Articles | Volume 17, issue 19
https://doi.org/10.5194/amt-17-5709-2024
https://doi.org/10.5194/amt-17-5709-2024
Research article
 | 
30 Sep 2024
Research article |  | 30 Sep 2024

Pre-launch calibration and validation of the Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) instrument

Brent A. McBride, J. Vanderlei Martins, J. Dominik Cieslak, Roberto Fernandez-Borda, Anin Puthukkudy, Xiaoguang Xu, Noah Sienkiewicz, Brian Cairns, and Henrique M. J. Barbosa

Related authors

HARP2 Pre-Launch Calibration Overview: The Effects of a Wide Field of View
Noah Sienkiewicz, J. Vanderlei Martins, Brent A. McBride, Xiaoguang Xu, Anin Puthukkudy, Rachel Smith, and Roberto Fernandez-Borda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2024,https://doi.org/10.5194/egusphere-2024-2024, 2024
Short summary
Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021,https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017
Anin Puthukkudy, J. Vanderlei Martins, Lorraine A. Remer, Xiaoguang Xu, Oleg Dubovik, Pavel Litvinov, Brent McBride, Sharon Burton, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 13, 5207–5236, https://doi.org/10.5194/amt-13-5207-2020,https://doi.org/10.5194/amt-13-5207-2020, 2020
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020,https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements
Brent A. McBride, J. Vanderlei Martins, Henrique M. J. Barbosa, William Birmingham, and Lorraine A. Remer
Atmos. Meas. Tech., 13, 1777–1796, https://doi.org/10.5194/amt-13-1777-2020,https://doi.org/10.5194/amt-13-1777-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A quality control method based on physical constraints and data-driven collaborative for wind observations along high-speed railway lines
Xiong Xiong, Jiajun Chen, Yanchao Zhang, Xin Chen, Yingchao Zhang, and Xiaoling Ye
EGUsphere, https://doi.org/10.5194/egusphere-2024-1006,https://doi.org/10.5194/egusphere-2024-1006, 2024
Short summary
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357, https://doi.org/10.5194/amt-17-335-2024,https://doi.org/10.5194/amt-17-335-2024, 2024
Short summary
Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters
Jack A. Hutchings and Bronwen L. Konecky
Atmos. Meas. Tech., 16, 1663–1682, https://doi.org/10.5194/amt-16-1663-2023,https://doi.org/10.5194/amt-16-1663-2023, 2023
Short summary
Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements
Lindsey Davidge, Eric J. Steig, and Andrew J. Schauer
Atmos. Meas. Tech., 15, 7337–7351, https://doi.org/10.5194/amt-15-7337-2022,https://doi.org/10.5194/amt-15-7337-2022, 2022
Short summary
Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022,https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary

Cited articles

ACEPOL Science Team: Aerosol Characterization from Polarimeter and Lidar Campaign, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/SUBORBITAL/ACEPOL2017/DATA001, 2017. 
Aldoretta, E., Angal, A., Twedt, K., Chen, H., Li, Y., Link, D., Mu, Q., Vermeesch, K., and Xiong, X.: The MODIS RSB calibration and look-up-table delivery process for collections 6 and 6.1, Proc. SPIE, Earth Observing Systems XXV, 115011Q, 11501, https://doi.org/10.1117/12.2570785, 2020.​​​​​​​ 
Cairns, B., Russell, E. E., and Travis, L. D.: The Research Scanning Polarimeter: Calibration and ground-based measurements, in: Polarization: Measurement, Analysis, and Remote Sensing II, 18 July 1999, Denver, Co., USA, Proc. SPIE, 3754, 186–196, https://doi.org/10.1117/12.366329, 1999. 
Chowdhary, J., Cairns, B., Waquet, F., Knobelspiesse, K., Ottaviani, M., Redemann, J., Travis, L., and Mishchenko, M.: Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired during the MILAGRO campaign, Remote Sens. Environ., 118, 284–308, https://doi.org/10.1016/j.rse.2011.11.003, 2012. 
Download
Short summary
The Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) is a new Earth-observing instrument that provides highly accurate measurements of the atmosphere and surface. Using a physics-based calibration technique, we show that AirHARP achieves high measurement accuracy in laboratory and field environments and exceeds a benchmark accuracy requirement for modern aerosol and cloud climate observations. Therefore, the HARP design is highly attractive for upcoming NASA climate missions.