Articles | Volume 9, issue 1
Atmos. Meas. Tech., 9, 195–214, 2016
https://doi.org/10.5194/amt-9-195-2016

Special issue: Changes in the vertical distribution of ozone – the SI2N report...

Atmos. Meas. Tech., 9, 195–214, 2016
https://doi.org/10.5194/amt-9-195-2016

Research article 25 Jan 2016

Research article | 25 Jan 2016

A re-evaluated Canadian ozonesonde record: measurements of the vertical distribution of ozone over Canada from 1966 to 2013

D. W. Tarasick et al.

Related authors

Tropospheric ozone in CMIP6 simulations
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021,https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
An Arctic Ozone Hole in 2020 If Not For the Montreal Protocol
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1297,https://doi.org/10.5194/acp-2020-1297, 2021
Revised manuscript accepted for ACP
Short summary
Pan-Arctic surface ozone: modelling vs. measurements
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020,https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary
A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for “background current” and pump efficiency
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020,https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions
Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Kenneth C. Aikin, Teresa Campos, Hannah Clark, Róisín Commane, Bruce Daube, Glenn W. Diskin, James W. Elkins, Ru-Shan Gao, Audrey Gaudel, Eric J. Hintsa, Bryan J. Johnson, Rigel Kivi, Kathryn McKain, Fred L. Moore, David D. Parrish, Richard Querel, Eric Ray, Ricardo Sánchez, Colm Sweeney, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Jacquelyn C. Witte, Steve C. Wofsy, and Thomas B. Ryerson
Atmos. Chem. Phys., 20, 10611–10635, https://doi.org/10.5194/acp-20-10611-2020,https://doi.org/10.5194/acp-20-10611-2020, 2020

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Application of a mobile laboratory using a selected-ion flow-tube mass spectrometer (SIFT-MS) for characterisation of volatile organic compounds and atmospheric trace gases
Rebecca L. Wagner, Naomi J. Farren, Jack Davison, Stuart Young, James R. Hopkins, Alastair C. Lewis, David C. Carslaw, and Marvin D. Shaw
Atmos. Meas. Tech., 14, 6083–6100, https://doi.org/10.5194/amt-14-6083-2021,https://doi.org/10.5194/amt-14-6083-2021, 2021
Short summary
Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere
Brandon Bottorff, Emily Reidy, Levi Mielke, Sebastien Dusanter, and Philip S. Stevens
Atmos. Meas. Tech., 14, 6039–6056, https://doi.org/10.5194/amt-14-6039-2021,https://doi.org/10.5194/amt-14-6039-2021, 2021
Short summary
Calibration and assessment of electrochemical low-cost sensors in remote alpine harsh environments
Federico Dallo, Daniele Zannoni, Jacopo Gabrieli, Paolo Cristofanelli, Francescopiero Calzolari, Fabrizio de Blasi, Andrea Spolaor, Dario Battistel, Rachele Lodi, Warren Raymond Lee Cairns, Ann Mari Fjæraa, Paolo Bonasoni, and Carlo Barbante
Atmos. Meas. Tech., 14, 6005–6021, https://doi.org/10.5194/amt-14-6005-2021,https://doi.org/10.5194/amt-14-6005-2021, 2021
Short summary
Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and CH2O measurements during the reaction of NO2 with H2O vapour in the simulation chamber CESAM
Hongming Yi, Mathieu Cazaunau, Aline Gratien, Vincent Michoud, Edouard Pangui, Jean-Francois Doussin, and Weidong Chen
Atmos. Meas. Tech., 14, 5701–5715, https://doi.org/10.5194/amt-14-5701-2021,https://doi.org/10.5194/amt-14-5701-2021, 2021
Short summary
Impact of ozone and inlet design on the quantification of isoprene-derived organic nitrates by thermal dissociation cavity ring-down spectroscopy (TD-CRDS)
Patrick Dewald, Raphael Dörich, Jan Schuladen, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5501–5519, https://doi.org/10.5194/amt-14-5501-2021,https://doi.org/10.5194/amt-14-5501-2021, 2021
Short summary

Cited articles

Attmannspacher, A. and Dütsch, H. U.: Second international ozone sonde intercomparison at the Observatory Hohenpeissenberg, Ber. Dtsch. Wetterdienstes, 157, 1–64, 1981.
Barnes, R. A., Bandy, A. R., and Torres, A. L.: Electrochemical concentration cell ozonesonde accuracy and precision,  J. Geophys. Res., 90, 7881–7887, 1985.
Basher, R. E.: Review of the Dobson spectrophotometer and its accuracy, WMO Ozone Rep. 13, World Meteorol. Org., Geneva, 1982.
Beekmann, M., Ancellet, G., Mégie, G., Smit, H. G. J., and Kley, D.: Intercomparison campaign of vertical ozone profiles including electrochemical sondes of ECC and Brewer–Mast type and a ground-based UV-differential absorption lidar,  J. Atmos. Chem., 19, 259–288, 1994.
Beekmann, M., Ancellet, G., Martin, D., Abonnel, C., Duverneuil, G., Eideliman, F., Bessemoulin, P., Fritz, N., and Girard, E.: Intercomparison of tropospheric ozone profiles obtained by electrochemical sondes, a ground-based lidar and an airborne UV-photometer, Atmos. Environ., 29, 1027–1042, 1995.
Download
Short summary
Changes to measurement methods over Canada's 48-year ozonesonde record have been characterized and corrections applied. An estimate of the altitude-dependent uncertainty is added to each profile. The re-evaluated time series show negative trends in the lower stratosphere of up to 5 % per decade for the period 1966–2013. In the troposphere trends for the 48-year period are generally not significant. This suggests that free tropospheric ozone levels over Canada have not changed in nearly 50 years.