.org/10.1146/annurev-environ-012420-045120, 2021.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [dataset], https://doi.org/10.24381/cds.adbb2d47, 2018.
Homan, C.: Maandoverzichtt van het weer in Nederland, September 2021, KNMI,
De Bilt, https://cdn.knmi.nl/knmi/map/page/klimatologie/gegevens/mow/mow_202109.pdf (last access: 30 May 2022), 2021.
Hoogerbrugge, R., Geilenkirchen, G. P., Hollander, H. A. d., Schuch, W.,
Swaluw, E. v. d., Vries, W. J. d., and Kruit, R. J. W.: Grootschalige
concentratie- en depositiekaarten Nederland – Rapportage 2020,
Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven, RIVM-rapport 2020-0091, 84 pp., https://rivm.openrepository.com/handle/10029/624449 (last access: 30 May 2022
), 2020.
Jager, C. J., Nakken, T. C., and Palland, C. L.: Bodemkundig onderzoek van
twee graslandpercelen nabij Cabauw, Arnhem, NV Heidemaatschappij Beheer, 9 pp., 1976 (in Dutch).
Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: Spectral
characteristics of surface-layer turbulence, Q. J. Roy.
Meteorol. Soc., 98, 563–589, https://doi.org/10.1002/qj.49709841707, 1972.
Kamp, J. N., Häni, C., Nyord, T., Feilberg, A., and Sørensen, L. L.:
The aerodynamic gradient method: implications of non-simultaneous
measurements at alternating heights, Atmosphere, 11, 1067, https://doi.org/10.3390/atmos11101067, 2020.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015a.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: FFP 2D tool, the flux footprint prediction online data processing [Software], http://footprint.kljun.net (last access: 1 February 2022), 2015b.
LI-COR Biosciences: Eddy Covariance Processing Software (Version 7.0.6) [Software], https://www.licor.com/env/products/eddy_covariance/software.html, last access: 25 September 2019.
Loubet, B. and Personne, E.: Application note 28 – Measuring emissions from
diffuse sources using the aerodynamic gradient, in: Measuring emissions from
livestock farming: greenhouse gases, ammonia and nitrogen oxides, edited by:
Hassouna, M., Eglin, T., Cellier, P., Colomb, V., Cohan, J.-P., Decuq, C.,
Delabuis, M., Edouard, N., Espagnol, S., Eugène, M., Fauvel, Y.,
Fernandes, E., Fischer, N., Flechard, C., Genermont, S., Godbout, S.,
Guingand, N., Guyader, J., Lagadec, S., Laville, P., Lorinquer, E., Loubet,
B., Loyon, L., Martin, C., Méda, B., Morvan, T., Oster, D., Oudart, D.,
Personne, E., Planchais, J., Ponchant, P., Renand, G., Robin, P., and
Rochette, Y., INRA-ADEME, 149–153, https://hal.archives-ouvertes.fr/hal-01567208 (last access: 30 May 2022), 2016.
Loubet, B., Decuq, C., Personne, E., Massad, R. S., Flechard, C., Fanucci, O., Mascher, N., Gueudet, J.-C., Masson, S., Durand, B., Genermont, S., Fauvel, Y., and Cellier, P.: Investigating the stomatal, cuticular and soil ammonia fluxes over a growing tritical crop under high acidic loads, Biogeosciences, 9, 1537–1552, https://doi.org/10.5194/bg-9-1537-2012, 2012.
Loubet, B., Cellier, P., Fléchard, C., Zurfluh, O., Irvine, M., Lamaud,
E., Stella, P., Roche, R., Durand, B., Flura, D., Masson, S., Laville, P.,
Garrigou, D., Personne, E., Chelle, M., and Castell, J.-F.: Investigating
discrepancies in heat, CO2 fluxes and O3 deposition velocity over maize as
measured by the eddy-covariance and the aerodynamic gradient methods,
Agr. Forest Meteorol., 169, 35–50, https://doi.org/10.1016/j.agrformet.2012.09.010, 2013.
Mauder, M. and Foken, T.: Impact of post-field data processing on eddy
covariance flux estimates and energy balance closure, Meteorol.
Z., 15, 597–609, https://doi.org/10.1127/0941-2948/2006/0167, 2006.
Mauder, M., Foken, T., Aubinet, M., and Ibrom, A.: Eddy-covariance
measurements, in: Springer Handbook of Atmospheric Measurements, edited by:
Foken, T., Springer International Publishing, Cham, 1485–1515,
https://doi.org/10.1007/978-3-030-52171-4_55, 2021.
