Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Download
Short summary
In this paper the representativeness of ground-based cloud observatories and their comparability to satellite data and weather prediction models is examined. It is performed by analysing correlation of time series of SEVIRI pixels. The representativeness strongly depends on the used channels and ranges between 1km and over 20km.
Articles | Volume 8, issue 2
Atmos. Meas. Tech., 8, 567–578, 2015
https://doi.org/10.5194/amt-8-567-2015
Atmos. Meas. Tech., 8, 567–578, 2015
https://doi.org/10.5194/amt-8-567-2015

Research article 04 Feb 2015

Research article | 04 Feb 2015

Multichannel analysis of correlation length of SEVIRI images around ground-based cloud observatories to determine their representativeness

J. Slobodda et al.

Related authors

A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-491,https://doi.org/10.5194/amt-2020-491, 2021
Preprint under review for AMT
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-370,https://doi.org/10.5194/amt-2020-370, 2020
Preprint under review for AMT
Short summary
The role of nanoparticles in Arctic cloud formation
Linn Karlsson, Radovan Krejci, Makoto Koike, Kerstin Ebell, and Paul Zieger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-417,https://doi.org/10.5194/acp-2020-417, 2020
Revised manuscript under review for ACP
Short summary
The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, and Christoph Ritter
Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020,https://doi.org/10.5194/acp-20-5157-2020, 2020
Short summary
Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations
Jonas Witthuhn, Anja Hünerbein, and Hartwig Deneke
Atmos. Meas. Tech., 13, 1387–1412, https://doi.org/10.5194/amt-13-1387-2020,https://doi.org/10.5194/amt-13-1387-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary
Improved cloud detection over sea ice and snow during Arctic summer using MERIS data
Larysa Istomina, Henrik Marks, Marcus Huntemann, Georg Heygster, and Gunnar Spreen
Atmos. Meas. Tech., 13, 6459–6472, https://doi.org/10.5194/amt-13-6459-2020,https://doi.org/10.5194/amt-13-6459-2020, 2020

Cited articles

Boehme, T., Stapelberg, S., Akkermans, T., Crewell, S., Fischer, J., Reinhardt, T., Seifert, A., Selbach, C., and Van Lipzig, N.: Long-term evaluation of COSMO forecasting using combined observational data of the GOP period, Meteorol. Z., 20, 119–132, 2011.
Bouniol, D., Protat, A., Delanoë, J., Pelon, J., Poriou, J.-M., Bouyssel, F., Tompkins, A. M., Wilson, D. R., Morielle, Y., Haeffelin, M., O'Connor, E. J., Hogan, R. J., Illingworth, A. J., Donovan, D. P., and Baltink, H.-K.: Using Continuous Ground-Based Radar and Lidar Measurements for Evaluating the Representation of Clouds in Four Operational Models, J. Appl. Meteor. Climatol., 49, 1971–1991, 2010.
Cahalan, R. F., Short, D. A., and North, G. R.: Cloud Fluctuation Statistics, Mon. Weather Rev., 110, 26–43, 1982.
Crewell, S., Mech, M., Reinhardt, T., Selbach, C., Betz, H.-D., Brocard, E., Dick, G., O'Connor, E., Fischer, J., Hanisch, T., Hauf, T., Hünerbein, A., Delobbe, L., Mathes, A., Peters, G., Wernli, H., Wiegner, M., and Wulfmeyer, V.: The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results, Meteorol. Z, 17, 849–866, 2008.
Deneke, H. M., Knap, W. H., and Simmer, C.: Multiresolution analysis of the temporal variance and correlation of transmittance and reflection of an atmospheric column, J. Geophys. Res., 114, D17206, https://doi.org/10.1029/2008JD011680, 2009.
Publications Copernicus
Download
Short summary
In this paper the representativeness of ground-based cloud observatories and their comparability to satellite data and weather prediction models is examined. It is performed by analysing correlation of time series of SEVIRI pixels. The representativeness strongly depends on the used channels and ranges between 1km and over 20km.
Citation