Articles | Volume 18, issue 6
https://doi.org/10.5194/amt-18-1415-2025
https://doi.org/10.5194/amt-18-1415-2025
Research article
 | 
24 Mar 2025
Research article |  | 24 Mar 2025

Multi-layer retrieval of aerosol optical depth in the troposphere using SEVIRI data: a case study of the European continent

Maryam Pashayi, Mehran Satari, and Mehdi Momeni Shahraki

Related authors

EXPLORING THE POTENTIAL OF FULL WAVEFORM AIRBORNE LIDAR FEATURES AND ITS FUSION WITH RGB IMAGE IN CLASSIFICATION OF A SPARSELY FORESTED AREA
M. Babadi, M. Sattari, and S. Iran Pour
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 147–152, https://doi.org/10.5194/isprs-archives-XLII-4-W18-147-2019,https://doi.org/10.5194/isprs-archives-XLII-4-W18-147-2019, 2019
AUTOMATIC CENTERLINE EXTRACTION OF COVERD ROADS BY SURROUNDING OBJECTS FROM HIGH RESOLUTION SATELLITE IMAGES
H. Kamangir, M. Momeni, and M. Satari
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W4, 111–116, https://doi.org/10.5194/isprs-archives-XLII-4-W4-111-2017,https://doi.org/10.5194/isprs-archives-XLII-4-W4-111-2017, 2017

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc E. J. Stettler
Atmos. Meas. Tech., 18, 37–56, https://doi.org/10.5194/amt-18-37-2025,https://doi.org/10.5194/amt-18-37-2025, 2025
Short summary
Satellite Aerosol Composition Retrieval from a combination of three different Instruments: Information content analysis
Ulrike Stöffelmair, Thomas Popp, Marco Vountas, and Hartmut Bösch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2800,https://doi.org/10.5194/egusphere-2024-2800, 2024
Short summary
Towards Gridded Nighttime Aerosol Optical Thickness Retrievals Using VIIRS Day/Night Band Observations Over Regions with Artificial Light Sources
Jianglong Zhang, Jeffrey S. Reid, Blake Sorenson, Steven D. Miller, Miguel O. Román, Zhuosen Wang, Robert J. D. Spurr, Shawn Jaker, Thomas F. Eck, and Juli I. Rubin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-181,https://doi.org/10.5194/amt-2024-181, 2024
Revised manuscript accepted for AMT
Short summary
Retrieval of stratospheric aerosol extinction coefficients from sun-normalized Ozone Mapper and Profiler Suite Limb Profiler (OMPS-LP) measurements
Alexei Rozanov, Christine Pohl, Carlo Arosio, Adam Bourassa, Klaus Bramstedt, Elizaveta Malinina, Landon Rieger, and John P. Burrows
Atmos. Meas. Tech., 17, 6677–6695, https://doi.org/10.5194/amt-17-6677-2024,https://doi.org/10.5194/amt-17-6677-2024, 2024
Short summary
Optical Properties of North Atlantic Aerosols Through a compact dual-wavelength depolarization Lidar Observations
Yenny González, María F. Sánchez-Barrero, Ioana Popovici, África Barreto, Stephane Victori, Ellsworth J. Welton, Rosa D. García, Pablo G. Sicilia, Fernando A. Almansa, Carlos Torres, and Philippe Goloub
EGUsphere, https://doi.org/10.5194/egusphere-2024-2727,https://doi.org/10.5194/egusphere-2024-2727, 2024
Short summary

Cited articles

Ahmed, A., Song, W., Zhang, Y., Haque, M. A., and Liu, X.: Hybrid BO-XGBoost and BO-RF Models for the Strength Prediction of Self-Compacting Mortars with Parametric Analysis, Materials, 16, 4366, https://doi.org/10.3390/ma16124366, 2023. 
Ajtai, N., Mereuta, A., Stefanie, H., Radovici, A., Botezan, C., Zawadzka-Manko, O., Stachlewska, I. S., Stebel, K., and Zehner, C.: SEVIRI Aerosol Optical Depth Validation Using AERONET and Intercomparison with MODIS in Central and Eastern Europe, Remote Sensing, 13, 844, https://doi.org/10.3390/rs13050844, 2021. 
Amini, S., Momeni, M., and Monadjemi, A.: Sensitivity analysis of Look-up table for satellite-based aerosol optical depth retrieval, J. Aerosol Sci., 158, 105842, https://doi.org/10.1016/j.jaerosci.2021.105842, 2021. 
Benesty, J., Chen, J., Huang, Y., and Cohen, I.: Pearson Correlation Coefficient, in: Noise Reduction in Speech Processing, Springer Topics in Signal Processing, Vol 2, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-00296-0_5, 2009. 
Berhane, S. A., Althaf, P., Kumar, K. R., Bu, L., and Yao, M.: A Comprehensive Analysis of AOD and its Species from Reanalysis Data over the Middle East and North Africa Regions: Evaluation of Model Performance Using Machine Learning Techniques, Earth Systems and Environment, 1–26, https://doi.org/10.1007/s41748-024-00513-x, 2024. 
Download
Short summary
Multi-layer aerosol optical depth (AOD) is retrieved using the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) and machine learning, trained on Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. The model provides AOD at a 3 km × 3 km spatial and 15 min temporal resolution over Europe. It accurately captured multi-layer AOD dynamics during Saharan dust transport and the Mount Etna eruption, demonstrating consistent physical accuracy.
Share