McDermitt, D. K., Burba, G., Xu, L., Anderson, T. G., Komissarov, A. V.,
Riensche, B., Schedlbauer, J. L., Starr, G., Zona, D., Oechel, W. C.,
Oberbauer, S. F., and Hastings, S. J.: A new low-power, open-path instrument
for measuring methane flux by eddy covariance, Appl. Phys. B, 102,
391–405, https://doi.org/10.1007/s00340-010-4307-0, 2011.
Miller, D. J., Sun, K., Tao, L., Khan, M. A., and Zondlo, M. A.: Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements, Atmos. Meas. Tech., 7, 81–93, https://doi.org/10.5194/amt-7-81-2014, 2014.
Moncrieff, J., Clement, R., Finnigan, J., Meyers, T., Lee, X., Massman, W.,
and Law, B.: Averaging, detrending, and filtering of eddy covariance time
series, in: Handbook of micrometeorology; A guide for surface flux
measurement and analysis, edited by: Lee, X., Massman, W., and Law, B.,
Atmospheric and oceanographic sciences library, Kluwer Academic Publisher,
Dordrecht, The Netherlands, 7–32 pp., 250 pp., https://link.springer.com/chapter/10.1007/1-4020-2265-4_2 (last access: 30 May 2022), 2004.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T.,
Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A
system to measure surface fluxes of momentum, sensible heat, water vapour
and carbon dioxide, J. Hydrol., 188–189, 589–611, https://doi.org/10.1016/S0022-1694(96)03194-0, 1997.
Moore, C. J.: Frequency response corrections for eddy correlation systems,
Bound.-Lay. Meteorol., 37, 17–35, https://doi.org/10.1007/BF00122754, 1986.
Moravek, A., Singh, S., Pattey, E., Pelletier, L., and Murphy, J. G.: Measurements and quality control of ammonia eddy covariance fluxes: a new strategy for high-frequency attenuation correction, Atmos. Meas. Tech., 12, 6059–6078, https://doi.org/10.5194/amt-12-6059-2019, 2019.
Pan, D., Benedict, K. B., Golston, L. M., Wang, R., Collett, J. L., Tao, L.,
Sun, K., Guo, X., Ham, J., Prenni, A. J., Schichtel, B. A., Mikoviny, T.,
Müller, M., Wisthaler, A., and Zondlo, M. A.: Ammonia dry deposition in
an alpine ecosystem traced to agricultural emission hotpots, Environ.
Sci. Technol., 55, 7776–7785, https://doi.org/10.1021/acs.est.0c05749, 2021.
Parrish, D. D. and Fehsenfeld, F. C.: Methods for gas-phase measurements of
ozone, ozone precursors and aerosol precursors, Atmos. Environ., 34,
1921–1957, https://doi.org/10.1016/S1352-2310(99)00454-9, 2000.
Paulson, C. A.: The mathematical representation of wind speed and
temperature profiles in the unstable atmospheric surface layer, J.
Appl. Meteorol., 9, 857–861, https://doi.org/10.1175/1520-0450(1970)009<0857:Tmrows>2.0.Co;2, 1970.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy –
Principles and Applications, Springer, Berlin, 597 pp., https://link.springer.com/book/10.1007/978-3-540-75776-4 (last access: 30 May 2022), 2008.
Prueger, J. H. and Kustas, W. P.: Aerodynamic methods for estimating
turbulent fluxes in: Micrometeorology in Agricultural Systems, American
Society of Agronomy, Crop Science Society of America, Soil Science Society
of America, Madison, 584 pp., https://acsess.onlinelibrary.wiley.com/doi/book/10.2134/agronmonogr47 (last access: 30 May 2022), 2005.
Schulte, R. B., van Zanten, M. C., Rutledge-Jonker, S., Swart, D. P. J.,
Wichink Kruit, R. J., Krol, M. C., van Pul, W. A. J., and Vilà-Guerau de
Arellano, J.: Unraveling the diurnal atmospheric ammonia budget of a
prototypical convective boundary layer, Atmos. Environ., 118153,
https://doi.org/10.1016/j.atmosenv.2020.118153, 2020.
Sintermann, J., Ammann, C., Kuhn, U., Spirig, C., Hirschberger, R., Gärtner, A., and Neftel, A.: Determination of field scale ammonia emissions for common slurry spreading practice with two independent methods, Atmos. Meas. Tech., 4, 1821–1840, https://doi.org/10.5194/amt-4-1821-2011, 2011.
