Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 17, issue 19
https://doi.org/10.5194/amt-17-5903-2024
https://doi.org/10.5194/amt-17-5903-2024
Research article
 | 
08 Oct 2024
Research article |  | 08 Oct 2024

A portable nitrogen dioxide instrument using cavity-enhanced absorption spectroscopy

Steven A. Bailey, Reem A. Hannun, Andrew K. Swanson, and Thomas F. Hanisco

Related authors

A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements
Reem A. Hannun, Andrew K. Swanson, Steven A. Bailey, Thomas F. Hanisco, T. Paul Bui, Ilann Bourgeois, Jeff Peischl, and Thomas B. Ryerson
Atmos. Meas. Tech., 13, 6877–6887, https://doi.org/10.5194/amt-13-6877-2020,https://doi.org/10.5194/amt-13-6877-2020, 2020
Short summary
A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco
Atmos. Meas. Tech., 8, 541–552, https://doi.org/10.5194/amt-8-541-2015,https://doi.org/10.5194/amt-8-541-2015, 2015
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Development of a portable laser-flash photolysis Faraday rotation spectrometer for measuring atmospheric total OH reactivity
Bo Fang, Nana Wei, Weixiong Zhao, Nana Yang, Hao Zhou, Heng Zhang, Jiarong Li, Weijun Zhang, Yanyu Lu, Zhu Zhu, and Yue Liu
Atmos. Meas. Tech., 18, 1243–1256, https://doi.org/10.5194/amt-18-1243-2025,https://doi.org/10.5194/amt-18-1243-2025, 2025
Short summary
Surface distributions and vertical profiles of trace gases (CO, O3, NO, NO2) in the Arctic wintertime boundary layer using low-cost sensors during ALPACA-2022
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy S. Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve R. Arnold, Andrea Baccarini, Maurizio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
Atmos. Meas. Tech., 18, 1163–1184, https://doi.org/10.5194/amt-18-1163-2025,https://doi.org/10.5194/amt-18-1163-2025, 2025
Short summary
Advances in an OH reactivity instrument for airborne field measurements
Hendrik Fuchs, Aaron Stainsby, Florian Berg, René Dubus, Michelle Färber, Andreas Hofzumahaus, Frank Holland, Kelvin H. Bates, Steven S. Brown, Matthew M. Coggon, Glenn S. Diskin, Georgios I. Gkatzelis, Christopher M. Jernigan, Jeff Peischl, Michael A. Robinson, Andrew W. Rollins, Nell B. Schafer, Rebecca H. Schwantes, Chelsea E. Stockwell, Patrick R. Veres, Carsten Warneke, Eleanor M. Waxman, Lu Xu, Kristen Zuraski, Andreas Wahner, and Anna Novelli
Atmos. Meas. Tech., 18, 881–895, https://doi.org/10.5194/amt-18-881-2025,https://doi.org/10.5194/amt-18-881-2025, 2025
Short summary
The ASK-16 motorized glider: an airborne eddy covariance platform to measure turbulence, energy, and matter fluxes
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
Atmos. Meas. Tech., 18, 749–772, https://doi.org/10.5194/amt-18-749-2025,https://doi.org/10.5194/amt-18-749-2025, 2025
Short summary
Development of a Peltier-based chilled-mirror hygrometer, SKYDEW, for tropospheric and lower-stratospheric water vapor measurements
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
Atmos. Meas. Tech., 18, 509–531, https://doi.org/10.5194/amt-18-509-2025,https://doi.org/10.5194/amt-18-509-2025, 2025
Short summary

Cited articles

Bailey, S.: PCAND instrument data for AMT paper, V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/5ISIE2, 2024. 
Ball, S. M., Langridge, J. M., and Jones, R. L.: Broadband cavity enhanced absorption spectroscopy using light emitting diodes, Chem. Phys. Lett., 398, 68–74, https://doi.org/10.1016/j.cplett.2004.08.144, 2004. 
Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Optics, 34, 2765–2773, https://doi.org/10.1364/AO.34.002765, 1995. 
Cersosimo, A., Serio, C., and Masiello, G.: TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations, Remote Sens.-Basel, 12, 2212, https://doi.org/10.3390/rs12142212, 2020. 
Cooper, M. J., Martin, R. V., Henze, D. K., and Jones, D. B. A.: Effects of a priori profile shape assumptions on comparisons between satellite NO2 columns and model simulations, Atmos. Chem. Phys., 20, 7231–7241, https://doi.org/10.5194/acp-20-7231-2020, 2020a. 
Download
Short summary
We have developed a portable, optically based instrument that measures NO2. It consumes less...
Share