Articles | Volume 17, issue 13
https://doi.org/10.5194/amt-17-3949-2024
https://doi.org/10.5194/amt-17-3949-2024
Research article
 | 
03 Jul 2024
Research article |  | 03 Jul 2024

Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements

Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino

Related authors

Quantifying CO emissions from boreal wildfires by assimilating TROPOMI and TCCON observations
Sina Voshtani, Dylan B. A. Jones, Debra Wunch, Drew C. Pendergrass, Paul O. Wennberg, David F. Pollard, Isamu Morino, Hirofumi Ohyama, Nicholas M. Deutscher, Frank Hase, Ralf Sussmann, Damien Weidmann, Rigel Kivi, Omaira García, Yao Té, Jack Chen, Kerry Anderson, Robin Stevens, Shobha Kondragunta, Aihua Zhu, Douglas Worthy, Senen Racki, Kathryn McKain, Maria V. Makarova, Nicholas Jones, Emmanuel Mahieu, Andrea Cadena-Caicedo, Paolo Cristofanelli, Casper Labuschagne, Elena Kozlova, Thomas Seitz, Martin Steinbacher, Reza Mahdi, and Isao Murata
Atmos. Chem. Phys., 25, 15527–15565, https://doi.org/10.5194/acp-25-15527-2025,https://doi.org/10.5194/acp-25-15527-2025, 2025
Short summary
TROPOMI/WFMD v2.0: Improved retrievals of XCH4 and XCO with XGBoost-based quality filtering
Oliver Schneising, Heinrich Bovensmann, Michael Buchwitz, Matthias Buschmann, Nicholas M. Deutscher, David W. T. Griffith, Jonas Hachmeister, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, Christof Petri, Maximilian Reuter, John Robinson, Coleen Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Wei Wang, Thorsten Warneke, Damien Weidmann, Debra Wunch, Minqiang Zhou, and Hartmut Bösch
EGUsphere, https://doi.org/10.5194/egusphere-2025-5422,https://doi.org/10.5194/egusphere-2025-5422, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Five years of GOSAT-2 retrievals with RemoTeC: XCO2 and XCH4 data products with quality filtering by machine learning
Andrew Gerald Barr, Jochen Landgraf, Mari Martinez-Velarte, Mihalis Vrekoussis, Ralf Sussmann, Isamu Morino, Kimberly Strong, Minqiang Zhou, Voltaire A. Velazco, Hirofumi Ohyama, Thorsten Warneke, Frank Hase, and Tobias Borsdorff
Atmos. Meas. Tech., 18, 6093–6123, https://doi.org/10.5194/amt-18-6093-2025,https://doi.org/10.5194/amt-18-6093-2025, 2025
Short summary
WRF-Chem simulations of CO2 over Western Europe assessed by ground-based measurements
Jiaxin Wang, Sieglinde Callewaert, Minqiang Zhou, Filip Desmet, Sébastien Conil, Michel Ramonet, Pucai Wang, and Martine De Mazière
EGUsphere, https://doi.org/10.5194/egusphere-2025-4537,https://doi.org/10.5194/egusphere-2025-4537, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Towards routine shipborne measurements of columnar CO2, CH4, CO, and NO2: a case study for tracking regional-scale emission patterns
Vincent Enders, Astrid Müller, Matthias Max Frey, Frank Hase, Ralph Kleinschek, Marvin Knapp, Benedikt Löw, Isamu Morino, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Sanam N. Vardag, Karolin Voss, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2025-4552,https://doi.org/10.5194/egusphere-2025-4552, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary

Cited articles

Bacour, C., Bréon, F.-M., and Chevallier, F.: On the challenge posed by the estimation of XCO2 from OCO-2 observations in near-real time based on artificial neural network, IWGGMS-19, Paris, France, 4–6 July 2023, https://iwggms19.com/wp-content/uploads/2023/05/ID_097_cedric_bacour.pdf (last access: 25 October 2023), 2023. a, b
Bréon, F.-M., David, L., Chatelanaz, P., and Chevallier, F.: On the potential of a neural-network-based approach for estimating XCO2 from OCO-2 measurements, Atmos. Meas. Tech., 15, 5219–5234, https://doi.org/10.5194/amt-15-5219-2022, 2022. a, b
Cansot, E., Pistre, L., Castelnau, M., Landiech, P., Georges, L., Gaeremynck, Y., and Bernard, P.: MicroCarb instrument, overview and first results, in: International Conference on Space Optics – ICSO 2022, edited by: Minoglou, K., Karafolas, N., and Cugny, B., International Society for Optics and Photonics, Dubrovnik, Croatia, 3–7 October 2022, SPIE, 12777, 1277734, https://doi.org/10.1117/12.2690330, 2023. a
Carvalho, A. R., Ramos, F. M., and Carvalho, J. C.: Retrieval of carbon dioxide vertical concentration profiles from satellite data using artificial neural networks, Trends in Computational and Applied Mathematics, 11, 205–216, https://tcam.sbmac.org.br/tema/article/view/90 (last access: 25 October 2023), 2010. a
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794, San Francisco, CA, USA, 13–17 August 2016, https://doi.org/10.1145/2939672.2939785, 2016. a
Download
Short summary
This study demonstrates a new machine learning approach to efficiently and accurately estimate atmospheric carbon dioxide levels from satellite data. Rather than using traditional complex physics-based retrieval methods, neural network models are trained on simulated data to rapidly predict CO2 concentrations directly from satellite spectral measurements.
Share