Sintermann, J., Dietrich, K., Häni, C., Bell, M., Jocher, M., and Neftel, A.: A miniDOAS instrument optimised for ammonia field measurements, Atmos. Meas. Tech., 9, 2721–2734, https://doi.org/10.5194/amt-9-2721-2016, 2016.
Sun, K., Tao, L., Miller, D. J., Zondlo, M. A., Shonkwiler, K. B., Nash, C.,
and Ham, J. M.: Open-path eddy covariance measurements of ammonia fluxes
from a beef cattle feedlot, Agr. Forest Meteorol., 213,
193–202, https://doi.org/10.1016/j.agrformet.2015.06.007,
2015.
Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H., and
Winiwarter, W.: Too much of a good thing, Nature, 472, 159–161,
https://doi.org/10.1038/472159a, 2011.
Trebs, I., Ammann, C., and Junk, J.: Immission and dry deposition, in:
Springer Handbook of Atmospheric Measurements, edited by: Foken, T.,
Springer Handbooks, Springer, Cham, https://doi.org/10.1007/978-3-030-52171-4_54, 2021.
Volten, H., Haaima, M., Swart, D., van Zanten, M., and van Pul, W.: Ammonia
exchange measured over a corn field in 2010, National Institute of Public
Health and the Environment, Bilthoven, The Netherlands, RIVM Report 680180003/2012, 95 pp., https://www.rivm.nl/publicaties/ammonia-exchange-measured-over-a-corn-field-in-2010, (last access: 30 May 2022), 2012a.
Volten, H., Bergwerff, J. B., Haaima, M., Lolkema, D. E., Berkhout, A. J. C., van der Hoff, G. R., Potma, C. J. M., Wichink Kruit, R. J., van Pul, W. A. J., and Swart, D. P. J.: Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere, Atmos. Meas. Tech., 5, 413–427, https://doi.org/10.5194/amt-5-413-2012, 2012b.
Walker, J. T., Jones, M. R., Bash, J. O., Myles, L., Meyers, T., Schwede, D., Herrick, J., Nemitz, E., and Robarge, W.: Processes of ammonia air–surface exchange in a fertilized Zea mays canopy, Biogeosciences, 10, 981–998, https://doi.org/10.5194/bg-10-981-2013, 2013.
Walker, J. T., Beachley, G., Zhang, L., Benedict, K. B., Sive, B. C., and
Schwede, D. B.: A review of measurements of air-surface exchange of reactive
nitrogen in natural ecosystems across North America, Sci. Total
Environ., 698, 133975, https://doi.org/10.1016/j.scitotenv.2019.133975, 2020.
Wang, K., Kang, P., Lu, Y., Zheng, X., Liu, M., Lin, T.-J., Butterbach-Bahl,
K., and Wang, Y.: An open-path ammonia analyzer for eddy covariance flux
measurement, Agr. Forest Meteorol., 308–309, 108570,
https://doi.org/10.1016/j.agrformet.2021.108570, 2021.
Wang, K., Wang, J., Qu, Z., Xu, W., Wang, K., Zhang, H., Shen, J., Kang, P.,
Zhen, X., Wang, Y., Zheng, X., and Liu, X.: A significant diurnal pattern of
ammonia dry deposition to a cropland is detected by an open-path quantum
cascade laser-based eddy covariance instrument, Atmos. Environ., 119070,,
https://doi.org/10.1016/j.atmosenv.2022.119070, 2022.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux
measurements for density effects due to heat and water vapour transfer,
Q. J. Roy. Meteorol. Soc., 106, 85–100,
https://doi.org/10.1002/qj.49710644707, 1980.
Wichink Kruit, R. J., Stolk, A. P., Volten, H., and van Pul, W. A. J.:
Ammonia exchange measurements over a corn field in Lelystad, the Netherlands
in 2009, National Institute for Public Health and the Environment,
Bilthoven, The Netherlands, RIVM Letter report 680150004/2009, 58 pp., https://www.rivm.nl/bibliotheek/rapporten/680150004.pdf, 2010.
Wintjen, P., Ammann, C., Schrader, F., and Brümmer, C.: Correcting high-frequency losses of reactive nitrogen flux measurements, Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, 2020.
Wolff, V., Trebs, I., Ammann, C., and Meixner, F. X.: Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: an analysis of precision requirements and flux errors, Atmos. Meas. Tech., 3, 187–208, https://doi.org/10.5194/amt-3-187-2010, 2010.
Zöll, U., Brümmer, C., Schrader, F., Ammann, C., Ibrom, A., Flechard, C. R., Nelson, D. D., Zahniser, M., and Kutsch, W. L.: Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling, Atmos. Chem. Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, 2016.
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia...