Articles | Volume 17, issue 13
https://doi.org/10.5194/amt-17-3949-2024
https://doi.org/10.5194/amt-17-3949-2024
Research article
 | 
03 Jul 2024
Research article |  | 03 Jul 2024

Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements

Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino

Related authors

Towards routine shipborne measurements of columnar CO2, CH4, CO, and NO2: a case study for tracking regional-scale emission patterns
Vincent Enders, Astrid Müller, Matthias Max Frey, Frank Hase, Ralph Kleinschek, Marvin Knapp, Benedikt Löw, Isamu Morino, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Sanam N. Vardag, Karolin Voss, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2025-4552,https://doi.org/10.5194/egusphere-2025-4552, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Annual Growth Rates of Column-Averaged CO2 Inferred from Total Carbon Column Observing Network (TCCON)
Nasrin Mostafavi Pak, Jonas Hachmeister, Markus Rettinger, Matthias Buschmann, Nicholas M. Deutscher, David W. T. Griffith, Laura T. Iraci, Xin Lan, Erin McGee, Isamu Morino, Dave Pollard, Coleen M. Roehl, Kimberly Strong, Rigel Kivi, and Paul Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4080,https://doi.org/10.5194/egusphere-2025-4080, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Global transport of stratospheric aerosol produced by Ruang eruption from EarthCARE ATLID, limb-viewing satellites and ground-based lidar observations
Sergey Khaykin, Michael Sicard, Thierry Leblanc, Tetsu Sakai, Nickolay Balugin, Gwenael Berthet, Stéphane Chevrier, Fernando Chouza, Artem Feofilov, Dominique Gantois, Sophie Godin-Beekmann, Arezki Haddouche, Yoshitaka Jin, Isamu Morino, Nicolas Kadygrov, Thomas Lecas, Ben Liley, Richard Querel, Ghasssan Taha, and Vladimir Yushkov
EGUsphere, https://doi.org/10.5194/egusphere-2025-4377,https://doi.org/10.5194/egusphere-2025-4377, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Greenhouse gas measurement campaign of the Earth Summit Mission-2022: ground-based in situ and FTIR observations and contribution to satellite validation in the Qomolangma region
Minqiang Zhou, Yilong Wang, Minzheng Duan, Xiangjun Tian, Jinzhi Ding, Jianrong Bi, Yaoming Ma, Weiqiang Ma, and Zhenhua Xi
Atmos. Meas. Tech., 18, 4311–4324, https://doi.org/10.5194/amt-18-4311-2025,https://doi.org/10.5194/amt-18-4311-2025, 2025
Short summary
Ground-based tropospheric ozone measurements: regional tropospheric ozone column trends from the TOAR-II/HEGIFTOM homogenized datasets
Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
Atmos. Chem. Phys., 25, 9905–9935, https://doi.org/10.5194/acp-25-9905-2025,https://doi.org/10.5194/acp-25-9905-2025, 2025
Short summary

Cited articles

Bacour, C., Bréon, F.-M., and Chevallier, F.: On the challenge posed by the estimation of XCO2 from OCO-2 observations in near-real time based on artificial neural network, IWGGMS-19, Paris, France, 4–6 July 2023, https://iwggms19.com/wp-content/uploads/2023/05/ID_097_cedric_bacour.pdf (last access: 25 October 2023), 2023. a, b
Bréon, F.-M., David, L., Chatelanaz, P., and Chevallier, F.: On the potential of a neural-network-based approach for estimating XCO2 from OCO-2 measurements, Atmos. Meas. Tech., 15, 5219–5234, https://doi.org/10.5194/amt-15-5219-2022, 2022. a, b
Cansot, E., Pistre, L., Castelnau, M., Landiech, P., Georges, L., Gaeremynck, Y., and Bernard, P.: MicroCarb instrument, overview and first results, in: International Conference on Space Optics – ICSO 2022, edited by: Minoglou, K., Karafolas, N., and Cugny, B., International Society for Optics and Photonics, Dubrovnik, Croatia, 3–7 October 2022, SPIE, 12777, 1277734, https://doi.org/10.1117/12.2690330, 2023. a
Carvalho, A. R., Ramos, F. M., and Carvalho, J. C.: Retrieval of carbon dioxide vertical concentration profiles from satellite data using artificial neural networks, Trends in Computational and Applied Mathematics, 11, 205–216, https://tcam.sbmac.org.br/tema/article/view/90 (last access: 25 October 2023), 2010. a
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794, San Francisco, CA, USA, 13–17 August 2016, https://doi.org/10.1145/2939672.2939785, 2016. a
Download
Short summary
This study demonstrates a new machine learning approach to efficiently and accurately estimate atmospheric carbon dioxide levels from satellite data. Rather than using traditional complex physics-based retrieval methods, neural network models are trained on simulated data to rapidly predict CO2 concentrations directly from satellite spectral measurements.
Share